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Thermal Imaging and Vibration Based Multi-Sensor

Fault Detection for Rotating Machinery
Olivier Janssens, Mia Loccufier, and Sofie Van Hoecke

Abstract—In order to minimize operation and maintenance
costs and extend the lifetime of rotating machinery, damaging
conditions and faults should be detected early on and auto-
matically. To enable this, sensor streams should continuously be
monitored, processed and interpreted. In recent years, infrared
thermal imaging has gained attention for said purpose. However,
the detection capabilities of a system that uses infrared thermal
imaging is limited by the modality captured by this single
sensor, as is any single sensor-based system. Hence, within this
article a multi-sensor system is proposed which not only uses
infrared thermal imaging data, but also vibration measurements
for automatic condition and fault detection in rotating machinery.
It is shown that by combining these two types of sensor data,
several conditions/faults and combinations can be detected more
accurately than when considering the sensor streams individually.

Index Terms—Machine learning, fault detection, preventive
maintenance, feature extraction

I. INTRODUCTION

IN order to prevent machine failure, prolong the lifetime of

machines, reduce operational costs and enhance operational

uptime, condition monitoring and fault detection are required.

This is done by monitoring a set of physical properties of

a machine using different types of sensors. In recent years,

infrared thermal imaging based approaches for online fault

detection and condition monitoring have started to appear

as is discussed in the recent review by Touret et al. [1].

Infrared thermal imaging enables non-contact, non-intrusive

and fine-grained temperature measurements, which is ideal

for automatic fault detection and condition monitoring. In

order to let a system autonomously detect conditions and

faults, infrared thermal imaging is mostly used in combination

with image processing and machine learning [2]–[11]. Such a

solution often consists of five steps (see also Fig. 1):

1) Image extraction: from an infrared thermal video,

single frames are extracted.

2) Region of interest extraction: per frame, regions from

which features have to be extracted are segmented. In

this step irrelevant parts in the image are also removed.

3) Feature extraction: features are extracted from the seg-

mented areas. These features are designed so that they

contain information related to conditions that should be

detectable.
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4) Feature selection/fusion: possibly not all features are

relevant, or features share information. Hence, they can

be eliminated or fused together.

5) Classification: to let the system automatically decide if

a fault or condition is present, a classification (machine

learning) algorithm is required. This algorithm deter-

mines the condition using the extracted features.

Image

Region of 

interest 

extraction

Feature 

extraction

Feature 

selection or 

fusion

Classification

Fig. 1: General steps in an image processing/machine learning

pipeline.

For automated infrared thermal imaging-based fault de-

tection and condition monitoring, the focus of the field has

been on data-driven approaches [10]. Such approaches exploit

phenomena in the data that can be related to the conditions

and faults. This is necessary because pre-existing model-based

knowledge that can be extracted from the infrared thermal

imaging data is currently not available.

In related literature, it has been demonstrated that several

types of faults and conditions in rotating machinery are

detectable to a certain extent using infrared thermal imaging,

such as rotor imbalance, misalignment, coupling looseness,

lubricant inadequacy and rolling element bearing damages [2]–

[13]. For the detection of certain conditions, it is easy to see

why infrared thermal imaging is advantageous, such as for

lubricant inadequacy. One of the main purposes of lubricant

is friction control. If there is too little lubricant in the bearing

housing, excessive friction will occur, which results in heat

that is observable by an infrared thermal camera. Additionally,

if there is too much lubrication in the bearing, churning will

occur, also resulting in additional heat that can be observed.

However, for certain conditions, infrared thermal imaging-

based approaches provide sub-optimal results, such as for

the detection of damages to a rolling element bearing. For

example, as demonstrated in [10], the outer-raceway damages

can only be detect 45 % of the time using an infrared thermal

imaging-based system.

Fortunately, other commonly used techniques such as

acoustic emission [14], motor current signature analysis

(MCSA) [15] and vibration analysis [16] have proven their

merits w.r.t. damage detection of rolling element bearings.

Therefore, within this article, additional to infrared thermal

imaging we focus on vibration analysis as it is a well es-

tablished, mature –and arguably the most frequently used–

technique for bearing fault detection [17], [18]. Vibration

analysis, which uses accelerometer data, is often done based
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on the physics of the faults and the dynamics of the system.

