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Abstract—An explosive increment of data and a variety of data 
analysis make it indispensable to lower power and cooling costs 
of cloud datacenters. To address this issue, we investigate the 
thermal impact of I/O access patterns on data storage systems. 
Firstly, we conduct some preliminary experiments to study the 
thermal behavior of a data storage node. The experimental 
results show that disks have ignorable thermal impacts as 
processors to outlet temperatures of storage nodes. We raise an 
approach to model the outlet temperature of a storage node. The 
thermal models generated by our approach gains a precision 
error less than 6%. Next, we investigate the thermal impact of 
data placement strategies on storage systems. We compare the 
cooling cost of storage systems governed by different data 
placement schemes. Our study shows that evenly distributing 
the data leads to highest outlet temperature for the sake of 
shortest execution time and energy efficiency. According to the 
energy consumption of various data placement schemes, we 
propose a thermal-ware energy-efficient data placement strategy. 
We further show that this work can be extended to analyze the 
cooling cost of data centers with massive storage capacity. 
 
Index Terms—Thermal, model, storage system, cloud 

 

I. INTRODUCTION 

Big data, which is composed of a collection of huge 

and complex data sets, has been positioned as must have 

commodity and resource in industry, government, and 

academia. Processing big data requires a large-scale 

storage system, which increases both power and cooling 

costs. In this study, we investigate the thermal behavior 

of real storage systems and their I/O access patterns, 

which offer a guideline of building energy-efficient cloud 

storage systems. 

The cooling consumption of data centers can be 

considerably reduced by using an efficient thermal 

management for storage systems. However, disk is not 

considered in traditional thermal models for data centers. 

In this paper, we investigate the thermal impact of hard 

disks and propose a thermal modeling approach for 

storage systems. In addition, we estimate the outlet 

temperature of a storage server by applying the proposed 
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thermal model, in which the activities of both processor 

and disk are analyzed. We also study the cooling cost of 

data storage node by applying different data placement 

schemes, and propose a thermal-aware energy-efficient 

data placement strategy. 

Motivations. Our proposed thermal model for next 

generation storage systems is motivated by the following 

five factors: 

1) The continuously increasing cooling and energy 

costs of broad-scale storage systems; 

2) The effect that the temperature may have on the 

cooling costs of data storage system; 

3) The increasing importance of thermal monitoring 

cost reduction, 

4) The capability to estimate cooling costs during 

datacenter planning phase, and 

5) The shortage of studies on the impacts of disk 

activities on outlet temperatures of data nodes. 

Due to high energy and cooling consumption in large-

scale storage systems, the electricity costs of a data center 

for four years approach the costs of building a new 

datacenter [1]. Improving the energy efficiency of storage 

systems, as well as cooling systems, has attracted much 

attention for the recent years. 

Increasing evidence indicates that cooling cost is a 

major contributor to the operational cost of data centers 

[1], [2]. The power and cooling infrastructure that 

supports IT equipments have consumed up to 50% of 

total energy cost in a data center [2]. As existing research 

reports, the energy efficiency of data centers can be 

effectively improved by reducing energy dissipation [3], 

[4]. In particular, maintaining lower outlet temperatures 

for servers or applying effective optimization on air 

recirculation can decrease energy costs of cooling 

systems in data centers [5]. Various workload placement 

strategies that maintain balanced temperature across data 

centers through workload management are proposed [3] 

[4].The experimental results presented by Moore et al. 

show that setting a low outlet temperature of data nodes 

can save up to 40% of energy consumption [3]. Lowering 

the temperature of hard disks leads to conservation of the 

energy consumption in cooling systems, but also increase 
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of the disk reliability and extension the lifetime of the 

storage systems [6], [7]. 

There have been some researchers focusing on 

constructing energy models for storage systems in the 

past decades. A power consumption model of storage 

nodes running under certain workload was proposed by 

Allalouf et al. [8]. However, few thermal models of 

storage systems have been presented in literature. The 

impact of disk temperatures on the energy efficiency of 

cool systems in data centers has not been fully explored. 

A traditional method to monitor system temperature is 

to use temperature sensors in data nodes. For example, 

two temperature sensors are needed to collect the inlet 

and outlet temperatures of a data node. If interior 

temperatures of the data node are required, additional 

sensors should be deployed in the chassis. Although it is 

practical for temperature collection in small-scale storage 

systems, it becomes a considerably expensive solution 

when the storage system consists of thousands of nodes. 

Deploying a bunch of sensors in a data center is time-

consuming. Thus, designing thermal models is a 

promising alternative for monitoring the temperatures of 

storage systems. 

Building a data center is a large investment for 

companies. The planning and cost estimation of the 

investment are critical to decision makers. Cooling and 

power consumption are two primary contributors to 

maintenance costs that have to be calculated during the 

planning process. Thus, accurate estimation of cooling 

and energy consumption is a key guideline during the 

planning phase of constructing a data center. Thermal 

models and simulators could be used to make decisions 

during the design period. 

