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THERMAL GENERATION AND MOBILITY OF CtIARGE CARRIERS

IN COLLECTIVE PROTON TRANSPORT IN HYDROGEN-BONDED CtIAINS.

Xi. Peyrard, R. Boesch and I. Kourakis

Physique non lin6aire: Ondes et Structures Coh6rentes

Facult6 des Sciences, 6 blvd Gabriel, 21000 Dijon, France.

I. INTRODUCTION

The transport of protons in hydrogen-bonded systems is a long standing problem

which has not yet obtained a satisfactorily theoretical description. Although this

problem was examined first for ice, it is relevant in many systems and in particular in

biology for the transport along proteins or for proton conductance across membranes,

an essential process in cell life. This broad relevance makes the study of proton

conduction very appealing. Since the original work of Bernal and fowler on ice I °

the idea that the transport occurs through chains of hydrogen bonds has been well

accepted. Such "proton wires" were invoked by Nagle and Morowitz 2 for proton

transport across membranes proteins and more recently across lipid bilayers 3. In this

report, we assume the existence of such an hydrogen-bonded chain and discuss its

consequences on the dynamics of the charge carriers. We show that this assumption

leads naturally to the idea of soliton transport and we put a special emphasis on

the role of the coupling between the protons and heavy ions motions. The model is

presented in section II. In section III we show how the coupling affects strongly the

dynamics of the charge carriers and in section IV we discuss the role it plays in the

thermal generation of carriers. The work presented in section III has been performed

in 1986 and 87 with St Pnevmatikos and N. Flytzanis 4 and was then completed in

collaboration with D. Hochstrasser and H. Biittner 5. Therefore the results presented

in this part are not new but we think that they are appropriate in the context of this

multidisciplinary workshop because they provide a rather complete (and tractable)
example of the soliton picture for proton conduction. Section IV discusses the thermal

generation of the charge carriers when the coupling between the protons and heavy

ions dynamics is taken into account. The results presented in this part are very recent

and will deserve further analysis but they already show that the coupling can assist
the formation of the charge carriers.

Since the results presented here consider only the ionic defects along a pre-existing

hydrogen bonded chain they give a partial view of the proton transport mechanism.

However, since the coupling between the motion of the carriers and the dynamics of

.... t:uarac_ermtic z'espoI_se, we hope that tilese
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results might suggest some experimental test of the soliton picture for proton trans-

port.

II• TIIE ANTONCIIENKO-DAVYDOV-ZOLOTARIUK MODEL.

Since the original work of Bernal and Fowler 1, it is now accepted that, in ice

as weil as in water, protons are transferred by jumps from one water molecule to

another along hydrogen bonds (fig. 1 a). According to this mechanism the charge

carriers are H'30 + and OH- ionic defects. However the motion of these defects is

not sufficient to explain a permanent proton conductivity since, after one defect as

passed, the chain is left in a state that cannot carry charge in the same direction

again.

Figure 1: (a) Schematic picture of proton transport according to

the Bernal Fowler mechanism. The figure presents the case of an HaO +

ionic defect. (b) Motion of a Bjerrum defect across an hydrogen bonded

chain. The defect restores the chain in a state that can again carry

charge according to the Bernal Fowler mechanism•

The chain has to be restored to its original state by another type of defect which

rotates the water molecules, the so-called Bjerrum defects 6 (fig 1 b). In 1978 Na-
O

gle and Morowitz" extended the ideas of Bernal and Fowler and Bjerrum to mem-

brane proteins, showing the great biological importance of proton transport across

an hydrogen-bonded chain• However, in their model, the dynamics of the charge car-

riers was not described quantigatively. The first model describing this dynamics was
• 7

proposed by Antonchenko-Davydov-Zolotarmk . It combined a well known soliton

model, the ¢4 model s, and the dynamics of the heavy ions. This ADZ model only

describes the HaO + and OH- ionic defects. Other models were introduced later to
• . 9

combine the ionic and Bjerrum defects in a single description , or to introduce other

degrees of freedom of the heavy ions not included in the original ADZ model 5'1°.

However, although this is not generaUy mentionned, these extended models are de-

pendent on the actual crystal geometry while the ADZ model can be introduced by

general arguments independent of the geometry of the chain. Moreover the ADZ

model is easily tractable analytically and describes the essential features of the hy-

drogen bonded chain. This is why, in this report, we have chosen to restrict, our

discussion tc, this partic,,l_," mr_¢lol



Figure 2: Picture of the Antonchenko-Davydov-Zolotariuk model

showing the chain with the proton potentials, and a example of the

solution of the equations of motion.

