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Abstract - This paper proposes a surrogate approach which 
utilises an supervised neural network to significantly shorten the 
time required for thermal qualification of electrical machines’ 
insulation. The proposed approach is based on a feedforward 
neural network trained with Bayesian Regularization Back-
Propagation (BRP) algorithm. The network predicts the 
winding’s insulation resistance trend with respect to its thermal 
aging time. The predicted insulation resistance is evaluated 
against experimental measurements and an excellent match is 
found. Its trend is used for estimating the sample’s time to failure 
under thermal stress at various temperatures. The temperature 
index of the insulating material, predicted by the neural network, 
matches with an error of just 0.4% margin against the 
experimental findings. 

Index Terms — Aging time, Neural network, accelerated 
lifetime test, thermal life of insulation, and Insulation Resistance. 

I. INTRODUCTION 

 HE thermal lifetime evaluation of an insulation 
system is a procedure aiming at extrapolating its 
thermal endurance characteristic i.e. the expected 

lifetime with respect to the applied stress (temperature of the 
insulating material). Such evaluation is conventionally based 
on accelerated lifetime tests, which consist in stressing the 
insulation at higher temperatures than those experienced 
during normal operating conditions, with the aim of tuning a 
lifetime prediction model [1-4]. 

Different stresses such as ambient, electrical, thermal and 
mechanical stress can shorten the life of insulation systems in 
electrical machine. Thermal stress among all is a primary 
source of gradual insulation deterioration resulting in eventual 
winding failure. Hence, the need to evaluate a winding 
insulation system for its capability in maintaining the dielectric 
properties under thermal aging [5, 6]. Based on the Arrhenius 
law, Insulation lifetime models are suitable for evaluating the 
lifetime consumption of electrical machines operating with 
continuous-duty cycle, where the winding temperature is 
remains consistent throughout the working operation. 
Arrhenius law states that the insulation lifetime reduces by half 
for every 8-10°C increase in temperature [7-10]. In terms of 
insulation, the weakest link is generally denoted by the 
winding turn-to-turn enamel layer [11]. The faults in the 
electrical machines, related to the insulation, are mostly 
orginated with by a inter-turn insulation failure that results in 
over-temperaturesn[12]. This triggers the most severe failures 
and eventually lead to the machine outage. To avoid this 
condition, an accurate thermal lifetime evaluation of the 

insulation system required [13]. The paper proposes a novel 
method for the thermal lifetime evaluation of electrical 
insulation systems, in order to reduce the experimental test 
time of the thermal aging which are traditionally based on the 
regression method [14-16]. This task has been performed using 
supervised feedforward neural network trained with Bayesian 
Regularization Back-Propagation (BRP) algorithm [17]. The 
results predicted using BRP are then tested and compared with 
the experimental results in order to validate the efficiency of 
the new methodology. The paper is arranged as follows: 
section II presents an overview of test setup and procedure for 
lifetime evaluation. In section III, the theoretical background 
of the adopted neural network is presented. In section IV, 
considerations on the diagnostic parameters and the 
breakdown criterion are discussed. The predicted results, 
obtained from BRP are presented in section V, followed by the 
thermal lifetime modelling in section VI. Lastly, section VII 
concludes the paper. 

II. MEASUREMENT TEST SETUP 

A. Test Sample 
A twisted pair enameled wire with thermal class of 220 °C 

and a bare copper diameter of 0.4mm is used a test sample  as 
shown in Fig 1a. The wire is insulated using a double enamel 
layer of 25µm, namely a modified-polyester as base coat 
which is overcoated with polyamide-imide. The length of the 
sample wire is 200mm with 20 twists on it, whose insulation 
characterization is required ASTM standards D2307 has been 
followed for choosen sample’s arrangement [14]. Such wire 
topology is commonly employed for the windings of low 
voltage (< 1000 V) rotating machines [18, 19]. 

B. Test Procedure 
Accelerated aging test are performed for test procedures 

which are generally used for thermal qualification of electrical 
machines in which the samples are thermally aged with 
stresses above the insulation thermal class. According to the 
technical standard ASTM D2307, 10 twisted pair samples need 
to be used for each aging temperature. The aging process was 
carried out, in a controlled oven (Fig. 1b), at the aging 
temperature 290°C with an aging cycle of 8 hours (or 8h). In 
other words, after every 8h of thermal exposure, the samples 
were cooled down to ambient temperature and their dielectric 
properties were assessed. Parameters such as insulation 
capacitance (IC), dissipation factor, (Tanδ), and insulation 
resistance (IR) were measured using a MEGGER Delta 4000 
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Fig. 1. Measurement Setup (a) Specimen’s Holder in an unaged condition (b) 
MEMMERT UF260 Oven (c) Diagnostic Device MEGGER 4000 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Architecture of BP Neural Network 

as shown in Fig. 1c. Throughout the aging procedure, the 
samples are also subject to the AC hipot test, used for, 
eventually, detecting the insulation breakdown. Such test 
consists in assessing the wire’s dielectric withstand capability 
when a voltage from 0 to 500V is applied across the insulation 
layer, in step of 50V. In case a sample fails the AC hipot test, 
the time-to-failure is recorded. The aging procedure was 
carried out until the insulation breakdown is detected on all the 
considered samples [20]. 