Therefore, several properties in the frequency spectrum of

the vibration signal have been related to specific conditions

and damages [16]. This knowledge allows to extract specific

model-based features with well established techniques. Once

processed, faults can be detected and machine’s conditions can

be assessed. For example, raceway damages will cause a peak

at the bearings’ fault frequencies for which the amplitude can

be used as an indicative feature [16], [19].

As infrared thermal imaging-based approaches suffer from

downsides that can be compensated using features extracted

from established vibration analysis techniques, a combination

of both approaches in a multi-sensor system will improve

accuracy. Up until now, very little research has been done

on combining vibration data with temperature data. One ex-

ample where a multisensor system is developed is [20]. Their

proposed system is designed to detect a cracked rotor, rotor

rub or coupling misalignment in a rotating machine, using

both vibration data and temperature (thermocouple) measure-

ments. It should be noted that no thermal camera is used. A

second relevant example is provided in [21], where MCSA

is combined together with infrared thermography for fault

detection. Their focus lies on faults such as bearing damage,

misalignment and imbalance, but not on the combination of

faults. It should also be noted that in contrast to vibration

analysis, when using MCSA only rotating machinery using

electrical actuators can be considered.

In this paper we propose a system that uses both infrared

thermal imaging data and vibration data, which is the first

of its kind to the best of our knowledge. The system extracts

features from both sensor streams and fuses them together. The

fused features are subsequently provided to a classification

algorithm. We show that not only can the system detect a

multitude of conditions/faults but also combinations of faults

and conditions.

For this research, two data sets were constructed both

consisting of vibration measurements and infrared thermal

imaging measurements. In Section II, the set-up to create these

data sets and the data sets themselves are discussed. Next,

in Section III, an overview is provided of the preprocessing,

feature extraction and classification steps of our system. Sub-

sequently, in Section IV, the results of the proposed system

applied on our data sets are discussed. Finally, in Section V,

a conclusion is provided.

II. DATA

Two data sets were created –both containing vibration mea-

surements and thermal imaging data– of conditions and faults

we induced in a rotating set-up. The conditions present in each

data set are listed in TABLE I and TABLE II respectively.

Note that a condition in the data sets always exists out of a

combination of two faults/conditions, e.g.: condition 4 in the

first data set consists of (1) a bearing with an outer-raceway

fault while (2) the machine is imbalanced.

A. Set-up

The set-up used to create the two data sets can be seen in

Fig. 2. A detailed list of the relevant properties of the set-up

TABLE I: Summary of the 8 conditions in data set one. The

weights in the column headers indicate the weight of the bolt

added to the rotor.

No imbalance Imbalance: 13 g or 17.3 N

Healthy bearing (HB) Condition 1 Condition 2
Outer-raceway fault (ORF) Condition 3 Condition 4
Mildly inadequately lubricated bearing Condition 5 Condition 6
Extremely inadequately lubricated bearing Condition 7 Condition 8

are listed in TABLE III and for the infrared thermal camera

in TABLE IV. The rolling element bearing in the housing

at the right-hand side in the set-up was changed in-between

test runs, hence this is the housing that was monitored by the

thermal camera. Additional to the infrared thermal camera, a

thermocouple was placed in the room to measure the ambient

temperature. Furthermore, two accelerometers were mounted

on this bearing housing to measure the accelerations in the

x-direction and y-direction.

Fig. 2: 3D image of the set-up. The labels are: 1. servo-motor

with a speed controller; 2. coupling; 3. bearing housing; 4.

bearing; 5. disk; 6. shaft; 7. accelerometers; 8. metal plate.

The red square indicates what the infrared thermal camera

captures

To imitate outer-raceway faults (ORF) in the bearing, three

small shallow grooves were added mechanically on the bear-

ings’ outer-raceway by a field expert (see Fig. 3 for an example

of such a groove). For the respective data sets, two locations

for the ORF faults were chosen. For data set one, the ORF is

located at the 10 o’clock position in the housing. This is close

to the top of the housing facing the infrared thermal camera

as to better see the thermal effects of the raceway fault. For

data set two, the ORF fault is located at the 6 o’clock position,

which is the loaded zone, as to maximize the impact of the

raceway fault. A cross-sectional view containing the locations

of these ORFs can be seen in Fig. 4.