A schematic drawing of the ADZ model is shown in fig. 2. It consists of a chain of

protons and heavy ions (which are henceforth called "oxygens" although they can be

OH- or more complicated entities depending on the system). A classical description

of the dynamics of this chain could in principle be derived from the hypersurface

of potential energy as it can be obtained from ab-initio calculations. However, this

potential energy depends on all the variables in the system and cannot be used as

such to obtain a model which is analytically tractable. The main idea of all the"

soliton models is to select in the potential energy the part which is relevant for pro-

ton transport and split it into several components relative to the proton sublattice,

the oxygen sublattice, and the coupling between the two sublattices. The different

terms can be justified if we consider a simple prototype hydrogen-bonded system, the

proton-bound water dimer 11 (H20 H...OH2) +. This system can be characterized

by two parameters, the distance X between the oxygens and the position u of the

bonding proton (note that, by choosing only these parameters which are the most

relevant parameters for the bonding-proton dynamics, we have already greatly sim-

plified the expression of the potential energy of the system). Ab-initio calculations

show that, when X has its equilibrium value, there are two energetically degenerate

positions for the bonding-proton, close to one oxygen or close to the other. If X is

maintained fixed, the transfer of the proton between the two sites requires to over-

come a potential energy barrier between the sites so that the potential energy for

the proton has the shape of a double well. But if X is allowed to var); the proton

transfer is accompanied by a reduction in the oxygens distance which lowers signifi-

cantly the potential energy barrier. In some compounds the barrier can even vanish

completely 12. This effect is described in the ADZ model by writting the p,._ential

energy of the proton as the sum of a double well potential depending only on the

proton position u, and an interaction term that depends both on u an _1the distance

of the two adjacent oxygens. The model must also take into account tne existence

of a stable equilibrium distance a between neighboring oxygens by adding a term i

in the potential energy which, for simplicity, is chosen as a harmonic potential for

the variable p = a - X. Moreover the hypersurface of potential energy couples an),

vaJ. at_o,t. ,-a bzxc t.tacut_ _u ct_ly tJbllt2£, lb 1_ I_abOltELl)le i;O _t.5SUllle l;Ilal; the snort;est inter-



actions are the dominant ones. The interactions between adjacent atoms are already

' described by the terms mentionned above. The ADZ model considers in addition

the interacti _ns between neighboring protons and between neighboring oxygen pairs.
The hamiltonian of the chain is written as

H =Hp+Ho+Hint , (1)

The proton part is

i._rap _1 ( dun _ 2 1= 7_m dt / + U(un) + 7)m,_(un+l - Un)2
II

where the index n designates the unit cells and m is the proton mass. The first term

is the kinetic energy term, U(un) is the double well potential obtained for fixed X in
the ab-inito calculations. It is written as

= ,0(1 2, (2)

and the last term represents the harmonic coupling with characteristic frequency Wl

between neighboring proton. In the double well expression U(un), eo is the height

of the potential barrier between the two equilibrium sites situated at the positions
u = +u0.

The oxygen part is

_ _.M'fll (pn+1 ph) 2 (3).
n - k, dt / + Pn + - •

J_/ is the oxygen mass, ft0 is the frequency of the optical mode corresponding to

the oscillations of the distance between adjacent oxygens and f21 characterizes the

coupling between neighboring oxygen pairs.

The interaction part is

Hint = _ XPn(U 2 - u2) , (4)
n

where X measures the strep, gth of the coupling between the proton and hydrogen

sublattices. The expression of the interaction potential in the ADZ model is in-

teresting because it is both physically relcwnt and mathematically convenient. It

describes correctly the interaction because if pn increases (i.e. the distance between

two adjacent oxygens decreases), the addition of the interaction potential to U(un)

generates a double well potential with a lower barrier and closer minima. Moreover,

the specific form of Hint gives equations of motions which, in some cases, reduce to
the well known ¢4 model and are thus solvable.

The comparison between the results of the ab-initio calculations and the ADZ

model shows that this model provides a rather natural description of the hydrogen-

bonded chain. It includes indeed some approximations since the hypersurface of

potential energy has been severely simplified and because some degrees of freedom

of the oxygens are ignored since an oxygen pair is described by a single variable Ph.

