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In this paper, the (ermal Lattice Boltzmann Method (TLBM) is used for the simulation of a gas microflow. A 2D heated
microchannel flow driven by a constant inlet velocity profileUin and nonisothermal walls is investigated numerically. Two cases of
micro-Poiseuille flow are considered in the present study. In the first case, the temperature of the walls is kept uniform, equal to
zero; therefore, the gas is driven along the channel under the inlet parameters of velocity and temperature. However, in the second
one, the gas flow is also induced by the effect of temperature decreasing applied on the walls. For consistent results, velocity slip
and temperature jump boundary conditions are used to capture the nonequilibrium effects near the walls. (e rarefaction effects
described by the Knudsen number, on the velocity and temperature profiles are evaluated. (e aim of this study is to prove the
efficiency of the TLBMmethod to simulate Poiseuille flow in case of nonisothermal walls, based on the average value of the Nusselt
number and by comparing the results obtained from the TLBM with those obtained using the Finite Difference Method (FDM).
(e results also show an interesting sensitivity of velocity and temperature profiles with the rarefaction degree and the imposed
temperature gradient of the walls.

1. Introduction

Microdevice technology has shown an interesting growth in
the last few decades. In order to understand the behavior and
the physics of gas flows in such micro-electro-mechanical
systems (MEMS) better, researchers are focused on several
approaches. Kinetically, such flows are governed by the
Boltzmann equation, in which the solution is better ap-
proximated by direct simulation of Monte Carlo (DSMC) [1]
and dynamic molecular (MD) [2]. To save the computation
time, other alternatives have been used mainly in the slip
regime such as moment equations [3]. To combine the
advantages of both approaches, the lattice Boltzmann
method (LBM) becomes recently a powerful tool of such
applications, and this approach is a hybrid method which
combines the kinetic description given by the Boltzmann

equation and the classical computational fluid dynamics
(CFD), mesoscopic approach. Several attempts are made by
scientists to improve the LBM approach and extend its
ability to simulate more complex geometry flows [4–6]. (is
method is used to simulate different types of flows: the
Rayleigh-Benard convection [7], micro-Poiseuille flow
[8–12], micro-Couette flow [11, 12], Lid-driven cavity
[4, 12], etc.

However, the study of such flow needs a good choice
and implementation of the boundary conditions (BC),
which is a crucial step in the LBM simulation. In this
context, different BC are tested in the literature for different
problems. Nie et al. [13] used the bounce-back boundary
conditions, which is compared with the DSMC method
[14]. Lim et al. [15] employed specular reflection and a
second-order extrapolation scheme to capture the slip
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effect on the interaction gas surface. To test a hybrid BC,
Tang et al. [16] defined a reflection coefficient rf to
combine the bounce-back and the specular reflection
boundary conditions [12] and also proposed a thermal
boundary condition for a double-population thermal lat-
tice Boltzmann method equation [17]. Lee and Lin [18]
proposed a wall equilibrium boundary condition with a
Knudsen number to capture the slip velocity. A slip
boundary condition based on the Maxwellian-scattering
kernel was proposed by Zhang et al. [19, 20] using a
tangential momentum accommodation coefficient
(TMAC). To simulate isothermal two-dimensional
microchannel flows Niu et al. [21, 22] have used the diffuse
scattering boundary condition [12]. Zou and He [23]
proposed a new method to specify boundary conditions,
where the conditions are constructed in the consistency
with wall boundary condition, based on the idea of bounce-
back of the nonequilibrium distribution function. Another
investigation was carried out by Tian et al. [24, 25] who
used the first order of Maxwell slip boundary conditions.

