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Abstract

Inspired by the recently new measurement of (g − 2)µ at FermiLab and reported upper
bound for electron-dark matter (DM) recoil by the XENON1T collaboration, we revisited
phenomenology of a light MeV scale vector dark matter in a leptophilic extension of standard
model while a new spinor field plays the role of mediator. A viable parameter space is
considered to discuss the possibility of light dark matter relic density as well as anomalous
magnetic moment of the muon. We study DM-electron direct detection and cosmological
bounds on the parameters space of the model. It is shown that although new bound of
(g− 2)µ anomaly greatly confines the parametric space of the model, the thermal light dark
matter can exist for MDM ∼ 10−1 − 101 GeV.

1 Introduction

As it is well-known, the existence of DM on many scales in the universe has been widely es-

tablished, but its nature remains an unsolved problem. Traditional DM candidates, in many

beyond standard model (BSM) scenarios are weakly interacting massive particle (WIMP) with

mass close to the electroweak scale and weak couplings with Standard Model (SM) particles.

However the lack of any signal in direct, indirect detection experiments and search at the LHC,

has opened the door to wide spreading DM models possibility covering small value ranges in

DM masses and interaction coupling strengths.

Furthermore, physics of BSM may leave affect in low-energy precise measurements via pos-

sible deviations between the SM and experimental evidences. Some of these deviations include

the LHCb [1] and the muon anomalous magnetic moment (AMM) aµ = (gµ − 2)/2 which was

recently reported by FermiLab experiment (3.3 σ) [2] challenging lepton universality. Combining

this result for AMM with the earlier measurement at the Brookhaven National Laboratory, this

now amounts to a 4.2 σ deviation from the SM prediction [3]. This result leaves an open win-

dow to new particles which can contribute to muon g − 2 through direct coupling to the muon.

Many models related to DM candidates and (g − 2)µ anomaly have been proposed, including

axion-like particle (ALP) explanation [4–7], SUSY-DM explanation [8–11], two Higgs doublet
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models (2HDM) plus singlet explanation [12], and others [13–27]. Also it should be noted that

if we compare to the latest QCD lattice calculations this decrease to about 1.4 σ [28]. In order

to clarify the origin of this difference, a new experiment aiming to measure the contribution of

hadronic corrections is being prepared at CERN [29]. One should also note that the drastic

change in Hadronic Vacuum Polarization (HVP) leads to tensions elsewhere [30–32].

The primary purpose of direct detection experiments is the search for thermal relic particles

(WIMPs) with GeV-scale mass. However, recently, there has been significant interest in models

of DM in which DM particle has a mass m ≤ O(GeV). This is appealing because such models

evade nearly all constraints on DM imposed by nucleon-DM direct detection experiments, since

direct detection experiments are insensitive to the small recoil energies characteristic of m ≤
O(GeV). An alternative scenario in direct search is the interaction of DM particles exclusively

with the SM leptons and possibly having loop suppressed interactions with nucleons. However

in this case, DM still obtain its relic abundance from Freez-out mechanism.

In this light, direct detection strategies are proposed for DM particles with KeV to MeV

mass. In this range, DM scattering with electrons can cause single-electron ionization signals,

which are detectable with current technology. Ultraviolet photons, individual ions, and heat are

interesting alternative signals. For example, the light DM regime (1 MeV to 10 GeV) where

DM interacts with atomic electrons via recoiling is now significantly constrained by recent data

from the XENON1T [33], DarkSide50 [34] and SENSEI [35] experiments.

The goal of this paper is to broaden the scope of BSM physics. We propose light vector

DM candidates with mass regime (1 MeV to 10 GeV). The interaction of DM with SM is

leptophilic and DM particles only interact with SM leptons via spinor mediators. Scattering of

vector DM from electron could be consistent with XENON1T [33] experiment bounds for DM-

electron direct detection. The leptophilic models are particularly interesting when we look at

the anomalous magnetic moment of the leptons. In this way, we attempt to find out parameter

space of the model to explain the newest muon magnetic moment anomaly.