'x_he model does not include an overall translation of the pair, i.e. the acoustic modes

of the oxygen sublattice. But, as the main change in the distance between adjacent



III. _,IOBILITY OF TIIE CIIARGE CARRIERS IN TItE ADZ MODEL.

The mobility of the carriers can be determined by investigating the dynamics

of the ADZ model. We show in this section that its equations of motion have two

solitonlike solutions which correspond to the H30 + and OH- ionic defects and we
discuss the dynamics of these solutions.

The hamiltonian (1) generates a set of coupled differential equations for the un

and p,_ that cannot be solved analytically, but, if the nearest neighbor couplings be-
tween protons and between oxygen pairs are strong enough, one can use a continuum

approximation which replaces a set of functions un(t) by the two-variable function

u(x, t), and similarly for the p,,(t) which are replaced by p(x, t). Within this approx-

imation, the original set of coupled differential equations is replaced by two coupled
PDE's

- +--au = 0 (5)
u.-csu_ m_L_u 1 u5 m '

x 2 _o2) o, (s)Ptr- v_px:_ + _/02p + _-_'(u -- =

where x = na is the continuous space variable, co = awl is the sound speed in the

proton sublattice, and v0 = a_ 1 is a parameter which characterizes the dispersion

of the oxygens optical mode. A charge carrier moving at speed v is described by a

permanent profile solution, i.e. a solution which depends only on _ = (x-vt)/a. The
equations of motion are therefore reduced to

1.c, v2 4e0 ( u2) 2¥_( _ - )u_ + --_u 1 - - o 7)- ,_ _ _-P_= , (

_(,2,._ ,_)a_ + ft0%+ M(U2- _) = 0• (s)

Analytical solutions of this set of coupled equations are only known in some particular

cases. If the coupling between the two sublattices vanishes (X - 0), Eq. (7) reduces

to the ¢4 equation 8 which has kinklike permanent pro_le solutions, while equation

(8) is simply linear. In the presence of the coupling, an exact analytical solution can

only be obtained for the particular speed v -- v0 because, in this case, Eq. (8) gives

an expression of p as a function of u. Introducing this expression in Eq. (7), we get

_T 4( X2u 4 ) ( u 2)
.(Co-V2)u_+_ e0 1 _ 0, (9)

mu5 2_oM u - =u o

which is again the standard ¢4 equation with a renormalized barrier e between the
two proton sites

') 4
X-u 0

e=eo 2QoA I. • (10)

r]'_l-,-_ _'--_,--,1' "#.. bllla I;:::LILII:_LIIJLI iS .1 .... ,1 " _1 ¢' 'la.,_ o**_Xl.,_iC_u_ of ,1.: ....... ,.:_._ u t,_Lo _ne _pec]m IOrlIl Cllosen for 1;lie" interaction



term in the hamiltonian. Equation (9) has kinklike solutions

,.,= +u0tanh(_/L), (11)

where L measures the kink width and is given by

L--_2- -, , e0 v2 _ . (12)mw_u 5 2floltl 1 - /c5

The corresponding solution in the oxygen sublattice has a bell shape

p = posech2t_/L) with P0 = XU2o/2VIa2o• (13)

This solution is shown in fig. 2 with the plus sign for u. The figure shows that the kink

in u generates a local reduction in the proton density, which amounts to creating a

negatively charged carrier in the chain. This solution corresponds to the OH- defect

in the Bernal Fowler picture. The other solution with a minus sign in u increases the

local proton density and it corresponds to the Hs0 + defect. Both are accompanied

by a local reduction in the distance between adjacent oxygens which is associated

to a decrease in the effective barrier for the protons. The kink solutions of the ¢4

model are not solitons in the strict sense because they don't survive collisions with

simply a phase shift. However they are stable solitonlike structures which propagate

with a constant shape and speed. Therefore this particular solution for v = v0

suggests that the coupling between the two sublattices assists the proton transport
because it makes the jump from one position to the other easier by lowering locally

the potential energy barrier. However the investigation of the dynamics of the model

for other velocities shows that this is not always the case.