III. NEURAL NETWORK 

A feedforward neural network is used, that was trained 
with Bayesian Regularization Back-Propagation algorithm, to 
predict the diagnostic properties of the samples. The algorithm 
selection was based on a trade-off study among 4 neural 
networks, the details of which can be found in [2]. 

A. Theoretical Background 
A BP neural network is a one-way multi-layer forward 

network as shown in Fig. 2. The network comprises of one 
input and output node, with one more hidden nodes implied, 
with no coupling between the nodes in the same layer. 
Transmission of input signals takes places from input layer in 
turn through the hidden layer nodes, and reaches the final 
output nodes at the last. Hence, the output of next layer is only 
influenced by the nodes of previous layer [22, 23]. Having 
advantage of a reliability and simple structure, this neural 
network is an outstanding tool for modelling of complex 
systems. When a certain pattern is fed in the input layer, the 
weighted sum ܹ of the input ܺ to the  ݆௧௛ node is represented 
by Equation (1) in the hidden layer calculating combined input 
to neuron. The weighted value from a bias node is represented 
by ߠ with an output value of 1. 

S௠ =෍ ௜ܹ,௠ ௝ܺ௠ 	൅ ௡ߠ	
௜ୀଵ 																													(1) 

Action potential of neuron is decided by an appropriate 
activation function (i.e. sigmoid function as shown in (2). The 
output value from activation function estimates the neuron’s 
output and is an input value for the neurons in the successive 
layer connected to it. ܱ௠ = ܺ௡ = 	 11	 ൅ 	݁ିௌ೘ 																												(2) 
Considering the predicted activation value of the output node, 
n, is On and the targeted value is tn, then the difference between 
them can be calculated as given by (3). ߂௡ = ௡ݐ	 	− 		 ௡ܱ																																				(3) 
(7) is used to alter the weight, Wm,n, between the node m and 
output node, n, where ΔWm,n is the variation in the weight 
between nodes m and n and lr indicated learning rate. ߂ ௠ܹ,௡ = 	݈௥ܺ௡Ω௡																																		(4) 
Ωn is the error signal for node in the output layer and can be 
represented by (8). Ω௡ 	= 	௡߂	 ௡ܱ(1	 − 	 ௡ܱ)																									(5) 
B. Network Training 

To train the BRP network, the Bayesian regularization 
algorithm is used. In this case, the training is carried out on a  
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Fig. 3. Selection of Diagnostic Parameter for Prediction Purpose 

 
 

 
 
 
 
 
 
 
 
 

Fig. 4. %IR of each sample at 290°C themal exposure 

given set of samples having the form (Ri + Ri+1), where Ri 
indicates the insulation resistance value at aging time ti 
whereas, Ri+1 is the future or predicted value of the insulation 
resistance at ti+1. 

C. Prediction Approach 
For every sample, the future value of diagnostic parameter 

Ri+1 (i=1,2,3,4….n) can be predicted at a particular aging time 
ti+1 by performing the training on a set of data having the input 
parameter aging time as (ti, ti+1) and output parameter as 
insulation resistance (IRi, IRi+1). The training is repeated from 
the beginning for each sample. To improve the prediction 
results, the first value is omitted from the dataset each time a 
future value is predicted. In this way, the network can be fed 
with an equal number of data points throughout and the 

algorithm was trained on the latest target value which helped 
in the prediction of more accurate future values. With the 
dataset containing IRi . . . IRn, the network was trained until 7th 
aging cycle (i.e. 8th value or 56h learning time) to predict the 
future value IRi+1 (i.e. 9th value). However, in order to get the 
Ri+2 (10th value), the latest predicted value Ri+1 (9th value) was 
included in the dataset (IRi . . . IRi+1). The first value of the 
dataset was omitted simultaneuously when each future value 
was predicted. 