(e LBM approximation is a linear discretization of the
Boltzmann equation. (e collision term in this equation is,
often, approximated according to the Bhatnagar, Gross, and
Krook (BGK) [26]. Gas flows in microfluidic devices are
characterized by their rarefaction degree given by the
Knudsen number Kn � λ/l (λ is the mean free path of the gas
molecules and l is the characteristic length of the system).
According to its value, four regimes of the gas flow are
considered: the continuum regime (Kn≲ 0.001), the slip re-
gime 0.001≲Kn≲ 0.1, the transition regime (0.1≲Kn≲ 10),
and the free molecular regime (Kn≳ 10). As the Knudsen
number increases, rarefaction effects become more impor-
tant and the continuum approach breaks down because of
nonequilibrium effects. (e miniaturization of devices,
MEMS technology, leads to the microsystems where the gas
particles mean free path is comparable to the system
characteristic length. (erefore, accurate approaches are
needed to better understand the physics of such microflows,
which usually belong to slip or early transition regimes. In
this context, with the computer performances increasing,
several numerical methods are adopted as alternatives to
study such flows whose analytical description is generally
more complicated. (e Lattice Boltzmann method is one of
the most successful numerical approaches used for gas flow
simulation, unlike others which need a long time of running
(DSMC, for example). In this model, the governing equa-
tions of mass and momentum conservation are satisfied at
each lattice nodes.

(e thermal lattice Boltzmann method is used to sim-
ulate two- and three-dimensional microchannel flows by
using velocity slip and temperature jump boundary con-
ditions [24, 25] and has been studied in several papers
[8–11, 27–30]. In this paper, the TLBM and FDM are used to
simulate micro-Poiseuille flow, in the slip regime, which is
usually encountered in theMEMS devices [31]. According to
the top and bottom walls temperature, two cases are con-
sidered; in the first case, duct walls are assumed isothermal;
however, nonisothermal walls are imposed in the second
case. (e aim of this study is to prove the efficiency of the

TLBM method to simulate micro-Poiseuille flow even in
case of nonisothermal walls by comparing velocity and
temperature profiles with the finite difference method.

2. Statement of Problem

In the present simulation, we studied forced convection
inside a long microchannel in the case of the body force is
zero. (e microchannel walls are stationary and heated such
that the temperature gradient is constant. A rectangular
microchannel is considered with a large cross-sectional
aspect ratio, and the flow is independent of direction z [32].
(e flow is fully developed between two long and parallel
plates; the characteristic length scale in this problem is the
channel height H (Figure 1). According to the top and
bottom walls temperature, two cases are considered in this
study. In the first case, the duct walls are isothermal;
therefore, the inlet parameters of temperature and velocity
induce the gas. However, nonisothermal walls are imposed
in the second case; the bottom and upper sides are linearly
heated from the hot value Tp(Tp � TH/p) to cold one TC, so
Tp varies from TH to TC (p is an integer ≥ 1). (e variation
of walls temperature in the second case is as follows:

Tp �
TH
p
, p≥ 1, (1a)

T(x) � Tp −
Tp − TC( ) × x

L
. (1b)

3. Thermal LB Model

3.1. Lattice Boltzmann Method. A square grid and D2Q9
model is used for both distribution function density f and
temperature g. (e governing equations for these distri-
bution functions are written according to the BGK model as
follows:

fk x + ckΔt, t + Δt( ) � fk(x, t) 1 − 1

τf
( ) + 1

τf
f
eq
k (x, t),

(2a)

gk x + ckΔt, t + Δt( ) � gk(x, t) 1 − 1

τg
( ) + 1

τg
g
eq
k (x, t).

(2b)
In which, τf and τg represent the relaxation times of

density and internal energy functions, respectively, and are
related to the kinematic viscosity v and thermal diffusivity α
by

τf �
]

c2s
+ 0.5,

τg �
α

c2s
+ 0.5,

(3)

where cs is the velocity of sound, related to the lattice speed,
temperature, and gas constant by cs � c/

�
3

√
�

���
RT

√
.
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(e relationship between the kinematic viscosity v and
the coefficient of thermal diffusion α is determined by
(]/α) � Pr, where Pr is the Prandtl number.

At the equilibrium state, the Maxwell distribution
functions f

eq
k and g

eq
k are written in the Taylor expansion as

follows:

f
eq
k (i, j) � wkρ(i, j) 1 + 3

ck · u
c2

+ 9

2

ck · u( )2
c4

− 3

2

u
2

c2
[ ],

(4a)

g
eq
k (i, j) � wkT(i, j) 1 + 3

ck · u
c2

+ 9

2

ck · u( )2
c4

− 3

2

u
2

c2
[ ],

(4b)
where the weight factors wk are w0 � 4/9, w1− 4 � 1/9, and
w5− 8 � 1/36 and c is the lattice speed given by
c � (Δx/Δt) � (Δy/Δt).