For v # v0, an exact analytical solution cannot be obtained and we have to rely

on numerical methods. A scheme using an effective hamiltonian has been recently

designed to find permanent profile solutions moving at any speed 10, but we can also

take advantage of the exceptional stability of the solitonlike solutions we are looking

for to use the system itself as an equation solver. The idea is to run a molecular

dynamics simulation in which a static solution obtained by energy minimization is

forced to move at the desired speed by an external force. A small damping is added
to absorb the radiations emitted while the static solution is accelerated. When a

steady state is achieved, the external force and damping are gradually removed. This

procedure shows that the two velocity domains v _<v0 and v > v0 are fundamentally
different.

(i) for v _< v0, a permanent profile solution exists and when the external force

and damping are removed, it propagates freely at constant speed. An approximate

analytical description of this solution can be derived because the shape of the kink

in the proton sublattice is only weakly modified by the coupling with the oxygens.

Therefore it is well approximated by the solution of Eq. (9) with v < v0 although

this equation does not treat Eq. (8) exactly in this case. Then the displacements in

the oxygen sublattice are obtained by solving Eq. (8) with a known u solution, i.e.

by treating the oxygen motions as if they were forced by a given proton kink. The

amplitude of the oxygen pulse obtained by this approach is in good agreement with
_.| " 1 1,

bile llunlerlcal resull;S.



(ii) for v > u0, there are no permanent profile solutions. The numerical simu-

lations show that, as the kink in the proton sublattice propagates, instead of being

accompanied by a localized solution in the oxygen sublattice, it radiates waves in

this sublattice. The same approxilnate analytical treatment as for v _<v0 shows that

Eq. (S) forced by a kink iii tLmoving at velocity v > v0 has no localized solution.
The radiation in the oxygen sublattice corresponds to a transfer of energy from the

proton kink so that a proton kink launched at a speed v > v0 slows down until its

speed reaches u0 where the radiation stops.
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Figure 3: Velocity of the proton kink driven by an external field

as a function of the field strength for several values of the damping

coeffiecient I'. The horizontal dotted line indicates the velocity v0.

Note the hysteresis phenomena for r' = 0.05 1014 s -1.

Therefore, whereas for v < v0 the coupling between the two sublattices is assisting

the motion of the charge carriers, for v > v0 it has an opposite effect. This generates

a strong nonlinearity in the mobility of the carriers when they are submitted to an

external field. We have determined this mobility by carrying numerical simulations in

the presence of an external field. %then it drives the ionic defect, the field feeds energy

in the system. In a three-diniensiona] system part of this energy is distributed among
many degrees of freedom which are not included in the one-dimensional ADZ model.

This energy transfer has been approximately modelled by adding a phenomenological

damping term in the equations of motion. Figure 3 shows the equilibrium velocity

ur of the proton kink as a function of the applied field F for different values of the

damping coefficient F.
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Without damping (F = 0) there is an abrupt discontinuity in vI when F reaches
' a critical Value Ft. For F < Fv, the velocity of the solitary wave is always larger

than v0 and increases very slowly with F (plateau in fig. 3). For F > Fv, vI jumps
to a value close to co where it is limited by discreteness effects which cause radiation

in the proton sublattice 13. In tlle presence of damping this abrupt discontinuity is

smoothed out but, for intermediate damping, some hysteresis is found in the charge

carrier mobility when F is increased to a value larger than the critical Value and then

decreased. Consequently the numerical results show a very strong nonlinear response

of the charge carriers to an external field. This behavior is due to the coupling
between the two sublattices and can be understood if one considers the balance

between the energy transmitted to the carriers by the external field and the energy
4

they radi',_e in the oxygen sublattice when their speed exceeds v0 • In the absence of

damping, the proton kink does not lose any energy as long as its velocity is smaller

than v0 and thus any small F drives it to a velocity above v0 where the radiation

can compensate the energy input due to F. But an analytical calculation shows that

the radiated energy exhibits a maximmn for a speed slightly higher than v0. At very

high speed, the heavy oxygens atoms cannot follow the fast proton motion and the

energy transferred to the oxygens decreases. The existence of this maximum in the

radiated energy explains the existence of a critical field Fc. For F > Fc, the radiation

cannot balance the energy input, hence the jump to very high carrier speed. In the

presence of damping, the balance has to take into account the energy loss due to

damping. The plateau is reduced and there is now a limited equilibrium speed when

F exceeds Fc. A complete analysis shows that the hysteresis observed numerically

can be understood within the same framework 4. Consequently the mobility of the

charge carriers in the ADZ model is controlled by the coupling between the charge

carriers and the host lattice which results in a strongly nonlinear response.