Both the healthy bearings (HB) and those with an ORF are

placed in a housing that contains a grease reservoir enclosing

20 g of grease [22]. Additionally, at the start 2.5 g of grease

was added to these bearings as recommended by the manufac-

turer [9]. For the bearings with reduced lubricant in data set

one, i.e. mildly inadequately lubricated bearings (MILB) and

extremely inadequately lubricated bearings (EILB), no grease

reservoir is present. For the MILBs, the grease on each individ-



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

TABLE II: Summary of the 12 conditions in data set two. The weights in the column headers indicate the weight of the bolt

added to the rotor.

No imbalance Imbalance: 4.1 g or 5.5 N Imbalance: 9.3 g or 12.4 N Imbalance: 13 g or 17.3 N

Healthy bearing (HB) Condition 1 Condition 2 Condition 3 Condition 4
Outer-raceway fault (ORF) Condition 5 Condition 6 Condition 7 Condition 8
Hard particle contamination (HP) Condition 9 Condition 10 Condition 11 Condition 12

TABLE III: Test set-up details

Property Value

Accelerometer type CCDL
Brand Brüel & Kjaer
Accelerometer product type 4533-B
Bearing code FAG 22205-E1-K
Bearing type: Spherical roller bearing with ta-

pered bore and adapter sleeve
Housing code SNV052-F-L
Housing type Closed plummer block
Grease Molykote BR 2 plus
Chosen rotation speed 25 Hz which is 1500 rpm
Eigenfrequency of the set-up deter-
mined using an impact test

17.8 Hz

Accelerometer sample frequency 51,200 Hz
Motor type Single phase asynchronous induc-

tion motor
Motor power 1.1 kW
Motor brand SEW Eurodrive
Motor product ID DRE90M2/FI/LN
Phase three phase
Number of poles 2
Voltage supply 220 – 242 V (star)

and 380 – 420 V (delta)
Motor speed controller MC LTE-B0015-2B1-1-4

TABLE IV: Infrared thermal camera details

Property Value

Thermal camera FLIR SC655
Capture speed 6.25 frames per second (fps)
Resolution 640 x 480 pixels
Distance: camera - housing 38 cm
Emissivity 0.9
Lens Macro lens
Spectral range 7.5 - 13 µm

ual bearing is superficially reduced (1.5 g reduction). Similarly,

for the EILBs the grease in the bearings is decreased more

(0.75 g reduction). For the hard particle faults (i.e. lubricant

contamination) in data set two, 0.02 g of iron particles are

mixed in the lubricant of the bearings. Experiments showed

that the chosen lubricant conditions support the objectives of

the research well.

To complete the data sets, all the different bearing condi-

tions are also tested during imbalance, this is done by adding

bolts to the rotor at a radius of 5.4 cm. The weight of the

bolts can be found in TABLE I and II. The weight of the bolts

results in imbalance that is below the G1 tolerance determined

according to the ISO 1940. This is a strict tolerance, but en-

sures that the proposed approach will also work for scenarios

where a less strict tolerance is suitable.

Fig. 3: Three shallow grooves in the outer-raceway of a bearing

simulating an outer-raceway fault.

a

b

Fig. 4: Section view of where the outer raceway faults for data

set one (a) and two (b).

B. Data set

Every condition in both data sets is created for five different

bearings. By using multiple bearings, variability is introduced

in the data set due to manufacturing, mounting and grease

distribution. Each bearing is run for one hour, and for the last

10 minutes —when steady-state is reached— infrared thermal

video is captured together with accelerometer measurements.

For data set one, in total, 5 bearings × 8 conditions = 40

recordings are made. For data set two, 5 bearings × 12
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conditions = 60 recordings are made. An example of an

infrared thermal image of the bearing housing can be seen

in Fig. 5.

10 C

35 C

60 C

Fig. 5: Example of an infrared thermal image of the bearing

housing.

III. METHODOLOGY

In our data sets, each vibration and infrared thermal record-

ing is assigned two labels, i.e. one for the machine condi-

tion and one for the bearing condition. Hence, we regard

the fault/condition detection task as a multi-label classifica-

tion problem and propose a system with two classification

pipelines. The first pipeline identifies the gradation of imbal-

ance in the rotating machine and the second pipeline identifies

the bearing’s condition. In the end, the results of both pipelines

are combined to identify the present condition of the rotating

machine. This approach reduces the number of classes to be

identified by a single classifier. For example, in data set two,

there are 12 unique classes. When split into a multi-label

problem, 3 unique classes remain for the first classifier and

4 for the second classifier.