The outlet temperature of storage systems is affected 

by a number of factors. A research investigates the 

impact of the inlet temperature and CPU utilization on the 

outlet temperature of a data node [5]. Another research 

presented a temperature forecast model by using 

historical temperatures and air flow measurements [9]. 

Researchers also investigated the relationship between 

seek times and disk temperatures and demonstrated that 

the disk temperature is affected by platters [10]. Since a 

storage data server can be comprised of more than 100 

hard disks [11], the outlet temperatures of data nodes can 

be significantly affected by these disks. Unfortunately, 

there is a lack of study on the impacts of disks on outlet 

temperatures of a data node. 

Contributions. In this paper, we introduce a thermal 

modeling approach that is able to estimate the outlet 

temperature of a storage server (a.k.a., data node) based 

on processor and disk activities. We make the following 

contributions. First, a thermal profile of a storage server 

that contains multiple hard disks is created. The profiling 

results are collected by launching I/O intensive workloads, 

which are generated by Postmark [12]. The disk 

temperatures, as well as the inlet and outlet temperatures, 

are recorded while varying the workload. Second, we 

create a thermal model that I s able to estimate inlet/outlet 

temperature difference by using inlet temperatures and 

workloads. The model can derive outlet temperatures 

from CPU and dis k workload. Finally, we study the 

impact of different data placement schemes on cooling 

cost, and propose a data placement strategy. 

Organization. The rest of this paper is organized as 

follows. Section 2 provides related research issues. 

Section 3 illustrates four groups of preliminary 

experiments and observations. We generate linear 

regression model for each workload scenario. In Section 

4, we propose a thermal model for storage systems and a 

framework for estimating the cooling cost of data nodes. 

In Section 5, we discuss the impact of data placement on 

cooling costs and propose a thermal-aware data 

placement strategy. Finally, Section 6 concludes the 

paper. 

II. RELATED WORK 

A. Energy-Efficient Data Centers 

Increasing number of energy efficiency studies in 

datacenters have been presented [13], [14]. A study in 

2000shows that the total energy consumption in data 
centers goes up to approximately 1.2% of U.S. energy 

consumption [15]. The rapid growth of computing and 
storage capacity is one of the reasons behind the striking 

energy consumption in data centers. 

A variety of energy-saving approaches have been 

proposed for energy cost reduction. Measurement and 

management technologies (MMT) were designed by 

Bieswanger et al. for energy-efficient data centers [16]. 

The MMT model relies on real measurements, in which 

run-time analysis of energy consumption can be provided 

by deploying sensors in data centers. Based on these 

analytical data, an optimal schedule in terms of energy 

consumption is selected for data center operation. 

There were 22 data centers benchmarked and observed 

by Greenberg et al. In their study, the annual energy cost 
per square foot in a typical data center is more than 15 

times of an office building [17]. In addition, a set of best 

practices, such as air management, optimizing the size of 

data centers and utilizing chilled water for cooling, were 

examined. The experimental results indicate that energy 

savings in data centers is potentially achievable. Verma et 

al. proposed a Sample-Replicate-Consolidate Mapping 

(SRCMap) approach that enables energy proportionality 
for dynamic I/O workload [18]. In this approach, a 

minimal number of physical volumes are activated and 

used for duplicating a selected subset of data in other 
volumes. When serving I/O requests, these quests are 

redirected to replicas on active volumes. Other volumes 
can be kept in sleep mode as long as possible. According 

to their experiments, significant power consumption 

reduction of enterprise storage systems can be achieved 
by using SRCMap. 

B. Green Cloud 

Energy-efficient solutions are proposed in cloud 

computing as well. Key research challenges were 
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identified when Berl et al. extended existing energy-

efficient techniques to cloud computing environments 

[19]. A dynamic resource provisioning and allocation 

algorithm for energy-efficient management on cloud 

computing environments was proposed by Buyya et al. 

[20]. In their study, the quality-of-service expectations 

and characteristics of device power usage were taken into 

account in resource allocation optimization in terms of 

energy consumption. They discovered that significant 

cost savings can be achieved in cloud computing. 

Solutions that are able to reduce energy consumption 

in the virtual machine (VM) environments have been 

presented [21], [22]. Liu et al. proposed a GreenCloud 

architecture, in which the power consumption can be 

minimized without penalty of performance degradation 

[21]. Based on the analysis of data from online 

monitoring, they proposed a VM placement algorithm 

that minimized the energy costs via VM migrations. The 

experimental results show that GreenCloud can save up 

to 27% of energy. 