IV. SELECTION CONSIDERATIONS 

A. Selection of Diagnostic Parameter for Prediction 
Using the device called “MEGGER Delta 4000”, 

diagnostic parameters such as , IC,Tanδ and IR were measured 
for a random sample (i.e. S1) aged at 290°C. Fig. 3 illustrates 
the predictive results of differential IC (∆IC),Tanδ and IR 
using BRP neural network. The ∆IC is estimated using (6), 
where IC500 is the IC measured at 500V and IC100 is the IC 
measured at 100V [3, 4]. As can be seen in Fig. 3 the prediction 
results, using neural network, gives the closest match for IR 
against the measured data as opposed to other diagnostic 
parameters. Therefore, the “IR” is selected as diagnostic 
parameter for prediction purpose i.e. to predict and build the 
lifetime model of insulating material. 
ܥܫ∆%  = 100 × ହ଴଴ܥܫ − ହ଴଴ܥܫଵ଴଴ܥܫ 																									(6) 
B. Breakdown Criterion 

The breakdown criterion was made, at 290°C thermal 
exposure, using time-to-failure of each sample. Fig. 4 shows 
%IR of all the samples that was caculated with respect to its 
unaged IR value by using (7), where, IRzero is the unaged value 
of IR and IRendlife is the IR value recorded one cycle before 
insulation breakdown had occurred, at 500V applied voltage. 
The %IR corresponding to the sample’s mean time-to-failure 
is equal to 87.22% (using (8)) and therefore chosen as 
insulation’s breakdown criterion which will be used, to predict 
the time-to-failure, for thermal exposures other than 290°C. %ܴܫ = 100 × ௭௘௥௢ܴܫ − ௭௘௥௢ܴܫ௘௡ௗ௟௜௙௘ܴܫ 																									(7) 

௕௥௘௔௞ௗ௢௪௡ܴܫ = 1ܰ ෍%ܴܫ௡
௞ୀଵ 																																(8) 

V. RESULTS & DISCUSSIONS 

For prediction analysis, the test procedure was started and 
completed at maximum thermal exposure (i.e. 290ºC) until a 
breakdown in every test sample was perceived, in order to set 
a breakdown criterion for other thermal exposures. The test 
procedure continued for 250ºC and 270ºC aging temperatures 
until the 7th aging cycle, where, the test procedure was 
intentionally ceased to predict the life of each sample using 
neural network approach. Once the prediction phase was  
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Fig. 5. IR Prediction Results (a) at 250°C thermal exposure, S10 (b) at 270°C 
thermal exposure, S1 (c) at 290°C thermal exposure, S5 

completed, the test procedure was resumed and completed for 
valdiation purpose. The IR of every sample was predicted 
using the methodology discussed in the preceding section. The 
BP network was trained until the 7th aging cycle (i.e. total 8 
data points including unaged value) and the samples whose 
failure was detected before the 7th aging cycle were discarded 
and hence, not included in the prediction analysis. To estimate 
the time-to-failure of each sample at various thermal 
exposures, the BP network was designed to predict the IR 
values for longer time span (i.e. 2400h, 1008h for thermal 
exposures of 250°C and 270°C respectively). A limited 
number of thermal aging cycles were experimentally carried 
out on two sets of 10 samples each, at thermal exposures of 
250°C and 270°C. The recorded IR values were used for 
training the neural network, with the aim of predicting the 
samples’ insulation breakdown, without actually carrying-out 
the tests until all samples were “dead”. It is worth recalling that 
a sample is considered as “dead” when a %IR variation of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Time-to-Failure (a) at 250°C thermal exposure (b) at 270°C thermal 
exposure(c) at 290°C thermal exposure 

87.22%, with respect to its unaged value, is reached. Fig. 5a to 
Fig. 5c shows the results of the predicted IR trend for one 
sample aged at 250°C, 270°C and 290°C respectively. As 
clearly visible in Fig. 5, the neural network results are 
essentially able to match the experimental measurements, 
providing an excellent IR estimation. At this point, it is 
possible to employ the network’s prediction to estimate the 
time-to-failure of all 30 samples at three thermal exposures, 
which are reported in Fig. 6a to Fig. 6c. 