In order to combine vibration data with infrared thermal

data, feature fusion is employed. Feature fusion entails that

features are first extracted from the respective data streams

and are subsequently combined in feature vectors which are

provided to the classification algorithm. Therefore, in this

section, first, the features are discussed per pipeline. Features

are extracted from the vibration data as well as the infrared

thermal imaging data. Next, the classification step is discussed.

A. Features: Pipeline one

The goal of pipeline one is to detect the gradation of

imbalance regardless of the bearing condition. First, the

features extracted from the accelerometer measurements are

discussed and subsequently, the features from the infrared

thermal imaging data.

1) Vibration measurements: Using expert knowledge and

signal processing, it is possible to detect imbalance by ob-

serving an unusually high amplitude at the rotation frequency

of the machine. Hence, the amplitude at the rotation frequency

is extracted as feature1. The first step to extract this feature

is windowing. The goal of windowing is to minimize the

influence of noise and outliers in the feature extraction step. A

window contains one minute of vibration data, and overlaps by

50 % with its neighbouring window. The size of a window was

determined empirically and with the purpose of being able to

detect the condition of the machine every 30 seconds. Next, the

Discrete Fourier Transform is calculated using the windowed

signals. A single spectrum covers 25.6 kHz and the resulting

frequency resolution is 0.0167 Hz. Finally, from this frequency

spectrum, the amplitude at the rotation frequency, i.e. 25 Hz,

is extracted as feature. A plot showing the peak at 25 Hz is

shown in Fig. 6. This feature is extracted from the vibration

signals of both accelerometers. As this is done per window,

in the end there are 19 samples per 10 minute recording, each

containing two features. The number of windows is determined

using Eq. 1, where s is the length of the signal –which is 600

seconds–, w the window length –which is 60 seconds– and o

the amount of overlap between the windows expressed as a

percentage –which is 50 %–.

number of windows =
s− w

w ∗ o
+ 1 (1)

0 5 10 15 20 25 30
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0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Am
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Fig. 6: Example of the peak at the rotation frequency. Note

that no spectral leakage occurs.

2) Infrared thermal imaging: In order to extract features

from the infrared thermal imaging data to detect imbalance in

the set-up, first windowing is applied similar to the vibration

data processing. A window contains one minute of infrared

thermal video and 30 seconds overlap. In the second step,

consecutive frames are differenced, as such an infrared thermal

video will reveal imbalance introduced oscillations. To detect

1It should be noted that a high amplitude at the rotation frequency can
also be attributed to for example misalignment. However, we solely consider
imbalance in this article and designed the experiment as such. If other faults,
that cause a rise in the amplitude at the rotation frequency, should be detected,
additional features should be engineered (i.e. amplitude at three times the
rotation frequency for misalignment)
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the degree of imbalance, the difference between frames needs

to be quantified resulting in features. In the third step, for

each differenced frame, along each column of pixels, the sum

of the pixels is taken. Similarly, along each row of pixels, the

sum of the pixels is taken. The operation on the rows can be

expressed as y = Xj and the operation on the columns as

x = XT i; where X ∈ R
mxn represents a frame with m rows

and n columns; i = [1, 1, ..., 1]T ∈ R
m; j = [1, 1, ..., 1]T ∈

R
n and thus x ∈ R

n and y ∈ R
m. Examples of the output

vectors displayed in line graphs along the image’s axis are

shown in Fig. 7. As can be seen, the width (i.e. range) of these

graphs indicate the amount of movement in the differenced

frame. Generally, if there is imbalance, the width will be larger.

Hence, the standard deviation, calculated using these output

vectors, is chosen as a feature. In the end, the extracted features

are averaged per window to remove the effect of noise and

possible outliers.

B. Features: pipeline two

The goal of pipeline two is to identify the specific con-

dition of the bearing regardless of the imbalance gradation

in the machine. Again, first the features extracted from the

accelerometer measurements are discussed and subsequently,

the features from the infrared thermal imaging data.

1) Vibration measurements: When a rolling element hits

an aberration in the outer raceway, the natural frequency of

the raceway is excited. This action results in a high frequency

burst of energy which decays rapidly. Afterwards, the natural

frequency is excited again as the next rolling element hits

the fault. This high frequency impulse is superimposed, that

is, amplitude modulated, on a carrier signal which originates

from the rotating machine. To identify a fault, it is necessary

to identify the frequency of occurrence of these high energy

bursts. Therefore, an established technique, i.e. envelope de-

tection, is employed [23]. First, a high pass filter is applied.