Ye et al. explored energy-efficient techniques on 

virtual machine environments [22]. Since existing 

energy-efficient techniques cannot be simply applied in 

VM environments due to the difference of semantic 

contexts, on which VM and VM monitor are running, 

they proposed a mechanism that is able to increase energy 

efficiency of a hard disk by reducing the number of spin-

ups and increasing disk sleep time. Their simulation 

results indicate a 14.8% decrease on energy consumption 

with only 0.5% penalty on execution times. 

Kaushik and Bhandarkar designed greenHDFS that 

integrates energy conservation techniques into HDFS 

[23]. HDFS is classified into hot and cold zones by data 

popularities. Files are moved back and forth between the 

two zones based on the time stamps of last accesses. 

Because the servers in the cold zone are turned down to 

conserve energy consumption and the ones in the hot 

zone keep working, the performance of HDFS is not 

significantly compromised. Simulation results show that 

$2.4 million can be saved annually if greenHDFS is 

applied at Yahoo. 

C. Thermal-aware Resource Management Strategies 

As a major contributor to the power costs of data 

centers, the power consumption of cooling systems 

becomes an important issue, on which a number of 

studies primarily focus. Thermal-aware resource 

management strategies were proposed to optimize the 

cooling costs by balancing the temperature distribution 

among data nodes in datacenters. 

A thermal-aware load balancing framework that 

applies local and regional policies for dynamical 

workload distribution was proposed by Moore et al. [3]. 

According to their simulations, keeping a uniform 

temperature distribution, promoted by an asymmetric 

workload placement, is able to reduce energy 

consumption and improve equipment reliability. Tang et 

al. studied recirculation process and proposed a task 

scheduling algorithm, XInt, for homogeneous data 

centers [5]. Under the help of XInt, there circulation costs 

can be minimized by balancing the workload within the 

data center. Motivated by an observation that cooling 

costs significantly depend on peak inlet temperatures, 

Tang et al. designed a task assignment policy, MPIT-TA, 

that is able to lower the peak inlet temperature, thereby 

minimizing the cooling costs [24]. In their experiments 

that simulate a small-scale data center, MPIT-TA offers 

at least 20% of cooling energy savings. 

Other temperature-aware load-balancing strategies 

were demonstrated in [25] [26]. In these studies, CPU 

temperatures are limited to a customized threshold by the 

strategies for energy conservation. CPU voltage and 

frequency would be dynamically adjusted with execution 

time penalty if CPU temperatures exceed a specific 

threshold. 

Thermal-aware resource management techniques 

which focus on the thermal impact of processors have 

been widely studied. However, the impact of disks on 

thermal management has not been fully explored. To 

provide extensive data capacity, each data node may 

deploy multiple disks. Under I/O-intensive workloads, 

disk utilization will be pushed to extremely high. 

Appropriately managing I/O workload may potentially 

reduce the cooling costs of data centers. 

D. Disk Energy Consumption and Temperature Models 

Models that analyze disk energy consumption were 

presented in [8], [27], [28]. Zedlewski et al. built a 

simulation environment, Dempsey, for modeling disk 

power consumption [28]. In this environment, 

performance and power consumption parameters for a 

disk can be derived without the disk specifications from 

the manufacturer. 

There have been some researches working on disk 

temperature modeling. For instance, research on 

modeling the temperature of disk drives has been 

conducted in the late 1980s [29], and Eibeck et al. 

proposed a thermal model that predicts transient 

temperatures of IBM 5-1/4-in fixed disk drives [30]. 

Gurumurthi et al. constructed an integrated disk drive 

model to investigate the thermal behavior of a hard disk 

[31]. The model estimated the heat generated by internal 

drive air, spindle motor, the base and cover of disk, the 

voice-coil motor, and disk arms. Kim et al. studied the 

relationship between seek times and disk temperatures, 

and explored the thermal behaviors of disks by varying 

platter types and number of platters [10]. Later, Tan et al. 

evaluate transient temperatures during frequent seeking 

by using a three-dimensional model [32]. 

Nevertheless, the impact of workloads on disk 

temperatures is missing. And it is worth noting that the 

above studies model disk temperatures in a fine-grained 

level. In order to estimate the temperature of a new disk, 

one has to acquire detailed structure or device 

specification of the disk. In addition, previous energy 

consumption models ignore the impact of disk 
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temperatures on cooling systems. In this paper, we pay 

attention to the modeling of disk temperatures from a 

coarse-grained perspective. We comprehensively evaluate 

the impacts of CPU and disk temperatures on outlet 

temperature of a data node. 

III.  THERMAL IMPACTS OF DISK I/O 

Various components contribute to outlet temperatures 

of data nodes (e.g., CPU, disk, motherboard, and ambient 

temperatures). The thermal impact of CPU has been 

widely investigated in prior studies ([24]-[26]). However, 

the thermal impact of disk activities on data nodes 

remains an open issue. In this section, we conduct four 

experiments to characterize the impacts of CPU and disks 

on the outlet temperatures. 

