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At low temperatures, the thermal conductivity
of spin excitations in a magnetic insulator can ex-
ceed that of phonons. However, because they are
charge neutral, the spin waves are not expected to
display a thermal Hall effect in a magnetic field.
Recently, this semiclassical notion has been up-
ended in quantum magnets in which the spin tex-
ture has a finite chirality [1–5]. In the Kagome
lattice, the chiral term generates a Berry curva-
ture. This results in a thermal Hall conductivity
κxy that is topological in origin. Here we report
observation of a large κxy in the Kagome mag-
net Cu(1-3, bdc) which orders magnetically at 1.8
K [6–8]. The observed κxy undergoes a remark-
able sign-reversal with changes in temperature or
magnetic field, associated with sign alternation
of the Chern flux between magnon bands. We
show that thermal Hall experiments probe inci-
sively the effect of Berry curvature on heat trans-
port [3, 4, 9].

In magnets with strong spin-orbit interaction, compe-
tition between the Dzyaloshinskii-Moriya (DM) exchange
D and the Heisenberg exchange J can engender canted
spin textures with long-range order (LRO). Katsura, Na-
gaosa and Lee (KNL) [1] predicted that, in the Kagome
and pyrochlore lattices, the competition can lead to a
state with extensive chirality χ = Si · Sj × Sk (Si is
the spin at site i) and a large thermal Hall effect. Subse-
quently, Matsumoto and Murakami (MM) [3, 4] amended
KNL’s calculation using the gravitational-potential ap-
proach [12, 13] to relate κxy directly to the Berry cur-
vature. In the boson representation of the spin Hamil-
tonian, χ induces a complex “hopping” integral t =√
J2 +D2·eiφ with tanφ = D/J (Fig. 1A, inset) [1, 3, 9].

Hence as they hop between sites, the bosons accumu-
late the phase φ, which implies the existence of a vector
potential A(k) permeating k-space. The corresponding
Berry curvature Ω(k) = ∇k ×A(k) acts like an effective
magnetic field that imparts a transverse velocity to a
magnon wave packet driven by an external gradient or
force. Analogous to the intrinsic anomalous Hall effect in
metals [11], the transverse velocity appears as a thermal
Hall conductivity κxy that is dissipationless and topolog-
ical in origin, but now observable for neutral currents. A
weak κxy was first observed by Onose et al. [2] in the py-
rochlore ferromagnet Lu2V2O7. A large κxy was recently
reported in the frustrated pyrochlore Tb2Ti2O7 [5].

Each magnon band n contributes a term to κxy with a
sign determined by the integral ofΩ(k) over the Brillouin
zone (the Chern number). Recently, Lee, Han and Lee

(LHL) [9] calculated how κxy undergoes sign changes as
the occupancy of the bands changes with T or B. Thus,
in addition to providing a powerful way to probe the
Berry curvature, κxy also yields valuable information on
the magnon band occupancy. Sign changes from next-
nearest neighbor exchange were studied in Ref. [10].

The Kagome magnet Cu(1,3-benzenedicarboxylate) [or
Cu(1,3-bdc)] is comprised of stacked Kagome planes sep-
arated by d = 7.97 Å [6–8] (Fig. 2A). The spin- 12 Cu2+

moments interact via an in-plane ferromagnetic exchange
J = 0.6 meV. Spin-orbit coupling and the absence of in-
version symmetry result in a DM exchange D = 0.09
meV (D/J = 0.15), with the DM vector D nearly ‖ ĉ [8].
The weak antiferromagnetic exchange between planes
Jc ∼ 1µeV [8], mediated by a benzene linker via a O-5C-
O bond, leads to a critical temperature TC ∼ 1.8 K. In
the ordered state, the magnetization M lies in-plane but
alternates in sign between planes. A weak B ∼ 0.05 T
is sufficient to align the moments [8]. Crystals (typically
4×4×0.4mm3) grow as transparent, bright blue, hexago-
nal platelets with the largest face parallel to the Kagome
planes (spanned by vectors a and b). The thermal con-

ductivity tensor κij is defined by JQ
i = κij(−∂jT ), with

JQ the thermal current density. We apply the thermal
gradient −∇T ‖ x̂ ‖ (a,b), with B ‖ ẑ ‖ c.