All frequencies below 1 kHz (determined empirically), such as

the carrier frequency, are removed. Next, the envelope signal is

determined which will have a frequency equal to the frequency

of occurrence of the high energy bursts. The envelope is

constructed by taking the magnitude of the analytical signal,

which is computed by the Hilbert Huang transform. When

there is an outer-raceway fault, the frequency of the envelope

signal will manifest itself at the ball pass frequency of the

outer raceway (BPFO).

The BPFO is calculated using Eq. (2), where n is the

number of rolling elements in the rolling element bearing, f

the rotation frequency, d the diameter of the rolling elements,

D the diameter of the rolling-element cage and α the contact

angle. This results in a BPFO at 150.41 Hz for the chosen

bearings. This envelope detection method is applied on the

vibration signal coming from the accelerometer on top of

the housing. From the resulting frequency spectrum of the

envelope signal, the amplitude at the BPFO is chosen as

feature.

BPFO =
1

2
nf(1−

d

D
cosα) (2)

Additionally, three statistical features are also extracted,

i.e.: kurtosis, crest factor and the root-mean-square (RMS).

Both the kurtosis and the crest factor are widely used statics

in bearing fault detection [23]. Additionally, RMS has been

shown to be indicative of the amount of separation between

the rolling elements and the raceways due to the lubricant in a

linear bearing [24]. Note that all the features, i.e. the amplitude

at the BPFO, kurtosis, crest factor and the RMS are again

calculated on windows extracted from the signal similar to as

what is done for pipeline one.

2) Infrared thermal imaging: First, in order to increase

robustness against environmental temperature changes, the

ambient temperature, measured by the thermocouples, is sub-

tracted from every pixel’s temperature value as to end up

with relative temperatures in the infrared thermal videos.

Second, the relevant components of the set-up are segmented

from the image using a threshold determined by the Otsu

algorithm [25], a commonly used background segmentation

algorithm.

Third, similar to pipeline one, the infrared thermal video is

subdivided into overlapping windows. Next, from the prepro-

cessed infrared thermal imaging data, data-driven features are

extracted using image processing. These features are extracted

from the individual frames, but averaged over the extracted

windows. As a first feature, the standard deviation (σ) of the

pixel values is chosen. As the temperature distribution varies

for the different bearing conditions, the standard deviation is a

suitable descriptor, e.g. when a grease reservoir is present the

standard deviation will be higher. The standard deviation of

the pixel values is not sufficient to discriminate between the

bearing conditions. Therefore additional features are used.

The second feature is a measurement of concentration re-

lated to the spatial temperature distribution. The chosen feature

is called the Moment of Light or the second-order moment

of the pixels collectively containing 20 % of the brightest

pixels (M20) [26]. The M20 is influenced by the presence of

a grease reservoir. Hence, it is very useful to indicate if a

grease reservoir is present or not. Furthermore, if the M20 and

the standard deviation are combined, a clear distinction can

be made between the samples created when a grease reservoir

is present, i.e. healthy bearings (HB) and the ones with an

outer-raceway fault (ORF), and the samples without a grease

reservoir, i.e. extremely and mildly inadequately lubricated

bearings (EILB and MILB).

Based on these two features, it is not possible to detect the

level of lubricant degradation as the EILB(-IM) and MILB(-

IM) samples overlap. Therefore, the Gini coefficient is added

which proves to be useful to detect the different levels of

lubrication inadequacy. However, none of these features clearly

help to distinguish between a bearing with an ORF and a HB

as is also observable when plotting the standard deviation of

the pixels and the Gini coefficient in Fig. 8. The scatter plots

show that there is some overlap between the ORF and HB

samples2. This illustrates the weakness of the infrared thermal

imaging-based approach, which can be solved by combining

2For more information regarding these feature the reader is referred to [9].
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Fig. 7: Examples of the line graphs representing the sums along the x axis and y axis for a healthy bearing when the set-up

is in balance (a) and imbalance (b). Note that in (a), the differenced frame is almost entirely black due to the fact that there

is no movement in the infrared thermal video.

the infrared thermal features with the features extracted from

the vibration measurements.

C. Classification

At this point, the features which are extracted from the

vibration measurements and the infrared thermal imaging

data in each pipeline have been presented and discussed.