A. Testbed 

The testbed is equipped with four Intel(R) Xeon 2.4 

GHz CPU, 2.0 GBytes RAM, and three 160 GBytes 

SATA disks deployed in a disk array. The detailed 

information are summarized in Table I. We use the inner 

sensors to monitor the CPU temperatures and acquired 

the temperature data by lm-sensors [33]. Disk 

temperatures are monitored by its interior temperature 

sensor and could be acquired by hddtemp [34]. The inlet 

and outlet temperatures are collected by using an infrared 

thermometer. 

TABLE I: TESTBED CONFIGURATIONS 

Hardware Software 

4 * Intel(R) Xeon 2.4 GHz CPU X3430 
Ubuntu10.04 
Linux kernel 2.6.32 

1 * 2.0 GBytes of RAM lm-sensors [33] 

3 * WD 160 GBytesSata disk 
(WD1600AAJS-75M0A0 [35]) 

hddtemp [34] 

B. Impact of CPU and Disks on Inlet/Outlet 

Temperatures 

To investigate the relationship between the workload 

of CPU/disks and the inlet/outlet temperatures, we 

conduct preliminary experiments, in which a combination 

of full utilization and idle state of CPU and disks are 

considered. CPU utilization is calculated as a percentage 

of time that CPU is processing instructions; a disk’s 
utilization is measured as a percentage of time during 

which I/O requests are processed by the disk. Both CPU 

and disk utilizations are monitor by iostat system 

command. 

TABLE II:  CONFIGURATION OF THE PRELIMINARY EXPERIMENTS 

Experiments Workload 
Power (W) 

CPU Disk 

1 idle idle 73 

2 high idle 135 

3 low high 85 

4 high high 142 

The environment temperature (i.e., CRAC temperature) 

is set to 23.2 °C. The configurations of the experiments 

are shown in Table II. stress [36] is used to generate high 

workload on CPU, which drives the CPU running under 

extreme high utilization. Postmark [12] is launched to 

generate I/O-intensive tasks. We use a power meter to 

measure the power consumption (or computing cost) of 

the data node. 

1)  Low CPU and low disk utilizations 

In the first experiment, both CPU and disks are staying 

in idle and the utilizations of CPU and disk are very low. 

The experimental results are shown in Fig. 1.  

 

 

 
Fig. 1. Temperature evaluation under the low CPU and low disk 
utilizations. 

We observe that the inlet temperature of the data node 

changes between 24.8 °C and 30.6 °C, which lead the 

outlet temperature to vary accordingly. When the outlet 

temperature increases, the inlet temperature also raises 

due to heat recirculation around the data node. 

On average, we find a discrepancy of 3.87 °C between 

the inlet and outlet temperatures, ranging anywhere 

between 3.2 °C and 5.0 °C. In this case, the discrepancy 

between inlet and outlet temperatures is expressed as a 

constant. Thus, we have: 
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      ( )                                 (1) 

Compared with real measurements, we demonstrate 

that this model has a low precision error of 1.00%. 

2)  High CPU and low disk utilizations 

In the second experiment, we keep CPU extremely 

busy (i.e., CPU utilization approaches 100%) while 

making disks remain in the idle state.  

Fig. 2 shows that the CPU temperatures go up very 

quickly with an average increment of 20°C in 4 minutes. 

After that, the temperatures of the four CPU cores are 

steadier, with their temperatures between 53 °C and 

57 °C. Since disks are idle, there are no big changes for 

the disk temperatures. Discrepancy between the inlet and 

outlet temperatures increases about 2°C gradually (i.e., 

from 4.6°C to 6.6°C) in the first 600 seconds, and then 

maintains steady in the following 1200 seconds. We 

denote the inlet and outlet temperature difference as Tdiff2, 

where t is the time at which the data node has run under 

extremely high CPU utilization and disk is sitting idle. 

We generate a linear-regression model to fit the 

difference between inlet and outlet temperature:       ( )   {                                                                       (2) 

The precision error of this model is as low as 4.30%. 

 

 

 

 

 
Fig. 2. Temperature evaluation under the high CPU and low disk 
utilizations. 
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Fig. 3. Temperature evaluation under the low CPU and high disk 
utilizations. 

3) Low CPU and high disk utilizations 

In the third experiment, we keep a low CPU utilization 

while increasing disk utilization up to 

approximately100%. We use Postmark to launch three 

I/O-intensive tasks, each of which drive a single disk to 

be nearly fully utilized. Fig. 3 shows the temperature of 

the four CPU cores frequently fluctuates between 31 °C 

and 35 °C because the CPU issues I/O requests. 

Nevertheless, the CPU utilization remains fairly low. In 

this case, the thermal impact of CPU is negligible. In 

contrast, we observe a slowly increase of disk 

temperatures at the rate of 2 °C per 1000 seconds. The 

discrepancy between inlet and outlet temperatures can be 

modeled as follow:       ( )   {                                                                          (3) 

This model exhibits a small precision error of 5.46%. 