(e discrete scheme D2Q9 is shown in Figure 2

ck �

(0, 0), k � 0,

c cos (k − 1) π
2

[ ], sin (k − 1) π
2

[ ]( ), k � 1 − 4,

�
2

√
c cos (k − 5) π

2
+ π

4
[ ], sin (k − 5) π

2
+ π

4
[ ]( ), k � 5 − 8.


(5)

(emacroscopic density ρ, velocity u, and internal energy
by unit of mass e are obtained by the following relations:

ρ � ∑8
k�0
fk, (6a)

ρu � ∑8
k�0
fkck, (6b)

ρe � ∑8
k�0
gk, (6c)

where e � DRT/2, in which D is the number of physical
dimensions (equal to 2 in the current work).

3.2. Boundary Conditions

3.2.1. Flow Boundary Conditions. (e boundary conditions
proposed by Zou and He [23] are used at the inlet, in which
the normal velocity component is assumed to be equal to
zero and the density is to be determined. After the streaming
step, the unknown distribution functions are at the inlet
boundary (f1, f5, f8). Using equations (6a) and (6b), these
function densities are calculated as follows:

ρin �
f0 + f2 + f4 + 2 f3 + f6 + f7( )( )

1 − Uin( ) , (7a)

f1 � f3 +
2

3
ρinUin, (7b)

f5 � f7 −
1

2
f2 − f4( ) + 1

6
ρinUin, (7c)

f8 � f6 +
1

2
f2 − f4( ) + 1

6
ρinUin. (7d)

A simple extrapolation scheme is used for the velocity at
the outlet.

To capture velocity slip phenomenon, the Maxwell first
order of slip boundary condition is applied in its dimen-
sionless form, near the longitudinal walls [24]:

u
slip
x,y�0 � ux,y�0 − ux,wall � σKn

zu

zy
( )

y�0
, (8a)

u
slip
x,y�H � ux,wall − ux,y�H � σKn

zu

zy
( )

y�H
, (8b)

where u
slip
x,y�0 and u

slip
x,y�H are the slip velocities at the bottom

and top walls. (e walls are considered at rest (ux,wall � 0)
and σ is the momentum accommodation coefficient which is

Tinlet = TH

Uin

xy

z
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L
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Figure 1: Studied domain configuration. (a) Case 1: walls with uniform temperature (TC) and (b) case 2: walls with a linear decreasing
temperature from Tp to TC.
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assumed to be equal unity, to simulate completely diffuse
reflection [33].

At the top wall, the unknown distribution functions
(f4, f7, f8) are calculated as follows:

ux,y�H � λ
4ux,H− 1 − ux,H− 2

2 + 3λ
( ), (9a)

ρtop � f0 + f1 + f3 + 2 f2 + f6 + f5( ), (9b)

f4 � f2, (9c)

f7 �
ρtop 1 − ux,y�H( ) − f0 + f2 + f4( )

2
− f3 + f6( ), (9d)

f8 �
ρtop 1 + ux,y�H( ) − f0 + f2 + f4( )

2
− f1 + f5( ), (9e)

where the gas mean free path is defined as λ � KnH andH is
the total number of lattice nodes in the vertical direction.

3.2.2. Temperature Boundary Conditions. At the inlet
boundary, the unknown energy distribution functions
(g1, g5, g8) are obtained as follows:

g1 � Tinlet(w(1) + w(3)) − g3, (10a)

g5 � Tinlet(w(5) + w(7)) − g7, (10b)

g8 � Tinlet(w(6) + w(8)) − g6. (10c)

(e outlet boundary condition for energy distributions is
implemented by using an extrapolation scheme [34]. Sim-
ilarly, the temperature jump boundary conditions caused by
the rarefaction effects at the walls are given by

T
jump
x,y�0 � Tx,y�0 − Tx,wall � ϕKn

2c

(c + 1)Pr( ) zT

zy
( )

y�0
,

(11a)

T
jump
x,y�H � Tx,wall − Tx,y�H � ϕKn

2c

(c + 1)Pr( ) zT

zy
( )

y�H
.

(11b)
Cjump is the temperature jump coefficient defined as

follows:

Cjump � ϕ
2c

(c + 1)Pr( )λ � kλ. (12)

In which, ϕ represents the thermal accommodation
coefficient and is assumed to be unity, c is the specific heat
ratio, and Pr is the Prandtl number.