Next, per pipeline, these features are provided to classification

algorithms. As mentioned at the start of this section, feature

fusion is used to combine the two types of sensor data. Feature

fusion is chosen to enable a single classifier to use information

from both modalities. Therefore, both the features extracted

from the vibration measurements and the features extracted

from the infrared thermal imaging data are combined in feature

vectors and provided to classification algorithms. To illustrate:

one trial using the set-up results in 10 minutes of vibration

measurements and 10 minutes of infrared thermal video. After

applying windowing and feature extraction we end up with

19 samples, each containing two features for the 10 minutes

vibration signal for pipeline one. For the 10 minutes infrared

thermal video we end up with 19 samples each containing two

features (also for pipeline one). By fusing (i.e. concatenating)

these two sets of samples together, we end up with 19 samples

containing four features. For dataset one and pipeline one there

are in total 760 samples (i.e.: 19 samples × 8 conditions × 5

bearings) each containing 4 features.

In order to remove features that do not have a positive im-

pact on the classification results, (exhaustive) feature selection

was done. In TABLE V, the selected features per pipeline

are listed. In this table, it can for example be seen that for

imbalance detection the amplitude at the rotation frequency

(vibration feature) together with the standard deviation along

the y-axis (infrared thermal imaging feature) are used.

TABLE V: Features used for the multi-sensor system for both

data sets and pipelines. Note that pipeline one detects the

different imbalance gradations and pipeline two the different

bearing conditions.

Data set Pipeline Vibration features Infrared thermal imaging features

One One Amplitude at the rotation frequency Standard deviation along the y-axis

One Two Amplitude at the BPFO
Amplitude at the rotation frequency

Gini coefficient
Standard deviation
M20

Two One Amplitude at the rotation frequency Standard deviation along the y-axis

Two Two Amplitude at the BPFO frequency
RMS
Kurtosis
Crest
Amplitude at the rotation frequency

Standard deviation

As classification algorithm, in this paper, the random for-

est classifier is used [27]. A random forest classifier is an

ensemble approach that combines several decision trees. The

decision trees are built, i.e. learned, using a subset of features

and a subset of samples which are chosen at random with

replacement. A decision tree learns to optimally split the

training data into regions by minimizing the gini score using

an optimal feature and feature value. A classification can

subsequently be done by traversing the decision tree from

top to bottom and assigning the sample to the class of

the final node in the decision tree. It should be noted that

these decision trees can be created in parallel, making the

algorithm very efficient. Random forest classifiers have many

additional advantages, such as they are not prone to overfit,

require little preprocessing, can deal with both continuous
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Fig. 8: 2D plots of the Gini coefficient with and without the ORF samples. (a) No overlap exist between the extremely and

mildly inadequately lubricated bearing (EILB and MILB) samples. (b) Some overlap exists between the samples from the

healthy bearings and the ones with an outer-raceway fault (HB and ORF).

and discrete data and require very few hyperparameters to

be tuned. Furthermore, in two very recent comparisons of a

plethora of machine learning algorithms, the random forest

classifier always ended up as one of the best performing

approaches currently available [28], [29].

To optimize the hyperparameters (e.g.: number of trees

and maximum depth of the individual trees) grid search

was applied. This is done by defining a set of plausible

hyperparameters and testing every combination of these hy-

perparameters. For brevity, only the results obtained using the

optimal hyperparameters are reported next.

IV. RESULTS

Within this section, the results are presented and discussed

of the proposed multi-sensor approach for both data sets.

A. Evaluation score

In order to evaluate how well the system performs, accuracy

is chosen as evaluation score. This score specifies the ratio

between the number of samples that are correctly classified

and all the samples in total. By optimizing the accuracy, the

false positives (i.e. flagging a sample as containing data from

a faulty bearing, while no fault or damage is present) and

false negatives (i.e. flagging a sample as containing data from

a healthy bearing, while a fault or damage is present) are

minimized.

B. Evaluation procedure

To objectively evaluate the performance of the systems, per-

bearing cross validation is employed. This procedure is a type

of cross validation wherein all the data, i.e. extracted features

from the measurements, from all bearings but one are used

to train the machine learning system and the data collected

from trials using the remaining bearing is given to the trained

machine learning system for testing. This is done n times,

where n equals the number of bearings in the data set (i.e. 5).

To average out the fluctuations in the results due to randomness

which are inherent to random forest classifiers, the five-fold

cross-validation is executed 10 times.

In order to put the results of the multi-sensor system in

perspective, we also include the results of two single-sensor

systems that use either features extracted from vibration data

or infrared thermal imaging data.