IV. THERMAL GENERATION OF CHARGE CARRIERS.

The analysisofconductivityexperimentsinhydrogen-bondedsystemsgenerally

assume thatthe number ofionicdefectsisfixed.At low temperaturesome ofthem

are trapped by defects or inhomogeneities and they are gradually released when

temperature increases. One may ask however if the thermal creation of ionic defects

is possible. This section examines this question. As for the mobility of the carriers,

we show that the coupling between the proton and the oxygen sublattice has a strong
influence.

The first step to determine whether thermal creation is possible is to compute the

energy of an ionic defect. This is the energy of the solitonlike solutions determined

previously and, for v = v0 it is given by

s C° ovq(1+ c) (14)
E(vo) = 3x/"2-(1 -- vg/c o a

with

C- 4 v° "_(2u] (15)
5c0,nMf o "

The coupling between the two sublattices appears in two places in this formula.
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Table I. Energies E of ionic defects for different parameter sets•

eo uo _1 _o ro/co _ e C E

2.0 eV 1 _ 2.21 0.184 0.192 0.1 1.99 eV 4 10-3 16.1 eV

0.1 eV 0.8 ,_ 1.0 0.570 0.1 0.1 0.996 eV 2 10-s 0.48 eV

0.18 eV 0.8.1, 1.0 0.570 0.1 1.5 0.987 eV 6 10-3 0.48 eV

First it shows up in the term V_ because, in the absence of coupling one would

get e0 instead of e. Since the effective barrier e is lowered by the interaction as

indicated by Eq. (10), the coupling contributes to reduce the creation energy of a

defect. Second the coupling is responsible for the correction term C in Eq. (14).

This term represents the energy which exists in the oxygen sublattice due to the

local distorsion that accompanies the proton kink. This extra energy contributes to

increase the creation energy of a defect• Table I lists the energy of an ionic defect for

three different parameter sets.

The choice of appropriate parameters for the model is delicate because some of

them are not directly accessible to experiments. The first set was introduced by

Spatschek, Laedke and Zolotariuk 14 and used later by ourselves 4 and more recently

by Nylund and Tsironis 15 for a comparison between model results aild experiments.

This set gives a defect energy which is extremely high (16 eV) end is certainly not

correct. The two other sets have been chosen in order to give equal energies for the

defects with weak (X = 0.1) or strong (X = 1.5) coupling between tile sublattices. The

values of e0 have been chosen to be consistent with the ab-initio results 11and also with

a very extensive analysis of a large number of hydrogen bonded compounds performed

by Sokolov et al. 12. The value of wl has been chosen so that the characteristic width of

a defect., i.e. its spatial extent L, is if the order of two lattice spacings. The frequency

f_0 of the oxygens optical mode has been set to 300 cm -1. The parameter v0 is the

most difficult to chose because it is related to the dispersion of this optical mode

which is not accessible by a spectroscopy experiment. We have chosen to impose

roco = 0.1 but it would be interesting to refine this value either by comparison with

the results of ab-initio calculations on a system involving at least two oxygen pairs

so that the coupling between them can be obtained, or by using dispersion curves

determined by neutron diffraction. The coupling constant X is also a parameter which

is not well known, which is why we have considered two cases, X = 0.1 and X = 1.5

corresponding respectively to weak and strong coupling. In the weak coupling case,

table I shows that e is very close to e0 and the correction C is very small. In the

strong coupling case e _ 0.5 e0, while the correction term remains rather small. The

global effect is a significant reduction of the energy of the defect.

However, even if the model parameters are not perfectly known, the energy of
an ionic defect is of the order of 0.5 eV so that its thermal creation around room

temperature is extremely unlikely unless some particular mechanism can intervene

to localize thermal energy in the chain. In a nonlinear system like the hydrogen-

bonded chain such a mechanism exists; it is the modulationai instability of a plane
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wave. Before attempting to study it for the coupled lattices of the ADZ model, let

' us discuss the idea on a simple case with only the proton sublattice. We start from

the equation of motion (5) with _ = O, i.e.