4) High CPU and high disk utilizations 

In the final experiment, we launch CPU-intensive task 

and disk I/O-intensive tasks at the same time. Both CPU 

and disks utilizations are pushed to be fully utilized, as 

shown in Fig. 4. We observe an increment of 20 °C for 

CPU temperature at the beginning, and it goes back to its 

initial temperature after the CPU-intensive task is 

completed. 

Thus, we investigate the thermal behaviour of the data 

node before the CPU-intensive task is finished. We 

observe that the inlet and outlet temperature difference 

ranges between 4.3°C and 7.5°C. In the first 660seconds, 

the inlet/outlet temperature discrepancy rises rapidly and 

then does not fluctuate much. We could conclude from 

the experiment that CPU and disks have significant 

impact on the outlet temperature, and the discrepancy 

between inlet and outlet temperatures can be expressed as 

follow with a precision error of 5.77%.       ( )   {                                                                    (4) 

Cold-start time is a time period in which a component 

is heating up from an initial temperature to a steady 

temperature in the active state. From Fig. 4, we also 

observe that the average cold-start time for the three disks 

is more than 1200 seconds, which is much larger than the 

cold-start time of CPU (i.e., 100 seconds). 

 

 

 

 
Fig. 4. Temperature evaluation under the high CPU and high disk 
utilizations. 

IV.  THERMAL MODELS 

Accurately modeling the energy consumption 

relationship between computing and cooling systems is 

extremely challenging. Cooling costs of data storage 

systems is determined not only by the cooling settings 

(e.g., inlet temperatures and cooling equipment 

placement), but also by heat dissipated by computing 

facilities. CPU and disks are major components and heat 

contributors in data nodes. In this section, we develop a 

thermal model which aims at estimating outlet 

temperatures by considering the impacts of both CPU and 

304

Journal of Communications Vol. 9, No. 4, April 2014

©2014 Engineering and Technology Publishing



disks. In addition, our thermal model could be used to 

predict the impact of CPUs and disks on cooling cost by 

combining a coefficient of performance (COP, for short) 

model that estimating cooling costs by CRAC supply 

temperature and computing cost of IT facilities [3]. 

A. Framework 

Fig. 5 displays our thermal-modeling framework, 

which consists of three components, namely, inlet/outlet-

temperature model, computing cost model and COP.  

 
Fig. 5. Framework of estimating cooling cost. 

The inlet/outlet-temperature model builds up the 

relationship between inlet and outlet temperatures by 

profiling analysis. In addition, given an outlet 

temperature, our model estimates inlet temperatures 

under certain workloads. The computing cost model 

estimate the power consumption of data nodes according 

to the utilization of the components. The COP model 

estimates cooling costs by considering inlet temperatures 

offered by the inlet/outlet-temperature model. 

The main contributions of this framework are: (1) a 

thermal model that characterizes the relationship between 

inlet/outlet temperature difference and the workload of a 

data node and (2) cooling costs estimation of data storage 

nodes. 

B. An Inlet/Outlet Temperature Model 

Considering CPU and disk utilizations, we classify 

workload of a node into several basic types (i.e., see 

Section III.B for a combination of high and low CPU and 

disk load). The previous section shows a new modeling 

approach, in which the inlet/outlet temperature difference 

is derived from CPU and disk load. 

When the CPU, disk, inlet temperatures are changing, 

we apply the proposed modeling approach to refine the 

thermal model. When CRAC supply temperature is 

changed, our approach can be used as a guideline to build 

thermal models. For any application, the workload of a 

node can be decomposed into a number of sub-periods, in 

which the node runs under various combinations of 

environment temperature and CPU/disk load. 

We use the following linear regression model to fit the 

trend of the inlet/outlet temperature difference:      ( )   {                                 (5) 

, where t is the time period measured in second, a, b, c are 

the parameters generated by our modeling approach. 

Given workloads and a number of sub-periods T = 

{t1…tn}, we derive the outlet temperature as follow: 

     ( )   ∑      (  )                              (6) 

C. Computing Cost Model 

The electrical power consumption of IT facilities has 

been demonstrated to be proportional to their utilizations. 

Thus the computing cost of a data node could calculated 

as following: by taking the workload as a input, the 

utilization of CPU and disks could be determined; then 

we generate the computing cost by considering the 

utilization of each component of the data node. Thus, the 

computing cost of a data node which has n components 

could be expressed as follow:    ∑ (        ( )        (        ( )              ( )))                (7) 

, where   is the total computing cost of a data 

node,      ( ) represents the utilization of the ith 

component,        ( ) is the power of ith component when 

it is fully utilized and         ( ) is the power of the ith 

component when it maintains in idle state. 