C. Results: data set one

The results for the two single sensor systems and the

multi-sensor system can be seen in TABLE VI. A perfect

imbalance detection is achieved with both the single-sensor

systems and the multi-sensor system. However, detecting the

specific bearing condition (EILB, MILB, ORF or HB) is more

difficult. When observing the confusion matrix for the single-

sensor infrared thermal imaging-based system (Fig. 9b) and the

vibration based system (Fig. 9a), it can be concluded that the

infrared thermal imaging-based system has difficulty detecting

outer-raceway faults. Conversely, the vibration-based system

has more difficulty detecting lubrication related conditions.

Both single-sensor systems exhibit a specific weakness that

can be compensated by the strengths of the other sensor.

Hence, combining them in a multi-sensor solution results

in a better overall system (Fig. 9c). Furthermore, there is

an additional general improvement in all classes due to the

interaction of features in the machine learning algorithms on

top of eliminating the weaknesses of the respective single

sensor solutions. This way, for example, outer-raceway faults

can be classified perfectly (100 % accuracy), while at most

90 % accuracy could be achieved using vibration data only,

respectively 74 % using infrared thermal imaging data only.

Using a multi-sensor solution, the classification task becomes
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easier as more information is available resulting in a perfect

classification results.

TABLE VI: Classification results for data set one. σ is the

standard deviation. IR = infrared based, VIB = vibration

based. MILB = mildly inadequately lubricated bearing, EILB

= extremely inadequately lubricated bearing, HB = healthy

bearing, ORF = bearing with an outer-raceway fault.

IR VIB Conditions Accuracy

IR MILB, EILB, HB, ORF 88.25 % (σ = 8.07 %)
VIB MILB, EILB, HB, ORF 87.25 % (σ = 8.10 %)

IR VIB MILB, EILB, HB, ORF 100.00 % (σ = 0.00 %)

IR balance and imbalance 100.0 % (σ = 0.00 %)
VIB balance and imbalance 100.0 % (σ = 0.00 %)

IR VIB balance and imbalance 100.0 % (σ = 0.00 %)

IR All 8 conditions 88.25 % (σ = 8.07 %)
VIB All 8 conditions 87.25 % (σ = 8.10 %)

IR VIB All 8 conditions 100.0 % (σ = 0.00 %)

By using a random forest classifier it is possible to extract

how important each feature is to the model [27], which is listed

in TABLE VII for the multi-sensor bearing fault detection.

The table illustrates that both the information coming from

the infrared thermal imaging data and the vibration data is

important for the decision making of the classification model.

The effects of adding a certain feature are also directly notice-

able in the results (TABLE VI). For example, the amplitude at

the ball pass frequency of the outer raceway is very important

to the model and adding this feature to the infrared thermal

imaging features results in an accuracy gain of 9.25 %. In

total, by using the strengths of both sensors, the accuracy rises

by 11.75 % compared to an infrared thermal imaging-based

system and 12.75 % compared to a vibration-based system.

TABLE VII: Feature importance in the final multi-sensor

system according to the random forest classifier. The first three

features are extracted from the infrared thermal imaging (IR)

data and the last 2 features from the vibration (VIB) data. σ

is the standard deviation.

Feature Importance of the feature

Gini Coefficient (IR) 29.41 % (σ = 1.07 %)
Standard deviation (IR) 22.22 % (σ = 3.84 %)
M20 (IR) 20.29 % (σ = 3.26 %)
Amplitude at the BPFO (VIB) 25.63 % (σ = 1.82 %)
Amplitude at the rotation frequency (VIB) 2.45 % (σ = 0.40 %)

D. Results: data set two

The results of the two single-sensor system and the multi-

sensor system can be seen in TABLE VIII. For pipeline two, a

relatively low accuracy is achieved due to the overlap between

the ORF and HB samples using infrared thermal imaging

features. As the confusion matrix in Fig. 10b illustrates, the

ORF class is hard to detect. This was also noticeable for

data set one. Conversely, vibration-based bearing condition

detection achieves a very high accuracy, and the classes do

not get confused very often (Fig. 10a). When features from

both systems are combined, the three bearing conditions can

be detected perfectly (Fig. 10c).

TABLE VIII: Classification results for data set two. σ is the

standard deviation. IR = infrared based, VIB = vibration based.

HB = healthy bearing, ORF = bearing with an outer-raceway

fault, HP = bearing with hard particles.

