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Summary. It is proposed that magnetic field arises naturally in neutron stars 

as a consequence of thermal effects occurring in their outer crusts. The heat 

flux through the crust, which is carried mainly by degenerate electrons, can 

give rise to a possible thermoelectric instability in the solid crust which 

causes horizontal magnetic field components to grow exponentially with 

time. However, in order for the thermally driven growth to exceed ohmic 

decay, either the electron collision time must exceed existing estimates by a 

factor ~ 3 or the surface layers comprise helium. A second instability is 

possible if the liquid phase that lies above the solid crust also contains a 

horizontal magnetic field. The heat flux will drive circulation which should 

amplify the field strength provided that there is a seed field in excess of 

~ 108 G. 

If either of these two instabilities develops the field will quickly grow to a 

strength of ~ 1012 G, where the instabilities become non-linear. Further 

growth will saturate when either the magnetic stress exceeds the lattice yield 

stress or the temperature perturbations become non-linear, both of which 

occur at a subsurface field strength of ~ 1014 G; the corresponding surface 

field strength is ~ 1012 G. Further evolution of the magnetic field should lead 

to long-range order and yield neutron star magnetic dipole moments 

~ 1030 G cm3, comparable with those observed. 

Newly-formed neutron stars should be able to develop their dipole 

moments in a hundred thousand years and maintain them for as long as heat 

flows through the crust. Thereafter, the dipole moment should decay in 

several million years, as observed in the case of most radio pulsars. Neutron 

stars that are formed spinning rapidly, like that in the Crab Nebula, should b~ 

able to grow magnetic fields far more rapidly since their rotational energy 

can also be tapped to drive thermoelectric currents. The interiors of neutron 

stars in binary systems may be heated by the energy released by accreting 

matter. The resulting heat flux may cause the production of magnetic fields 

in these objects. Binary pulsars, with their unusually low and persistent 

fields, have probably passed through this phase. 
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1026 R. D. Blandford, J. H Applegate and L. Hernquist 

1 Introduction 

Timing observations indicate that surface magnetic fields of radio pulsars [ ex (PF)112, where 

Pis the period and Pis the period derivative] have values in the range 1-5 x 1012 G, with 

surprisingly little scatter (e.g. Manchester 1981). This range of neutron star surface field 

strengths has been corroborated by the direct observation of cyclotron lines in Her X-1 

(Trumper et al. 1978), 4U 0115 + 63 (Wheaton et al. 1979), GXl + 4 (Maurer et al. 1982), 

4U 1626 -67 (Pravdo et al. 1979) and the Crab Pulsar (Manchanda et al. 1982). Analyses 

of period changes in pulsating X-ray sources ( e.g. Rappaport & Joss 1977; Ghosh & Lamb 

1979) caused by magnetic coupling between the neutron star and the accreting plasma yield 

values of neutron star magnetic moments consistent with surface fields~ 1012 G. The spectra 

of gamma-ray bursts show features interpretable as cyclotron absorption lines, as well as 

possible positron annihilation features, indicating that the burst sources are magnetized 

neutron stars with surface fields ~ 1012 G (Mazets et al. 1981; but see Fenimore et al. 1982). 

There are indications that the magnetization of neutron stars is not permanent. Radio 

pulsars have a scale height ~ 500 pc above the galactic plane and one-dimensional velocities 

~ 100 km s-1 away from the galactic plane, strongly suggesting that they are active for no 

more than a few million years (e.g. Lyne 1981). Comparison of the kinetic ages (distance 

above the galactic plane/velocity normal to the galactic plane) of pulsars with the timing 

ages, P/2P, shows serious disagreement. The kinetic age, believed to be the true age, is 

shorter than the timing age for pulsars older than a few million years (e.g. Lyne 1981 ), a 

fact that may be concluded independently from the joint distribution of pulsars in P and P 
(e.g. Lyne 1981). One long-standing explanation for these difficulties (e.g. Gunn & Ostriker 

1970) is that the magnetic field decays in a few million years, suppressing coherent radio 

emission and increasing the timing age (alternative explanations may be found in Goldreich 

1970; Flowers & Ruderman 1977; Vivekanand & Radhakrishnan 1981). Further evidence 

for a changing magnetization is supplied by galactic X-ray sources, the majority of which 

show no evidence of pulsation and presumably involve emission from an entire neutron star 

surface, rather than just a polar cap (e.g. Joss 1980; but see Inoue et al. 1981 ). 