D. The COP Model 

The energy consumption of a data node is contributed 

by the electrical energy cost of the node and the cooling 

cost. We use COP (i.e., the Coefficient of Performance 

model), described in [3], to compute the cooling cost. 

 
Fig. 6. Coefficient of the performance curve for the chilled-water CRAC 
units at the HP labs utility data center [3] 

Fig. 6 plots COP values that increase with the supply 

temperatures of CRAC. Larger COP value indicates 

higher energy efficiency.    ( )                               (8) 

In 8, COP represents the ratio of heat removed to the 

energy cost of the cooling system for heat removal. T is 

the supply temperature of CRAC. If we use PC to 

represent the energy cost of IT facilities in data center, 

and PAC to represent the energy cost of the air-conditioner, 

then cooling cost is inversely proportional to the COP 

value.          ( )                         (9) 

Given the power of a data node, we can calculate the 

energy dissipation. The total energy cost of the data node 

could be expressed as follow: 
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       ∑ (  ( )    ( )   (      ( )))                 (10) 

, where j represents small time period in the execution 

process,       ( ) is the inlet temperature in the jth time 

period. We conduct some case studies and show how to 

apply our model to estimate the total energy cost under 

different workload scenarios in a previous work [37]. 

Experimental results show our thermal model could 

accurately estimate the inlet/outlet temperature difference. 

V. DATA PLACEMENT STRATEGIES 

A. Thermal Impacts of Data Placement 

Our evidence shows that disks have non-negligible 

thermal impacts on data nodes (see Section III). In this 

section, we demonstrate that data placement strategies 

can significantly affect thermal performance of data 

nodes. In this data placement study, we use the same 

testbed described in Section III. The number of disks in 

this group of experiments is set to two and three, 

respectively. 

1) The two-disk case 

In the first group of experiments, two disks are 

configured in the HP server. It is noteworthy that both 

disks are placed inside the node’s chassis rather than an 

external disk array. These two disks are of the same type. 

Compared with disk 2, disk 1 is kept closer to the fan. 

The initial disk temperature of disk 1 is 36 °C, and the 

initial disk temperature of disk 2 is 38 °C. Two I/O-

intensive tasks are running on the two disks. We leverage 

Postmark to create 100 files, the size of which ranges 

anywhere between 1 to 100 MBytes. 

Each of the two tasks issues a total of 2,000 I/O 

requests to access the files stored on the disks. We set up 

three scenarios summarized in Table III. In scenario 1, 

the two tasks are keeping both disks busy. In scenarios 2 

and 3, the two tasks are accessing on one disk while 

keeping another disk idle. 

TABLE III: THE TWO-DISK SCENARIOS 

Scenarios Disk 1 Disk 2 

1 Task 1  Task 2 

2 Task 1& 2  

3  Task 1& 2 

 

Fig. 7 shows the disk temperatures in the three tested 

scenarios. In scenario 1, the temperature of disk 1 

increases by 4°C, and disk 2 increases by 3°C. In 

scenario2, after running for a few minutes, the 

temperature of  the disk1 increases by 3 °C , and the 

temperature of disk2 increases by 1 °C. In scenario 3, the 

temperature of disk 2 increases by 4 °C, and the 

temperature of disk1 increases by 2 °C as well. Table IV 

compares the execution times and peak average 

temperatures of the two disks we tested in the three 

scenarios. Task execution time is the sum of the two tasks’ 
execution times; application execution time is the 

maximum execution time of the two tasks involved in the 

application. We observe that scenario 3 results in the 

shortest accumulative active disk time (i.e., 3,981 seconds) 

compared with scenario 1 (i.e., 4,136 seconds) and 

scenario 2 (i.e., 5,323 seconds), concluding that disks 

tested in scenario 3 may consume the least energy. 

Evenly distributing requests issued by the application to 

the two disks (see scenario 1) produces a high average 

disk temperature. However, scenario 1 exhibits smaller 

application execution time than those of scenarios 2 and 3. 

More interestingly, issuing requests to disk 1 that is 

closer to the fan in the chassis (see scenario 2) gives rise 

to the lowest average disk temperature. This result reveals 

that scenario 2 is more thermal friendly than the other 

two scenarios. 

TABLE IV:  PEAK AVERAGE DISK TEMPERATURES AND TOTAL 

TASK/APPLICATION EXECUTION TIMES. 

Scenarios 
Peak Average 

Temperature (°C) 

Execution Time(s) 
Task       Application 

1 40.5 4,136         2,250 

2 39.0 10,632       5,323 

3 40.0 7,948         3,981 

 

 
Fig. 7.  Thermal impacts of data placement in the two-disk case. 