Temperature jump boundary conditions are written at
the bottom and top walls as follows:

Tx,y�0 �
Cjump 4Tx,1 − Tx,2( ) + 2Tx,wall

2 + 3Cjump

, (13a)

Tx,y�H �
Cjump 4Tx,H− 1 − Tx,H− 2( ) + 2Tx,wall

2 + 3Cjump

. (13b)

At the top wall, the unknown distribution functions
(g4, g7, g8) are calculated as follows:

Tx,y�H �
Cjump 4Tx,H− 1 − Tx,H− 2( ) + 2Tx,wall

2 + 3Cjump

, (14a)

g4 � Tx,y�H(w(2) + w(4)) − g2, (14b)

g7 � Tx,y�H(w(5) + w(7)) − g5, (14c)

g8 � Tx,y�H(w(6) + w(8)) − g6. (14d)

3.3.NusseltNumberCalculation. Heat transfer characteristic
of the flow can be determined using the Nusselt number Nu,
which is the ratio of convective and conductive heat
transfers. (e Nusselt number along the horizontal axis is
calculated as follows:

Nu(x) � 2H(zT/zy)wall
Twall − Tbulk

. (15)

(e bulk temperature at a cross-section is calculated as
follows:

Tbulk �
∫
S
ρuT dS

∫
S
ρu dS

. (16)

(e average Nusselt number is calculated as follows:

Nuavg �
∫L
0
Nu(x)dx
L

. (17)

4. Finite Difference Method

(e advection-diffusion equation in 2D is expressed by

zT

zt
+ u zT

zx
+ v zT

zy
� α

zT2

zx2
+ zT2

zy2
( ), (18)

where α is the coefficient of thermal diffusion and (u, v) are
the components of velocity.

For a steady Poiseuille flow, the vertical velocity com-
ponent is omitted (v � 0) and the following theoretical

c0 c1

c2

c3

c5

c6

c4

c7 c8

Figure 2: D2Q9 velocities.
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velocity profile u across a microchannel is used in the finite
difference method [8]:

u(y) � 6Umean (y/H) − y2/H2( ) +(2 − σ/σ)Kn( )
(1 + 6((2 − σ)/σ)Kn) , (19)

where σ is the momentum accommodation coefficient.
(e domain is discretized into equal segments (Δx �
Δy) and the finite difference approach (FDM) is used, and
equation (18) becomes

Tn+1(i, j) � Tn(i, j) 1 − 1

τg
( ) + 1

τg

Tn(i + 1, j) + Tn(i − 1, j) + Tn(i, j + 1) + Tn(i, j − 1)
2

( ) − uΔt Tn(i, j) − Tn(i − 1, j)
Δx( ),

(20)

where n is the number of the time step Δt and
(1/τg) � ((2αΔt)/Δx2).

(e term (1 − (1/τg)) must be positive, which implies
that Δt≤ (Δx2/(2α)).

Temperature jump boundary conditions used in TLBM
approach are also used in the FDM approach at the bottom
and the top walls. In the inlet, the temperature is taken equal
to unity and a simple extrapolation can be used at the outlet.

5. Results

In the present study, all simulations are performed using a
developed Fortran code. A gas flow between two parallel
plates at rest has been simulated using the thermal lattice
Boltzmann method and finite difference approaches. Two
cases of micro-Poiseuille flow are treated; in the first case, the
temperature of the upper and lower plates is taken equal to
TC; however, a linear decreasing of plate temperature is
imposed in the second case. To describe the results of
simulation easily, it is more convenient to use the following
normalization for temperature: θ � ((T − TC)/(TH − TC)).
(us, the temperatures TH, TC, and Tp become θH � 1,
θC � 0, and θp � (1/p). In this study, we take Pr � 0.71,
k� 1.667, and Reynolds number is fixed at Re � 10.

5.1. Mesh Independence Study. (e channel aspect ratio is
fixed in this study to be AR � 4. For Kn � 0.05 and θp � 0.5,
Table 1 shows the effect of the mesh on the average Nusselt
number, while Table 2 shows the effect of the mesh on the
horizontal velocity and the temperature near the inlet
((x/L) � 0.04, (y/H) � 0.5), (not to mention that θp does
not affect the velocity). In this study, a mesh of 200× 50 has
been used for numerical investigation because it gives a
stable solution.