As we cool the sample in zero B, the thermal conduc-
tivity κ (nearly entirely from phonons) initially rises to
a very broad peak at 45 K (Fig. 1A). Below the peak,
κ decreases rapidly as the phonons freeze out. Starting
near 10 K, the spin contribution κs becomes apparent.
As shown in Fig. 1B, this leads to a minimum in κ near
TC followed by a large peak at ∼ 1

2TC . Factoring out the
entropy, we find that κ/T (red curve) increases rapidly
below TC . This reflects the increased stiffening of the
magnon bands as LRO is established. Below 800 mK,
the increase in κ/T slows to approach saturation. The
open black circles represent the phonon conductivity κph

deduced from the large-B values of κxx(T,H) (see be-
low). Likewise, κph/T is plotted as open red circles. The
difference κ− κph is the estimated thermal conductivity
of magnons κs in zero B.

Given that Cu(1,3-bdc) is a transparent insulator, it
exhibits a surprisingly large thermal Hall conductivity
(Fig. 2). Above TC , the field profile of κxy is non-
monotonic, showing a positive peak at low B, followed by
a zero-crossing at higher B (see curve at 2.78 K in Fig.
2B). We refer to a positive κxy as “p-type”. Below TC ,
an interesting change of sign is observed (curves at 1.74
and 0.82 K). The weak hysteresis, implying a coercitive
field <1500 Oe at the lowest temperatures, is discussed in
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the supplementary information (SI). This sign-change is
investigated in greater detail in Sample 3 (we plot κxy/T
in Fig. 2C). The curves of κxy/T above TC are similar to
those in Sample 2. As we cool towards TC , the peak field
Hp decreases rapidly, but remains resolvable below TC

down to 1 K (Fig. 2D). However, below 1 K, the p-type
curve is swamped by a rising n-type contribution that
eventually dominates below 0.6 K. Some features are in
qualitative agreement with the calculations of LHL [9],
but there are significant differences as well.
To relate the thermal Hall results to magnons, we next

examine the effect of B on the longitudinal thermal con-
ductivity κxx. As shown in Fig. 3A, κxx is initially
B-independent for T > 10 K, suggesting negligible in-
teraction between phonons and the spins. The increas-
ingly strong B dependence observed below 4 K is high-
lighted in Fig. 3B. Despite the complicated evolution of
the profiles, all the curves share the feature that the B-
dependent part is exponentially suppressed at large B,
leaving a B-independent “floor” which we identify with
κph(T ) (plotted as open symbols in Fig. 1B). Subtract-
ing the floor allows the thermal conductivity due to spins
to be defined as κs

xx(T,H) ≡ κxy(T,H) − κph(T ). The
exponential suppression in all curves is more apparent if
we replot the spin part as κs

xx/T vs. B/T (Fig. 3C). As
may be seen, the aymptotic form at large B in all curves
depends only on B/T .

In the interval 0.9 K→ TC , κ
s
xx displays a V -shaped

minimum at B = 0 followed by a peak at the field Hp(T ).
Since κs (at B = 0) is falling rapidly within this in-
terval due to softening of the magnon bands (see Fig.
1B), we associate the V -shaped profile with stiffening of
the magnon bands by the applied B. At low enough T
(<0.8 K), this stiffening is unimportant and the curves
are strictly monotonic. We find that they follow the same
universal form. To show this, we multiply each curve by a
T -dependent scale factor s(T ) and plot them on semilog
scale in Fig. 3D. In the limit of large-B, the universal
curve follows the activated form

κs
xx → Te−β∆, (1)

with the Zeeman gap ∆ = gµBB where β = 1/kBT , µB

is the Bohr magneton, and g the g-factor. The inferred
value of g (∼1.6) is consistent with the Zeeman gap mea-
sured in a recent neutron scattering experiment.
For comparison, we have also plotted −κxy/T (at 0.47

K) in Fig. 3D. Within the uncertainty, it also decreases
exponentially at large B with a slope close to ∆. Hence
the exponential suppression of the magnon population
resulting from ∆ is evident in both κs

xx and κxy. This
provides strong evidence that the observed thermal Hall
signal is intrinsic to the magnons.
According to MM [3, 4], κxy (in 2D) is given by