The outline of this paper is as follows: In Section 2, we introduce framework for a light

vector DM. In Section 3, we study anomlous magnetic of muon in context of the model. We

consider relic density and DM-electron recoil bounds on parameters of the model in section 4

and 5. The Section 6 contains the influence of various experimental constraints on the model

parameters. Finally, we present combined result in last section.

2 The Model

Here, we present a vector DM model, which extends the SM with massive spinor mediators

which couples to vector dark matter (VDM) particles and SM leptons. The only renormalizable

interaction is taken as follows:

L ⊃
∑

`=e,µ,τ

Xµψlγ
µ[gs + gpγ

5]`+ H.C., (2.1)

where Xµ is the VDM candidate, and ψls are (Dirac) spinor mediators. Generally, the interaction

terms Xµψlγ
µ[gsψ + gpψγ

5]ψl and Xµlγ
µ[gsl + gplγ

5]l can also exist. However, these interactions
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will lead to Xµ being unstable. To avoid such interactions we impose a Z2 discrete symmetry

under which both Xµ and ψl are odd but all SM fields are even. In our analysis, we have assumed

universal couplings between the mediators and the SM leptons. For simplicity, we have eluded

mixing between ψls and lepton generations. If different lepton flavors couple with a same ψ and

Xµ, then at one-loop level we should face the charged lepton flavor violation (CLFV) problem

(for a review on the muon anomalous magnetic moment and the quest for lepton flavor violation

see [36]). In such a scenario, at one-loop level, we should have muon to electron transition

process µ → e + γ which has been stringently constrained. In (2.1), to avoid CLFV, we have

considered different ψls for each lepton flavor. However, to keep the model minimal, we suppose

all spinor mediators have the same mass. In order to avoid DM decay, we suppose Mψ > MX .

By considering this constraint Xµ will be stable and can serve as DM. Since Xµ is neutral with

no electric charge, for spin 1/2 mediators, the spinor ψls have positive electric charges (and

therefore couple to photon) that is equal but opposite to the charged leptons. Therefore, Xµ

and neutrinos cannot couple together via charged spin 1/2 mediators. VDM stability commands

that no tree level mixing between the Z-boson and Xµ is allowed. Therefore in our model, we

have 4 independent parameters MX , Mψ, gs and gp. Finally, we emphasize that our approach in

this paper, is quite phenomenological. We have not considered gauge invariance of Lagrangians

under some gauge group, and the model is not UV-complete. For example, we supposed that

ψls are SU(2)Weak singlet while have U(1)EM charge; in constructing a gauge invariant model

such assumption should be considered more carefully.

3 Anomalous Magnetic Moment (AMM) of the Muon

As it is well-known, there are some discrepancies between SM predictions and measurements

in low energy experiments. One long-standing discrepancy is the anomalous magnetic dipole

moment of muon:

aµ = (gµ − 2)/2. (3.1)

Comparisons with experimental measurements alexp results in studies of the magnetic moments

of leptons being a powerful indirect search of new physics. The SM prediction of the anomalous

magnetic moment is determined from the sum of all sectors of the SM which include the QED

contributions, the electro-weak contributions, the hadronic vacuum polarization contributions

and hadronic light-by-light scattering contributions. The uncertainty of aSM is completely

dominated by the hadronic contributions due to the non-perturbative nature of the low energy

strong interaction. It is estimated from experimental measurements of the ratio of hadronic

to muonic cross sections in electron-positron collisions [37–58]. The combined results of muon

anomalous magnetic moment in two experiments at FermiLab (FNAL E989) [2], and Brookhaven

National Laboratory (LabBNL E821) [3] yield overall deviation from the SM central value:

∆aµ = aexpµ − aSMµ = (25.1± 5.9)× 10−10, (3.2)

which corresponding to a significance of 4.2 σ.
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In light of the results, we study constraints on the parameter space of the model. Since in

our model, VDM particles interact with the SM leptons via a massive mediator, a significant

effect on the anomalous magnetic moment of the leptons is expected.