- - =0,
uu cS , x 'nu0u 1

In order to study the build-up of large amplitude solutions we expand around the

equilibrium position u0 using a multiple scale expansion which goes beyond a simple
linear expansion

0

u = uo+ cut(To,T,,T_.,...,Xo, X,,X2,...)+ ¢'u2(To,T,,T2,...,Xo,Xl, X2,...) ,

with To - t; Ta - et is a slow time which will describe the slow evolution of the

solution, T2 = _2t, and in a similar manner X0 = x, X1 - ex, etc. At order e one

gets an evolution equation for ul which gives

u I = A(Xl, T2 )ei(kx-wt) _[_C C , (18)

where w and k are related by the linear dispersion relation of the lattice. In the small

amplitude limit, Ul would simply correspond to the phonon modes of the lattice.

But if nonlinearity is taken into account, the higher order terms give a nonlinear

SchrSdinger equation (NLS equation) for A,

•OA _02A
z_+ QIAJ2A

+ = 0,

with P - (c]- v2)/2w, "vg = c2ok/w, and Q - 24eo/wu 4 . This equation has
• 2

an exact space-independent solution A = Ao exp(zQAoT2) which corresponds to a

plane wave solution in Ul. However this solution in which the energy is evenly dis-

tributed over the chain is unstable. Looking for a perturbed solution A = [Ao +

Al(Xi, t2)] exp(iQAoT2), one finds that, if P Q > 0, which is the case for the equation

that we consider here, the perturbation tends to grow and generates a spontaneous

modulation of the wave. A more complete analysis shows that the plane wave tends

to break-up into solitary waves, or breather solutions of the NLS equation, in which
the energy is concentrated. The same mechanism is also true for the thermal fluctu-

ations. When their amplitude is sufficient to excite the nonlinearities in the system,

an energy localization occurs and pro,notes the formation of kink-antikink pairs.

This mechanism is well known for an equation like (16), but the case of the ADZ

model of the hydrogen-bonded chain is more complicated because we must consider

the two coupled equations (5) and (6). Nevertheless the same energy localization

mechanism exists and it is even made more efficient by the coupling between the two
sublattices 16

A multiple scale expansion performed on the variables u and p yields
at first order

"al -- A+(X1,T2) ei(_+t-kx) + A-(XI,T2)e i(_-t-kx) + CC (20)

Pl = B+(X1,T2)e i(_+t-kx) + B_(X1,T2)e i(w-t-kx) + CC (21)

where the two sets of terms arise fi'om the existence of two branches in the dispersion

curve of the diatomic chain, with frequencies w+ and _o_. Each sublattice sees its



, own dispersion curve and a "shadow" of the dispersion curve of the other sublattice

due to the coupling. For instance, the component of amplitude A_ in the proton

sublattice is the "shadow" of tlle component B_ in the oxygen sublattice. Therefore

A_ is related to B_ and similarly B+ can be expressed as a function of A+ so that

the only independent factors are A+ and B_. They are solutions of a set of coupled

NLS equations

,:

0.4+ 02A+ [2
i-_2 + t'10X'---_ + Q11[A+ A+ + Q12[B_J2A+ = 0 (22)

.OB_ 0"2B_

z--O-_O. + P2_OX_ + QnIB-I2B- + Q211A+IeB- = 0 (23)

The coefficients Pl, P2, Qij have lengthy expressions in terms of the model parameters

but they can be obtained analytically 16. Similar systems of coupled NLS equations

have been obtained previously for birefringent fibers17or coupled lasers beams in

aplasma ls'lg. One general feature of these coupled NLS is that modulational insta-

bility is more likely to occur, and the growth rate of the instability is larger than for a

single NLS. This is also true for the equations derived above for the hydrogen-bonded-

chain. Instead of the single condition P Q > 0 for a single NLS, there are now several

sufficient instability conditions for the exact plane wave solution

A+ = Aoexp[i(QnA2oT2 + wl, 0,L2)] (24)
• 9 2

B_ = Bo exp[z(Q21 AsT2 + Q22BoT2)]. (25)
The first one

/:'1 Qxl Ao + Ps Q22 B_ > 0 (26)

is simply the generalization of the instability condition of a single NLS equation.

The others have complicated expression, but the net result is that, with the model

parameters listed in table I, the instability is always present.

Figure 4 shows the result of a numerical simulation performed with the second

parameter set of table I (weak coupling case). In this simulation using molecular

dynamics at constrained temperature, a chain containing 256 protons is slowly heated.