IR VIB Conditions Accuracy

IR HP, ORF, HB 65.00 % (σ = 16.16 %)
VIB HP, ORF, HB 91.67 % (σ = 12.91 %)

IR VIB HP, ORF, HB 100.00 % (σ = 0.00 %)

IR Imbalance gradation 88.33 % (σ = 12.47 %)
VIB Imbalance gradation 75.00 % (σ = 9.13 %)

IR VIB Imbalance gradation 90.00 % (σ = 6.24 %)

IR All 12 conditions 55.00 % (σ = 11.31 %)
VIB All 12 conditions 66.67 % (σ = 21.08 %)

IR VIB All 12 conditions 90.00 % (σ = 6.24 %)

The detection of the amount of imbalance is more difficult.

Generally, the infrared thermal imaging-based system seems to

outperform the vibration-based system. However, when both

features from both modalities are used, the overall accuracy

increases. The confusion matrices in Fig. 11 indicate that the

classifier can confuse small imbalance gradation differences.

Pipeline one detects the different amounts of imbalance and

pipeline two detects the specific bearing conditions. In total

there are 12 conditions. When solely using infrared thermal

imaging data the accuracy score is 55.00 % (σ = 11.31 %) and

when solely using vibration data the accuracy score is 66.67 %

(σ = 21.08 %). However, when both modalities are combined

there is a major improvement as the multi-sensor system

achieves an accuracy score of 90.00 % (σ = 6.24 %). When

observing the overall confusion matrix (Fig. 12), it can be

seen that when imbalance occurs together with contamination

in the lubricant, it is more difficult to detect the conditions,

hence there is some small interaction between these two types

of faults.

For completeness, a late fusion approach was also created

and tested for data set two. Late fusion entails the creation of a

machine learning model for each sensor stream. Subsequently,

the output of the machine learning models are combined to

determine a final prediction. As the chosen algorithm, i.e.

random forest classifier, provides probabilities of its predic-

tions, we opted to combine the probabilities of the machine

learning models created per sensor stream. The results of the

experiments are listed in TABLE IX. As can be seen, the

late fusion approach performs worse compared to the feature

fusion approach. This can be contributed to the fact that late

fusion does not allow feature interaction, which we determined

to be beneficial.
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(a) (b) (c)

Fig. 9: Confusion matrices of the (a) vibration-based fault detection system, (b) the infrared thermal imaging-based fault

detection system and the (c) multi-sensor fault detection system for data set one.

(a) (b) (c)

Fig. 10: Confusion matrices of the (a) vibration-based fault detection system, (b) the infrared thermal imaging-based fault

detection system and the (c) multi-sensor fault detection system for data set two.

(a) (b) (c)

Fig. 11: Confusion matrices for (a) vibration-based imbalance detection, (b) the infrared thermal imaging-based imbalance

detection and (c) multi-sensor based imbalance detection for data set two.
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Fig. 12: Confusion matrix of the multi-sensor system for data set 2 for all 12 condition.
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TABLE IX: Classification results for data set two using late

fusion. σ is the standard deviation. IR = infrared based, VIB

= vibration based, HB = healthy bearing, ORF = bearing with

an outer-raceway fault, HP = bearing with hard particles.

IR VIB Conditions Accuracy

IR VIB HP, ORF, HB 90.00 % (σ = 6.24 %)
IR VIB Imbalance gradation 72.80 % (σ = 12.47 %)
IR VIB All 12 conditions 72.80 % (σ = 12.47 %)

V. CONCLUSION

In this article, a multi-sensor fault detection system for

rotating machinery is proposed that uses both infrared thermal

imaging and vibration data. In order to achieve this, feature

fusion is used wherein model-driven features are extracted

from the vibration measurements, and data-driven features

from the infrared thermal imaging data. Subsequently, the

extracted features are fused together and provided to random

forest classifiers for the actual fault detection. We show that

by using the multi-sensor approach, the shortcomings, inherent

to the modality (e.g. vibrations or heat), are compensated

by the other modality type. Therefore, the system is able to

outperform single sensor based systems on our two data sets.

We demonstrate that our proposed multi-sensor approach that
includes infrared thermal imaging can provide a significant im-

provement in fault detection performance (e.g. 35 % absolute

improvement for data set two). However, it should be noted

that the financial costs increases as two sensors are required.

Hence, a cost-benefit analysis is required when considering a

multi-sensor approach.
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