In the present work, as we mentioned before, we consider universality for all interactions

of leptons. Therefore, we only consider the magnetic moment of the muon and ignore weaker

constraints on the AMMs of tau and electron. The model contribution to muon magnetic moment

arises from the one-loop mediated by VDMs. The analytical expression for ∆aψµ is [59]- [60]:

∆aψµ =
1

8π2
m2
µ

M2
X

∫
g2sPs(x) + g2pPp(x)

(1− x)(1− λ2x) + ε2λ2x
dx (3.3)

where

Ps(x) = 2x(1− x)(x− 2(1− ε)2) + λ2(1− ε)2x2(1 + ε− x)

Pp(x) = 2x2(1 + x+ 2ε) + λ2(1− ε)2x(1− x)(x− ε)

and ε = Mψ/mµ, λ = mµ/MX (mµ is the muon mass, Mψ and MX are spinor mediator and

DM mass). Therefore the contribution of a generic spinor mediator to the muon anomalous

magnetic moment is given by:

∆aψµ =

(
mµ

2πMX

)2{[Mψ

mµ
− 2

3

]
g2s +

[
−
Mψ

mµ
− 2

3

]
g2p

}
, (3.4)

where gs and gp are couplings of the SM leptons with new fields in accordance with interaction

terms of Eq. (2.1). Figs. 1-a and b show allowed region in MX −Mψ plane for random values

of couplings which is consistent with BNL E821 and FNAL E989 experiments. As it is seen in

figures, for masses of spinor and DM between a few hundred MeV to 100 GeV, the contribution

of the model can explain aµ anomaly. Note that in each plot, we turn on both couplings (gs and

gp).

Before the next section, we comment on the electron g-2 result as a comparison. There

is a 2.4 σ discrepancy between the theoretical prediction [61] and the existing experimental

measurement [62,63] of the electron anomalous magnetic moment,

∆ae = aexpe − aSMe = (−87± 36)× 10−14. (3.5)

Given the negative sign of the above relation, to explain both electron and muon g-2 in this

model, according to (3.4), one should consider different couplings for electron and muon gener-

ations. Otherwise, ∆aψµ > 0 leads to ∆aψe > 0. However, considering the significance of 4.2 σ

of muon anomalous magnetic moment and ignoring 2.4 σ electron g-2 anomaly, we continue to

assume universal couplings between the mediators and the SM leptons.

4 Relic Density of DM

Cosmological observations point toward the existence of DM, whose cosmological relic abun-

dance is approximately a fourth of the energy budget of the Universe. According to the recent

measurements from the PLANCK [67] collaboration DM relic density is:

ΩDMh
2 = 0.120± 0.001, (4.1)
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Figure 1: Scatter-points consistent with AMM of the Muon. We scanned over all free parameters
of the model. Note that, the parameter space could be limited by other experiments, such as
BaBar, Belle II and LEP II. However, maybe the case of a small mass difference of Mψ–MX =
δ > 0 with δ/Mψ � 1 is still allowed by experiments (with large missing energy plus soft
electrons/muons), like the case of supersymmetry. In addition, if 2Mψ is lighter than the tau
lepton mτ , the decay spectrum and width of tau lepton will be changed. Thus, the parameter
space left are smaller than that in this figure. To see how these experiments limit the parameter
space see, e.g., [64–66]
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Figure 2: Feynman diagrams for DM annihilation into (a) leptons and (b) spinor mediators. For
every t channel there is associated u channel not depicted here. DM coannihilaion is depicted
in (c).

where h ∼ 0.7 is the Hubble expansion rate at present times in units of 100 (km/s)/Mpc.