The simplest mechanism for field decay is ohmic diffusion; however, apart from the 

outermost crust, neutron stars cannot ohmically dissipate a magnetic field in a million years. 

The protons in the core of a neutron star are believed to form a type II superconductor; any 

flux threading the core when the star cools below the transition temperature will be trapped 

there, essentially forever. At densities below nuclear, where there are no superconducting 

protons, the electrical conductivity is far too high to allow ohmic dissipation in a million 

years. Thus, if field decay is to occur, it appears essential that the surface flux penetrate only 

to a depth ::S 1 km, where the electrical conductivity is low enough to allow ohmic dissipa

tion to operate on the requisite time-scale. The subsurface field would then be<: 1013 G, 

assuming 1012 G fields at the polar caps. A field of this size will cause a substantial modifica

tion of the surface structure and transport properties. 

There is an additional reason for believing that neutron stars possess subsurface horizontal 

fields. In the pulsating X-ray sources, matter is believed to be accreted at the magnetic poles 

of the neutron star. However, there must be a continuous flow of matter from the poles to 

the equatorial regions in order for the star to re-establish hydrostatic equilibrium. If the 

stellar field were just a simple dipole, the matter would sink to a depth at which its pressure 

could overcome the magnetic stresses. At this point the matter would spread sideways, 

dragging the magnetic field lines with it, as ohmic dissipation is quite ineffective on a flow 

time-scale. (Blandford, DeCampli & Konigl 1979). 

There is evidence that neutron stars become magnetized after they are formed. Observa

tions of the supernova remnant MSH 15-52 and its embedded pulsar (Seward & Harnden 
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Thermal origin of neutron star magnetic fields 1027 

1982; Seward et al. 1982; Weisskopf et al. 1982) show a pulsar with a timing age of P/2P = 

1550yr in a supernova remnant estimated to be~ 104 yr old. The apparent ages, discrepant 

if the pulsar field is a stellar fossil, are reconciled if the neutron star is as old as the SNR, but 

became a pulsar ~ 103 yr ago when its magnetic field grew to sufficient strength. Vivekanand 

& Narayan (1981) have suggested on the basis of the distribution of pulsars in P, P that the 

majority of neturon stars do not become pulsars until long after being formed. Observations 

of the supernova remnant RCW 103 (Tuohy & Garmire 1980) show a hot neutron star but 

no radio pulsar or 'plerionic' nebula, suggesting that the neutron star does not possess a 

magnetic field. The X-ray source HerX-1 is estimated to be ~ 108 yr old (van den Heuvel 

1977) and yet possesses a magnetic field of 5 x 1012 G (Trumper et al. 1978). The unusual 

longevity of the field, difficult to understand if the field is a fossil, is explained if the field 

is a product of the accretion process that powers the X-ray source. 

Detailed cooling calculations (e.g. Tsuruta 1979; Glen & Sutherland 1980; Nomoto & 

Tsuruta 1981; Van Riper & Lamb 1981; Richardson et al. 1982) have shown that the 

interior temperature of a neutron star falls from > 109 K to ~ 108 K in the first 105 yr of its 

life. At these early times the neutron star cools predominantly by neutrino emission; how

ever, there is still a heat flux through the crust, decreasing from ~ 1022 to ~ 1019 erg/cm 2 s, as 

the star cools. This heat flux, insignificant in the total energetics, is quite important obser

vationally; it is the source of the thermal X-rays observed from neutron stars (e.g. Helfand, 

Chanan & Novick 1980). At densities above 105 gm/cm 3 the heat transport is by electron 

conduction; at lower densities photon transport dominates. The magnitude of the heat 

flux is largely determined by the electron conduction opacity in the liquid (106 gm/cm 3 ~ 

p ~ l 0 8 gm/ cm3 for T ~ l 08 K) (Gudmundsson, Pethick & Epstein 1982). 