5.2. Numerical Validation. To ensure the validation of the
present model, the first case is treated and the results found
have been compared with the FD method and the results
presented in Zarita and Hachemi [8]. To observe the
rarefaction effect on the gas flow behavior, the velocity
profiles for Kn� 0.01 and 0.08 (Figure 3(a)) and the
temperature profiles for Kn� 0.01, 0.05 and 0.08
(Figure 3(b)) are plotted. Figures show the effect of Kn on
the velocity slip and temperature jump at the centerline of
the microchannel. Good agreement between the analytical

solution and the numerical one obtained by TLBM for
velocity is observed. In agreement with kinetic theory, it is
shown that velocity slip is sensitive, inversion of velocity
profiles, to the rarefaction degree near the longitudinal
walls, the Knudsen layer ((y/L)< 0.2 and (y/L)> 0.8)
[6, 8–10, 22]. To compare the transient time of both so-
lutions given by FDM and TLBM approaches, the tem-
perature profile is plotted as a function of time steps
number for Kn � 0.01 − 0.08. For a given Kn, the FDM and
the TLBM require the same time to reach the steady state,
and with increasing Kn, the temperature value in the
equilibrium state at the bulk increases. (is is due to the
interactions of particles which become more important
(Figure 4). (e convergence of the Nusselt number to a
constant value is reached as soon as the velocity and the
temperature become constant (Figure 5). Both methods
give the same temperature contours for Kn � 0.01 and
Kn � 0.08.(e higher values are obtained near the inlet and
when Kn increases the values of the temperature increases
at the outlet of the microchannel (see Figure 6). So, it is
observed that the rarefaction effect increases the convection
from the hot inlet stream for both approaches.

5.3. Numerical Results and Analysis. (e second case is
evaluated to investigate the effect of the nonisothermal walls
on the gas flow. (e walls are not isothermal because of the
effect of the conduction of the inlet temperature (θinlet � 1),
and this effect is assumed to be linear in this study. To
compare the transient time of both solutions given by FDM
and TLBM approaches for θp � 0.1 and θp � 0.8, the tem-
perature profile at the microchannel center is plotted as
a function of time steps number for Kn � 0.01 − 0.08
(Figure 7). By comparing Figures 7(a) and 7(b), the effect of
the Knudsen number decreases when θp has a large value.
(e temperature reaches the steady state after approximately
7500 number time steps, and its value in the equilibrium
state increases by increasing Kn and θp. Figure 7(c) shows
the effect of θp on the temperature value, which increases
with increasing θp, at the center of microchannel for
Kn � 0.05. (e temperature jump increases with Kn and θp
[32] (see Table 3). By increasing the rarefaction degree (Kn),
its effect on the temperature profile along the horizontal axis
near the wall (y/H) � 0.01 for θp � 0.1 and (x/L)< 0.4 is
important (Figures 8(a) and 8(c)), whereas its effect vanishes
when θp approaches to unity and its profile becomes almost
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Table 1: Effect of the mesh on the average Nusselt number for Kn � 0.05 and θp � 0.5.

Mesh 180× 45 200× 50 220× 55
Nu 6.78356 6.83014 6.86398

Table 2: Effect of the mesh on the velocity and temperature.

Mesh 180× 45 200× 50 220× 55
u/Uin 1.05 1.04 1.04
θ 0.974 0.977 0.977
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Figure 3: (a) Velocity profiles and (b) temperature profiles along the vertical centerline axis according to Kn.
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Figure 6: Normalised temperature isolines in the microchannel: (a) TLBM-Kn� 0.01, (b) TLBM-Kn� 0.08, (c) FDM-Kn� 0.01, and (d)
FDM-Kn� 0.08.
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Figure 7: Evolution of the temperature at the center of the microchannel as a function of time: (a) TLBM and FDM for θp � 0.1, (b) TLBM
and FDM for θp � 0.8, and (c) TLBM for Kn� 0.05.
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linear (Figures 8(b) and 8(d)). After that, inlet excitation,
both approaches predict a decrease in temperature to reach
the cold value at the outlet. In the vertical direction, the
temperature profiles obtained by both approaches of TLBM

and FDM, for different values of Kn number, are plotted as a
function of y-coordinate. In addition to the good agreement
between the results, the temperature is sensitive to the
rarefaction degree Kn. (e temperature jump and the

Table 3: Effect of Kn and θp on wall temperature jump.