At low temperature the protons were all on the same side of the double well (un

+u0) so that the chain had no ionic defect. The black areas which corresponds to

........................ ,_ 1-,,,-,_,-,,,_,,¢_v_,_,uv_u to _uc uppo_lLe position --u0 snow that

ionic defects have been formed at high temperature.
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Figure 4: Thermal generation of a pair of ionic defects in the ADZ

model. Tile figure shows tile positions of t b,e protons in the chain with

a gray scale. Light grey corresponds to protons around the position

+u0 axld black corresponds to protons around the position -u0. The

chain extends along the vertical axis. The temperature extends along

the horizontal axis. In this experiment the system was heated with a

liTxear temperature ramp so that the horizontal axis is also proportional

to time. An ionic defect appears on this figure as an interface between

a clear and a dark region.

The tendency for energy localization appears clearly because the large amplitude

motions start in a small region of the chain. In this region one can notice that the

formation of a large domain in which the protons have switched well is preceeded by _,

sequence of alternating balck and white regions which grow bigger and bigger. These

dots correspond to large _unplitude oscillations of the protons in a small domain of

the chain. A few protons move toward -u0 giving rise to a dark dot, then come back

to their original position then move toward -u0 again. This type of motion is typical

of a breather mode of the NLS equation. As the temperature is raised, the ampli-

tude of the breather increases while its frequency decreases until it ireezes, giving

rise to a kink-antikink pair. This type of oscillatory precursor motions before a pair

of ionic defects are formed shows that the NLS description, hence the modulational

instability mechanism, is the appropriate description of the thermal generation of

ionic defects in the hydrogen bonded chain. However, in spirt of the enhancement

of the energy localization due to the coupling between the proton and oxygen sub-

lattices, the thermal generation of the carriers still requires a high temperature. In

the simulation shown in fig. 4, the temperature _aries from 5001{ to 1600K and the

formation of a pair of ionic defects is observed around 12001{. Since the energy of the

two defects is 0.96 eV (corresponding to T=11,1301{ if we set kBT = 0.96 eV) the

energy localization is responsible a substantial decrease in the generation tempera-

ture. Nevertheless. in spite of the enhancement due to the coupling between the two

sublattices, the thermal generation of ionic defects around room temperature can be

expected to be a rare event.

\'. CONCLUSION.

The analysis of the different terms of the potential energy of the ADZ model has
c_,_,-_ _.-,t..1_._ ..... ,.;.-1 ................ -'._,^ 1.1...... _'_ _./" _.L_ 1........... i".... _'--_-___-.'_1



energy of ali hydrogen-bonded chair. Therefore, if one accepts the idea that protons

are transported along such a chain, the model leads naturally to solitonlike solutions.

These solutions provide a general description of the two types of ionic defects: very

narrow solutions correspond to independent proton jumps while broader ones describe

a collective proton transport. Only the broad solutions can be expected to have

solitonlike properties because, if the kink width is only of the order of the lattice

spacing, discreteness effects trap it 13 This soliton picture could also be obtained

with a simpler model assuming that the heavy ions are fixed. However ab-initio

calculations or the analysis of vibrational proton frequencies in a large number of
12

hydrogen bonded systems show that the proton motion is accompanied by a rather

large distorsion of the heavy ion sublattice. This distorsion is included in the ADZ

model and we have shown that it has a very stong influence, both on the mobility and

on the thermal generation of ionic charge carriers. Due to energy exchanges between

the protons and heavy ions a nonlinear mobility is found. This characteristic behavior

could provide an experimental test of the validity of the model. We have also shown

that the distorsion of the heavy ion sublattice enhances the modulational i astability

that can localize the energy and promote the thermal generation of ionic defects.

However, even with this enhancement, the thermal generation of defects at room

temperature remains a rare event.

The ADZ model is still a fairly simple description of a hydrogen bonded system

and it can be improved to describe the Bjerrum defects 9, include acoustic modes for

the oxvgens 5. or even include anharmonic interaction between the protons to describe

the difference in energy between the H30 + and OH_ ions. However, the most urgent"

research to carry in this domain is the determination of appropriate parameters for

the model. They are essential to allow a comparison between theory and experiments

and to decide whether the soliton picture is closer to reality than independent proton

jumps. Good model parameters could probably be provided by ab-initio calculations

on systems big enough to include the dynamics of the heavy ions and to test the

degree of cooperativity in tbe proton motions.
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