TABLE V: THE THREE-DISK SCENARIOS 

Scenarios Disk 1 Disk 2 Disk 3 

1 Task 1  Task 2 Task 3 

2 Task 1 & 2 & 3   

3  Task 1 & 2 & 3  

4   Task 1 & 2 & 3 

5 Task 1 & 2 Task 3  

6 Task 1 & 2  Task 3 

7 Task 1 Task 2 & 3  

8 Task 1  Task 2 & 3 

9  Task 1 Task 2 & 3 

10  Task 3 Task 1 & 2 

 

2) The three-disk case 

We deploy three disks inside a disk-array chassis 

connecting to the data server. The disk-array chassis has a 

fan to cool down disks. We use postmark to initially 

create 100 files, the size of which ranges from 1 to 

100MBytes. Three postmark tasks issue 1,000 requests to 

the disks. Ten scenarios (see Table V) are investigated in 
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this group of experiments. In the first scenario, the three 

tasks are accessing the three disks. In the next three 

scenarios, the three tasks are sharing a single disk. And 

for the other scenarios, different task assignments are 

examined. 

Fig. 8 plots the disk utilization and temperature of the 

ten scenarios examined in the three-disk case. The peak 

average temperatures of three disks, the task/application 

executing times and the estimated cooling cost of each 

scenario are summarized in Table VI, where task 

execution time is the sum of the three tasks’ execution 
times; application execution time is the maximum 

execution time of the three tasks within the application. 

TABLE VI:  PEAK AVERAGE DISK TEMPERATURES, EXECUTION TIMES 

AND ESTIMATED COOLING COSTS.  

Scenarios 
Peak Average 

Temperature (°C) 

Execution Time(s) 
Task       Application 

Cooling 

Cost (J) 

1 36.35 4144          1500 23,655 

2 35.33 3010          3010 48,527 

3 35.00 3024          3024 48,671 

4 35.00 3126          3126 50,065 

5 35.34 2616          1768 28,469 

6 34.67 4271          2551 41,169 

7 35.34 3032          2134 34,340 

8 35.00 4466          2751 44,370 

9 35.33 2717          1846 29,723 

10 35.35 3227          2063 33,244 

 

We observe that evenly distributing tasks to the 

disks(i.e., Scenario 1) leads to higher temperatures on 

average than forcing all the tasks to share a single disk, 

however, it takes 1,500 seconds (the shortest time) to 

complete all the I/O requests. Fig. 8(a) shows that the 

temperatures of disk 1 and 2 increase by 2 °C; the 

temperature of disk 3 increases by 1 °C. When the three 

tasks are sharing one disk, the disk temperature increases 

by 2 °C, whereas temperatures of the other two disks 

remain unchanged. We conclude that sharing a disk 

among multiple tasks can maintain low disk temperatures 

at the cost of increased I/O processing time (e.g., from 

1,500 to3,000 seconds). 

In both Scenarios 5 and 6, two tasks are issuing I/O 

requests to disk 1 and the third task is sending I/O 

requests to another disk. The task execution times in 

these two scenarios are 2,616 and 4,271 seconds, 

respectively. The long execution time of Scenario 6 keeps 

the three disks in a higher temperature than the initial 

state. Fig. 8(e) shows that the temperature of disk 1 

increases by 3°C, and the temperature of disk 2 increases 

by 1°C. Fig. 8(f) indicates that the temperatures of disks 1 

and 3 both increase by only 1°C. 

In Scenarios 7 and 9, two tasks are assigned to disk 2 

and the third one is allocated to the third disk. The 

execution times of these three tasks are very close. Fig. 

8(g) and Fig. 8(i) show that the temperature of disk 2 

increases by 3°C. The temperature of disk 1 in Scenario 7 

rises by only 1°C; however, the temperature of disk 3 in 

Scenario 9 goes up by 2°C. The disks lead to higher 

energy consumption in Scenario 7 than in Scenario 9. 

When it comes to Scenarios 8 and 10, disk 3 handles 

requests from two tasks, and another disk deals with the 

requests from the third task. The task execution time of 

the Scenario 8 is much longer than that of Scenario 10. 

Let us consider the first 4,000 seconds during the testing 

process. Fig. 8(h) and Fig. 8(j) illustrate that the average 

temperature of the three disks in Scenario 10 is higher 

than that in Scenario 8. These results confirm that 

assigning tasks to a disk sitting in the middle can give rise 

to high disk temperatures and low energy efficiency. 

 
(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 
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(e) Scenario 5 

 
(f) Scenario 6 

 
  (g) Scenario 7 

 
(h) Scenario 8 

 
(i) Scenario 9 

 
(j) Scenario 10 

Fig. 8.  Thermal impacts of data placement in the three-disk case. 

From Table VI, we observe that the cooling cost of 

Scenario 1 is the least and cooling cost of Scenario 4 is 

the most. From the above experiments, we conclude that 

though evenly distribute tasks have the highest peak 

average temperature because a load balancing strategy 

which makes disks stay in high temperatures for less time 

offers better overall performance, and it is more energy-

efficient. 