θp 0 (case 1) 0.1 0.5 0.8 1

Kn
0.01 0.00844 0.00888 0.01063 0.01195 0.01283
0.03 0.02754 0.02854 0.03254 0.03554 0.03753
0.05 0.04902 0.05020 0.05491 0.05844 0.06079
0.08 0.08417 0.08504 0.08851 0.09112 0.09285
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Figure 8: Temperature profile along the horizontal axis according to θp and Kn obtained using TLB and FD methods for (a) θp � 0.1 and
Kn � 0.01, (b) θp � 0.8 and Kn � 0.01, (c) θp � 0.1 and Kn � 0.08, and (d) θp � 0.8 and Kn � 0.08.

8 Mathematical Problems in Engineering



amplitude of its curve near the channel inlet
(x/L) � 0.01 and (x/L) � 0.05 along the vertical axis in-
crease as Kn increases (Figure 9). By increasing θp, the
profile of the temperature along the vertical axis near the
center of the channel (x/L) � 0.25 and (x/L) � 0.5 begins
to lose its parabolic appearance and take a horizontal
shape even for the low values of Kn (Figures 9(b) and
9(d)). (is is since the gas becomes more rarefied when θp
has a great value. Both cases give the same velocity profiles
since equation (6b) which gives the velocity is indepen-
dent of the temperature (see Table 4). To compare the
transient time of the solution given by the TLBM ap-
proach, the evolution of the horizontal velocity at the

center of microchannel is plotted as a function of time
stepsnumber for Kn � 0.01 − 0.08. (is approach reaches
the steady state after approximately 2000 time steps and
the effect of the Knudsen number on the velocity is seen
because by increasing Kn, the velocity decreases at the
center of the microchannel (Figure 10(a)). Using the slip

1.4

1.2

1.0

1.0

0.8

0.8

0.6

0.6

y/H

0.4

0.4

0.2

0.2
0.0

0.0

θ

TLBM - x/L = 0.05

TLBM - x/L = 0.25

TLBM - x/L = 0.5

TLBM - x/L = 0.01 FDM - x/L = 0.01

FDM - x/L = 0.05

FDM - x/L = 0.25

FDM - x/L = 0.5

(a)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4
1.00.80.6

y/H

0.40.20.0

θ

TLBM - x/L = 0.05

TLBM - x/L = 0.25

TLBM - x/L = 0.5

TLBM - x/L = 0.01 FDM - x/L = 0.01

FDM - x/L = 0.05

FDM - x/L = 0.25

FDM - x/L = 0.5

(b)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.6

y/H

0.40.20.0

θ

TLBM - x/L = 0.05

TLBM - x/L = 0.25

TLBM - x/L = 0.5

TLBM - x/L = 0.01 FDM - x/L = 0.01

FDM - x/L = 0.05

FDM - x/L = 0.25

FDM - x/L = 0.5

(c)

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1.00.80.6

y/H

0.40.20.0

θ

TLBM - x/L = 0.05

TLBM - x/L = 0.25

TLBM - x/L = 0.5

TLBM - x/L = 0.01 FDM - x/L = 0.01

FDM - x/L = 0.05

FDM - x/L = 0.25

FDM - x/L = 0.5

(d)

Figure 9: Temperature profile along the vertical axis according to θp and Kn obtained using TLB and FD methods for (a) θp � 0.1 and
Kn � 0.01, (b) θp � 0.8 and Kn � 0.01, (c) θp � 0.1 and Kn � 0.08, and (d) θp � 0.8 and Kn � 0.08.

Table 4: Velocity and temperature values at ((x/L) � 0, (y/H) � 0)
for Kn � 0.05 obtained using the TLB method.

θp 0 (case 1) 0.5

u/Uin 0.78947 0.78947
θ 0.78445 0.89175
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boundary condition, the so-called velocity slip phenom-
enon which appears under rarefaction effects, for
Kn � 0.01 − 0.08, is captured by the TLB method
(Figures 10(b)–10(d)) [6, 22]. Near the entrance region,
the flow is developed fast; therefore, the Knudsen num-
ber has a significant effect on the Nusselt number (see
Figure 11). (e effect of nonisothermal walls for θp = 0.5
on the temperature in the microchannel is clearly visible
and the values of the temperature contours are strictly
greater than 0. It is observed that the rarefaction effect
increases the convection from the hot inlet stream for
both methods, and when Kn increases, the small values of
the temperature vanish at the outlet of the microchannel
(see Figure 12).