VI. THERMAL LIFETIME MODEL 

For a constant mode of operation, insulating material used in 
electrical machines is characterised by a constant winding 
temperature throughout their working operation [24]. In this 
case, for low voltage electrical machines, thermal stress is the 
most recognised aging factor that gradually deteriorates the 
insulation’s lifetime. Therefore, a thermal lifetime model, based 
on the Arrhenius Law, is developed in this section. According

0

40

80

120

160

200

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

T
im

e-
to

-F
ai

lu
re

 (h
)

Samples at 290°C Thermal Expoure

Coventional Method

Neural Network Method

(c)

0

1

2

3

4

5

0 480 960 1440 1920 2400

In
su

la
tio

n 
R

es
is

ta
nc

e 
(G
Ω

)

Aging Time (Hours)

Predicted Measured

Trained IRbreakdown

0

1

2

3

4

5

0 144 288 432 576 720 864 1008

In
su

la
tio

n 
R

es
is

ta
nc

e 
(G
Ω

)

Aging Time (Hours)

Measured Predicted

Trained IRbreakdown

(b)

0

1

2

3

4

5

0 16 32 48 64 80 96 112 128

In
su

la
tio

n 
R

es
is

ta
nc

e 
(G
Ω

)

Aging Time (Hours)

Predicted Measured

Trained IRbreakdown

0

600

1200

1800

2400

3000

3600

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

T
im

e-
to

-F
ai

lu
re

 (h
)

Samples at 250°C Thermal Exposure

Coventional Method

Neural Network Method

0

120

240

360

480

600

720

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
T

im
e-

to
-F

ai
lu

re
 (h

)

Samples at 270°C Thermal Exposure

Coventional Method

Neural Network Method

(b)

(a) 

(c) 

(a)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Weibull  Probability Plot (a) 250ºC Themal Exposure  (b) 270ºC Themal Exposure (c) 290ºC Themal Exposure

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Comparison of Insulation Life vs Temperature Charateristic on Linear 
Graph 

to the Arrhenius law [8], the thermal life of a solid insulating 
material is given by (9) ܮ =   (9)																																					஻/்݁ܣ
where, A and B are material constants, whilst, L is the thermal 
life of inuslating material in hours at operating temperature T 
in Kelvin. Using the time-to-failures of Fig. 6, the Weibull 
Probability Distribution, with a 95% confidence interval, is 
plotted at all three thermal exposures(Fig. 7). In order to 
predict the temperature index of the insulating material, using  

TABLE I 

COMPARISON OF 20% CUMULATIVE PROBABILITY FAILURES 
AGING TEMPERATURE 250ºC 270ºC 290ºC 

Conventional Method 1084.1 279.1 92.9 
Proposed Method 1092.0 270.6 99.0 
Relative Error (%) -0.73 3.05 -6.57 

 
TABLE II 

MATERIAL CONSTANTS AND TEMPERATURE INDEXES 
PARAMETERS A B T.I (ºC) R 

Conventional Method 1.691e10 -0.06626 205.97 0.9988 
Proposed Method 2.218e10 -0.06731 206.79 0.9986 

both conventional and proposed method, the inuslation 
lifetime corresponding to the 20% cumulative probability 
failures are extracted for all three thermal exposures which are 
illustrated in Table I. It should be noted that the lifetime 
models can be made with different failure percentile, 
depending on the reliability requirement of the specific 
applications [25]. From Table I, it can be seen that the lifetime 
of the insulation, predicted by the BP network, is consistent 
with the one obtained from the experimental test procedure. 
From the attained results, the higest error is -6.57% in the case 
of 290ºC thermal exposure, whereas, the minimum error of -
0.73% is achieved at 250ºC thermal exposure which shows the 
effectiveness of the proposed method, in terms of shortening 
the test procedure of lifetime evaluation of insulating material. 
Once the samples’ lifetime corresponding to the chosen 
reliability requirement is obtained from Weibull Distribution, 
the thermal life of insulating material is extrapolated, by using 
MATLAB curve fit exponential tool, to a lifetime of 20,000 
hours (i.e. standard lifetime required for electrical machines), 
whose constants A and B are listed in Table II, for both 
conventional and proposed methods of lifetime evaluation. As 
can be observed from Table II, the proposed approach is 
actually able to predict the temperature index of the material 
which has made an excellent agreement, giving the percentage 
error of just 0.40% when compared to a conventional method 
of lifetime evaluation. Hence, by adopting the proposed 
approach, a significant amount of testing time can be saved 
since the thermal exposures do not need to be performed until 
the insulation breakdown is detected. 
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VII. CONCLUSIONS 

Fast and accurate tool is developed in this paper, using the 
neural network approach, to predict the lifetime of insulating 
material used in electrical machines. The proposed approach 
employes a supervised neural network that significantly 
shortens the time required, in accelerated aging tests, for the 
thermal qualification of electrical machines’ insulation. It 
predicts the trend of insulation resistance with respect to its 
aging time. The breakdown criterion was defined to evaluate 
the time-to-failure of each sample which was then used to 
build the thermal lifetime model of the insulation 
corresponding to 20% cumulative probability failures. The 
temperature index was determined through both conventional 
and proposed approaches and an excellent agreement was 
found, with an error of just 0.4%. 
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