We suppose the mechanism that generates DM cosmological relic density is thermal freeze-

out described by a Boltzmann equation of the form

dnχ
dt

+ 3Hnχ = −〈σeff |vrel|〉(n2χ − n2χ,eq), (4.2)

where nχ is the number density of vector DM, H is the Hubble parameter, and 〈σeff |vrel|〉 is the

thermally averaged of effective cross section including both DM annihilation and coannihilaion

channels [68] (see figure 2).

The constraint from DM relic density on the vector DM have been determined by imple-

menting the model in the numerical package MicrOMEGAs [69]. The allowed parameter space

corresponding to this constraint is depicted in figure 3.

Note that the annihilation channel in Fig. 2 (b) is phase-space suppressed and the main
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Figure 3: Dark matter relic density consistent with Planck data. We scanned over all free
parameters of the model

channel is Fig. 2 (a). The s-wave annihilationXX → e+ e− is restricted by the CMB observation

(see, e.g. [70]) for the mass of dark matter about < 10 GeV, and the AMS-02 observation (see,

e.g. [71,72]) for the mass of dark matter from a few GeV to 100 GeV. There is nearly no parameter

space left with joint constraints. Thus, the relic density of X equal to 0.12 seems to be in tension

with CMB and AMS-02 observations. To resolve this issue, we consider coannihilation effect

with Mψ −MX = δ > 0 and δ
Mψ
� 1. The particles X and ψl can be in thermal equilibrium

for a while in the early universe via processes like Fig. 2 (b), and the abundance of X will be

reduced by processes such as Fig. 2 (c). However, in our combined analysis, Sec. 7, we see that

the relic density of X should be smaller than 0.12. Therefore, we consider ΩXh
2 < 0.12 as DM

relic density constraint. This means X cannot be the only DM component.

5 Direct Detection and Electron recoil

Let us now turn our attention to the direct detection possibilities of DM in the framework. As

it is mentioned, we consider the hypothesis that the VDM particle Xµ only couples directly to

leptons in particular the electrons but not to quarks. For this reason, DM-nucleon interaction

is absent at tree level. However, DM-electron elastic scattering of spin-independent type is

feasible at tree level. In the following, we ignore the loop suppressed DM-nucleon interaction.

In comparison to underground experiments focused on neutrino detection, that are typically

sensitive to energy depositions above a few hundred keV, Xenon-based dark matter detectors

provide the leading sensitivity for electronic energy depositions of 100 keV and below. In our

model the relevant interaction is described by the Lagrangian 2.1. Electron recoil can occur

corresponding to Feynman diagrams in Fig. 4. Therefore, in non-relativistic limit the elastic
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scattering cross section of the DM-electron has following form [73]:

σDM−e ≈
g4sµ

2
eX

2πM2
XM

2
ψ

, (5.1)

where µeX is the DM-electron reduced mass. The cross section that includes gp is zero due

to the odd number of γ5 in the trace. So far, in direct detection experiments there is found

no evidence of DM-electron elastic scattering. Nevertheless several experiments have set upper

bounds on this cross section: XENON1T [33], DarkSide50 [34] and SENSEI [35]. We consider

upper bound from the XENON1T experiment to search for DM interacting with electrons [33].

e

Xµ

ψ

Xµ

e

e

ψ

Xµ

Xµ e

Figure 4: DM-electron Feynman diagram

6 Additional constraints on the leptophilic VDM interaction

Thus far in this paper, we have included discussion of the relic density, direct detection and

(g − 2)µ constraints. In this section, we look at the various experimental constraints on the

muon-VDM interaction in the model. Two kinds of these experimental constraints are as follows:

• Big Bang Nucleosynthesis (BBN) constrains the DM physics by three generic ways, the

number of the excited relativistic degrees of freedom, energy injection due to annihilation

or decay of heavy particles, and particle catalysis of nuclear reactions. For the first case,

traditionally, this procedure is interpreted in terms of a bound on the effective number of

neutrino. Note that in our model, Xµ is neutral and cannot couple neutrino via charged

spin 1/2 mediators. In a more general way, this bound can be translated into a limit

on dark radiation. In [74], it have been shown that BBN constraint as a limit on dark

radiation which is massless or nearly-massless degrees of freedom that have the expected

scaling as the Universe expands ρdr ≈ a−4. They assume that the additional relativistic

component does not exchange energy with any SM species. This viewpoint can then be

easily applied to the thermally decoupled extra degrees of freedom. For this reason, in our

model in which new particles are not massless, the parameter space is not sensitive to the

number of the excited relativistic degrees of freedom. Nevertheless, constraints on 〈σv〉
from electromagnetic energy injection are proportional to temperature and dark matter

mass. In [75], it was shown that BBN procedure rules out DM annihilation to e+e− for

the DM mass region 30 MeV . mχ . 77 MeV.
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Figure 5: Scatter-points consistent with Anomalous Magnetic Moment (AMM) of the Muon and
DM relic density (RD).

• The observation of cosmic charge leptons have reported in wide range of the data (10 GeV-

10 TeV); Fermi-LAT has reported a measurement of the CR electron-positron spectrum

from 7 GeV to 2 TeV [76]. The PAMELA satellite experiment [77] released an abundance

of the positron in the CR energy range of 15 − 100 GeV. Also the results of a CR

electron-positron spectrum, between 10 GeV and 3TeV, have been reported based upon

observations with CALET [78]. The DAMPE collaboration [79, 80] has been presented a

measurements of the electron-positron spectrum in the energy range 25 GeV to 4.6 TeV.

These observations are both considered as signs of standard astrophysical sources or DM

annihilation. In our model, DM has mass smaller than 10 GeV then the parameter space

is not sensitive to these observations.

7 Combined Results

In this section, we present a combined analysis of all observational constraints described in

the previous sections. The constraints discussed are summarized by Fig. 5. As it is seen, for

narrow region in parameter space, all constraints are satisfied. Remarkable point is for light DM

(O (MeV)), implying we can have thermal DM which explain anomalous magnetic moment of

the muon.

To obtain the parameter space consistent with all constraints, i.e., muon anomalous magnetic

moment, DM relic density, and DM-electron direct detection constraints, first we solve Eq. (3.4)

with respect to gs:

gs =

√
12π2M2

X

mµ(3Mψ − 2mµ)
∆aψµ +

3Mψ + 2mµ

3Mψ − 2mµ
g2p (7.1)

Since ∆aψµ is positive, Mψ >
2
3mµ, and therefore gs > gp. Now, to obtain the parameter space
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consistent with DM relic density (ΩXh
2 < 0.12), we scan over random points for Mψ, gp with

the extra condition Mψ −me − ∆ < MX < Mψ −me (where MX is chosen randomly and we

put ∆ = 10−6) and for gs we use Eq. (7.1) where ∆aψµ is chosen randomly in a domain given by

Eq. (3.2). In this way, we obtain the parameter space which gives the correct value of both DM

relic density and muon anomalous magnetic momont. Finally we keep the points that are also

consistent with direct detection constraint. The result of our combined analysis is depicted in

Fig. 6.

8 Conclusions

SM has achieved great success for its high accuracy to describe electroweak and strong inter-

action. However, there remains problems such as DM which SM can not explain. In addition,

recent results about muon anomalous magnetic moment brings new challenges to the SM. The

4.2 σ discrepancy between experiment and SM prediction seems to indicate new physics be-

hind (gµ − 2) anomaly and gives possible hints to the BSM physics. In light of these results,

we consider a vector DM model with a leptophilic spinor mediator coupled to the SM charged

leptons. From phenomenological point of view, we probed the parameter space of the model

for light DM O (MeV) and sub-GeV spinor mediator. To conclude, the anomalies associated to

the muon physics can be successfully addressed in light VDM regime. If the anomalies are con-

firmed by forthcoming experimental analyses, our results show that the model can be surveyed

by DM-electron direct detection.
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