(e temperature jump is calculated at the center of the
wall as follows:

θjump � θ
x

L
� 0.5( ) − θwall. (21)

For both cases, by increasing the Knudsen number value,
the average value of the Nusselt number decreases and in
parallel when θp increases its value increases, but by in-
creasing this value to θp � 1, the results become insignificant
for that number (Table 5).

In the TLBM approach, the flow boundary conditions
proposed by Zou and He [23] are used at the inlet, and
these conditions are constructed in consistence with
the wall boundary condition based on an idea of bounce-
back of nonequilibrium distribution functions given by
second-order accurate of equations (7a)–(7d) and
for energy distribution function equations (10a)–(10c) are
used. However, in the FD method, the analytical solution
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Figure 10: (a) Evolution of the velocity at the center of the microchannel as a function of time and velocity profiles for (b) Kn � 0.01, (c)
Kn � 0.05, and (d) Kn � 0.08.

10 Mathematical Problems in Engineering



of theoretical velocity (equation (19)) is used while the
inlet temperature is taken equal to unity, that is why
the methods are quite different for (y/H) � 0.01
and (y/H) � 0 at the inlet (x/L) � 0 (see Figure 8 and
Table 4).

To sum up, the TLBM method is able to simulate micro-
Poiseuille flow in the case of nonisothermal walls, and it can

capture the slip velocity and jump temperature at the wall
even at the inlet.

6. Conclusion

In this study, the efficiency of the TLBM method to
simulate micro-Poiseuille flow in the case of non-
isothermal walls is demonstrated. Slip and jump boundary
conditions (SJBC) are used to capture the nonequilibrium
effect near the walls. (e explored Knudsen numbers
correspond to the slip regime. (e Nusselt number which
depends on the velocity and temperature profiles proves
the effectiveness of the results. Good agreement is obtained
between TLBM and FDM results. So, regarding its fast
convergence, it shows the ability of TLBM to describe the
velocity slip and temperature jump as a good alternative
that can be used to describe the gas microflows usually
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Figure 11: Nusselt number variation along the microchannel for (a) θp � 0.8 and (b) Kn � 0.05.
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Figure 12: Normalised temperature isolines in the microchannel for θp � 0.5 (a) TLBM-Kn � 0.01, (b) TLBM-Kn � 0.08, (c) FDM-
Kn � 0.01, and (d) FDM-Kn � 0.08.

Table 5: Value of the average Nusslet number at different θp and at
different Kn.

θp 0 (case 1) 0.1 0.5 0.8 1

Kn
0.01 8.34289 8.46053 8.70021 8.84516 6.87401
0.03 7.35054 7.43502 7.62395 7.73609 6.50464
0.05 6.62209 6.68289 6.83014 6.91603 6.00751
0.08 5.76999 5.80805 5.90945 5.96658 5.31223
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encountered in the micro-electro-mechanical systems
(MEMS) and nano-electro-mechanical systems (NEMS)
devices. Unlike the kinetic methods, such as DSMC, which
need a long time to achieve satisfactory results, the TLBM
is more promising for such flows.

Nomenclature

H: Channel height
L: Channel length
t: Time
Kn: Knudsen number
Pr: Prandtl number
Re: Reynolds number
Nu: Nusselt number
R: Universal constant of gases
Cjump: Temperature jump coefficient
C: Lattice speed
cs: Speed of sound
ck: Lattice velocity vector
u: Velocity vector
f: Density distribution function
feq: Equilibrium density distribution function
g: (ermal distribution function
geq: (ermal equilibrium distribution function
e: Internal energy by unit of mass
wk: Weight factors in the equilibrium distribution

Greek Symbols

Δt: Time step
Δx and Δy: Lattice space
τf: Momentum relaxation time
τg: (ermal relaxation time
v: Kinematic viscosity
α: Coefficient of thermal diffusion
σ: Momentum accommodation coefficient
ϕ: (ermal accommodation coefficient
c: Specific heat ratio
ρ: Density
θ: Normalised temperature.
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