κxy =
2k2BT

~V

∑

n,k

c2(ρn)Ωn(k) (2)

where c2(x) = (1 + x)(log 1+x
x

)2 − (log x)2 − 2Li2(−x),
with Li2(x) the polylogarithmic function, and ρn =
1/[eβ(En−µ) − 1] is the Bose-Einstein distribution, with
En the magnon energy in band n and µ the chemical
potential.
LHL [9] have calculated κxy(T,B) applying the

Holstein-Primakoff (HP) representation below and above
TC , and Schwinger bosons (SB) above TC . In the ordered
phase, the HP curves capture the sign changes observed
in κxy(T,H): a purely n-type curve at the lowest T and,
closer to TC , a sign-change induced by a p-type term.
Moreover, the calculated curves at each T exhibit the
high-field suppression, in agreement with Fig. 3D. For
Sample 3, the peak values of κ2D

xy are in agreement with
the HP curves (0.04 K at T = 0.4 K; 0.2 K at 4.4 K).
In the paramagnetic region, however, our field profiles
disagree with the SB curves. Above TC , κxy is observed
to be p-type at all B whereas the SB curves are largely
n-type apart from a small window at low B. The compar-
ison suggests that the HP approach is a better predictor
than the SB representation even above TC .
In addition to confirming the existence of a large κxy

in the Kagome magnet (and hence a finite, extensive χ),
the measured κxy can be meaningfully compared with
detailed calculations based on the Berry curvature. For
chiral magnets, κxy is capable of probing incisively the
effect of the Berry curvature on transport currents.
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FIG. 1: The in-plane thermal conductivity κ (in zero B) measured in the Kagome magnet Cu(1,3-benzenedicarboxylate)
[Cu(1,3-bdc)]. At 40-50 K, κ displays a broad peak followed by a steep decrease reflecting the freezing out of phonons (Panel
A). The spin excitation contribution becomes apparent below 2 K. The inset is a schematic of the Kagome lattice with the LRO
chiral state [1]. The arrows on the bonds indicate the direction of advancing phase φ = tan−1 D/J . Panel B plots κ (black
symbols) and κ/T (red) for T < 4.5 K. Below the ordering temperature TC = 1.8 K, the magnon contribution to κ appears
as a prominent peak that is very B dependent. Values of κ and κ/T at large B (identified with phonons) are shown as open
symbols.
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FIG. 2: The thermal Hall conductivity κxy measured in Cu(1,3-bdc). In Panel A, the sketch shows the spin- 1
2
Cu ions in

adjacent Kagome planes linked by a benzene molecule in which 2 of the C-H bonds have been replaced by the carboxylate ion
C-C (from Ref. [7]). The in-plane exchange J is mediated by the O-C-O bond while the weak interplane exchange Jc goes
through the O-5C-O bonds. Panel B plots the strongly non-monotonic profiles of κxy vs. B in Sample 2. The dispersive profile
changes sign below ∼ 1.7 K. The right scale gives κ2D/(k2

B/~) (per plane) obtained by multiplying κxy by d~/k2

B = 443.2 (SI
units). Panel C and D show corresponding curves in Sample 3 (now plotted as κxy/T ). Above TC (Panel C), κxy/T is p type.
The behavior below 1.90 K is shown in Panel D. At 1.09 K, the n-type contribution appears in weak B, and eventually changes
κxy/T to n-type at all B. Right scale in D reports κ2D

xy /(Tk
2

B/~).
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FIG. 3: The effect of field B on κxx and scaling behavior at low T , for sample 3. The curves in Panel A show that the
B-dependence of κxx is resolved (in the range |B| < 14 T) only at T <∼6.5 K. The expanded scale in Panel B shows that,
near TC (1.8 K), κxx has a non-monotonic profile with a V -shaped minimum at B = 0 (identified with stiffening of the magnon
bands by the field). Below 1 K, however, κxx has a strictly monotonic profile that terminates in a sharp cusp peak as B →0.
At each T < TC , the constant “floor” profile at large B is identified with κph. Panel C shows that the complicated pattern in
Panel B simplifies when plotted as κs

xx/T vs. B/T . Further, multiplying by a scaling factor s(T ) collapses all the curves below
1 K to a “universal” curve, as shown on log scale in Panel D. The slope at large B gives a Zeeman gap with g = 1.6. The Hall
curve −κxy/T has a similar slope at large B.
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