B. Thermal-Aware Data Placement 

The previous subsection shows evidence that outlet 

temperatures affected by disks vary greatly among the 

tested cases. In the three-disk case, we chose to evaluate 

ten scenarios out of many other possibilities. For example, 

one possible scenario might be that the workload is 

composed of tasks that are of different disk utilizations or 

of different execution times. And to provide large storage 

capacity, one may increase the number of disks in each 

data node. Manually measuring all possible scenarios is a 

time-consuming and impractical process. A promising 

solution is to use real measurements collected in simple 

disk configurations, and to model the thermal 

characteristics of other complicated scenarios. Our results 

suggest that disk temperatures significantly affect the 

outlet temperatures of a node. Disk temperatures in turn 

depends on data placement and I/O activities. These 

observations motivate us to study thermal-aware data 

placement strategies, which aim to migrate data among 

disks in order to minimize the cooling costs. 

Let us consider a storage cluster containing a large 

number of data nodes. Encouraged by our experimental 

results presented in the previous sections, we propose a 

thermal-aware data placement strategy that is composed 

of two stages:  

 Initial stage: placing data sets in data nodes in a way 

that all the nodes have very similar outlet 

temperatures. 

 Redistribution stage: migrating data according to 

temperature distribution measured by sensors and 
predicted by our models. 

In the initial stage, a large amount of data must be 

written into data nodes of a storage cluster. A straight-

forward strategy is to evenly distribute data across all the 

data nodes in the system. Data nodes of a storage cluster 

can be configured in two ways. The first strategy is 
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designed for storage clusters where nodes have the same 

number of disks deployed. In this strategy, more amounts 

of data are placed on disks whose temperature in the idle 

state is higher than other disks. The second strategy is 

tailored for heterogeneous storage clusters where nodes 

have different number of disks. In this case, data nodes 

equipped with more disks should handle a less amount of 

data in order to reduce heat stress. 

After the initial stage of a storage cluster, the data 

access patterns are likely to change dynamically. For 

example, some data sets are accessed more frequently 

than the other data. The storage cluster tends to exhibit 

unbalanced outlet temperatures of the data nodes. To 

balance thermal stresses, with the data placement 

mechanism, hot data sets will be migrated from nodes 

with high outlet temperatures to those with low outlet 

temperatures. The data redistribution process is triggered 

by a threshold of outlet temperatures. For instance, when 

the maximum outlet temperature is 25% higher than the 

average temperature of all the nodes, the data 

redistribution process begins. To maintain high I/O 

performance, our mechanism delays the redistribution 

process until the nodes involved in the migration 

procedure have very large I/O load. 

VI.  CONCLUSIONS AND FUTURE WORK 

Energy efficiency of data storage systems must be 

urgently addressed because there have been fast increase 

of energy consumption and cooling costs of large-scale 

storage systems in data centers for the past decade. 

Recent studies show that cooling costs contribute to a 

growing portion of the operational costs of data centers. 

Thermal management techniques are adopted to reduce 

the energy consumption of cooling systems for improving 

the energy efficiency of data centers. Thermal models 

play a key role in thermal management; however, 

traditional thermal models of data centers give little 

thought of disks. 

In this study, we proposed a thermal modeling 

approach to predict the outlet temperature of data nodes, 

which offers the following two benefits. First, the thermal 

model approach makes it possible to estimate the outlet 

temperature without the specification of CPU and disks. 

Our thermal models were developed at a coarse-grained 

level, where there is no need to know the details of data 

nodes. In case of changing environment temperatures, 

one may adjust a model by conducting profiling 

experiments to refine parameter values of the model. Our 

method enables data storage systems to reduce thermal 

monitoring costs. Second, our thermal model enables data 

center designers to make intelligent decisions on thermal 

management during the design phase. Thermal 

management of storage systems helps to cut cooling costs 

and boost system reliability. Monitoring temperatures is a 

key issue in thermal management techniques; however, it 

is prohibitively expensive to acquire and set up a huge 

number of sensors in a large-scale data center. Our 

modeling method is an alternative to monitoring 

temperatures of storage systems. In addition, we study the 

impact of data placement on the cooling cost and thermal 

performance of storage system, and propose a thermal-

aware energy-efficient data placement strategy. 

There are several research directions we intend to 

address in the future. First, we plan to design a thermal-

aware data placement system. Through the deployment of 

our proposed strategy, this new system aims to handle the 

placement of new data and the management of existing 

data. In addition, the system is able to load balancing I/O 

load to reduce cooling cost of data centers. Second, we 

will apply our thermal-aware data placement scheme to 

address the thermal management issues in a real-world 

data center. We intend to conduct experiments to verify 

the performance and energy efficiency of our thermal-

aware data placement system in the data center. 
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