The principal effect leading to field generation can be understood as follows. Suppose 

that there is a small horizontal component of magnetic field of strength B. Hot electrons 

from below will be deflected horizontally by the field; cooler electrons from above will be 

deflected slightly less in the opposite direction. The net effect is to produce a horizontal 

heat flux, F1 ~ (eT/µ)B x F, where e = I e I is the magnitude of the electronic charge, Tis 

the electron collision time,µ is the electron chemical potential and Fis the vertical heat flux 

(we use units in which c =kB= h = 1). Fourier components of the magnetic field with hori

zontal wavelength comparable with the depth z create horizontal temperature gradients 

~ F1/K, where K is the thermal conductivity. The pressure of a degenerate, relativistic free 

electron gas is P(ne, T) = P (ne, T = O) + (1r2 /6) ne T 2 / µ. Hence there is an additional pressure 

gradient ~ n0 TVT/µ, which must be balanced by a thermoelectric field E ~ TVT/µe ~ 

BF/µne, This field has a non-vanishing curl and so - V x E = aJ1/at = rJ1, where r+ ~ F/µnez, 

The growth rate r+is positive when the heat flows down the density gradient. If we substitue 

characteristic values F=l0 20 erg/cm 2 s, µ=4MeV, ne=3xl0 31 cm- 3 , z=50m then r+~ 

300 yr- 1. It is clear from this estimate, which does not depend directly upon the local trans

port coefficients, that there may be time for the field to grow as the star cools. Note that the 

potential difference across the crust associated with this electric field is only~ (B/10 8 G)mV, 

far smaller than the potential differences induced by gravity and rotation. The important 

point is that this field alone has a non-vanishing curl. 

It is necessary for the growth rate r+ to exceed the ohmic decay rate r_ if the field is to 

grow. This may be estimated by r_ ~ 1 /41ro-z2 . Substituting a~ 1021 s-1 appropriate to these 

conditions yields a decay rate comparable to the growth rate. A more detailed calculation is 

necessary to determine if neutron star magnetic fields can have a thermal origin. 

The idea of using thermoelectric currents to generate astrophysical fields is not new. 

Biermann (1950) (cf Mestel 1961; Roxburgh 1966) showed that differential rotation in 

fluid stars can produce a misalignment of the isobars and the equipotentials, resulting in a 
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1028 R. D. Blandford, J. H. Applegate and L. Hernquist 

battery effect. This idea, and its terrestrial counterpart (e.g. Hibberd 1979), have generally 

not found favour because the effect is quantitatively quite small and dynamo action induced 
by helical motion in the fluid is thought to be far more effective (e.g. Parker 1979; and in 

the neutron star case see Ruderman & Sutherland 1973). Thermoelectric effects can be far 

more important in a neutron star because standard dynamo action is inoperative in the solid 

crust. 

" This mechanism does have a laboratory counterpart. Megagauss magnetic fields are 
routinely produced in the coronal plasma surrounding laser fusion targets; however, the 

details of the mechanism are rather different because inertial effects allow a departure from 

hydrostatic equilibrium in this case (e.g. Stamper et al. 1971). 

Un ear growth of the field is impossible in the liquid phase. However, when the field 

exceeds ~ 108 G, magnetic perturbations to the heat flow will drive circulatory motion in the 

fluid with turnover times that are short compared with the ohmic decay time. These motions 

will probably induce dynamo-like action and can further enhance the field strength at the 
solid surface. 

In the following section we summarize and extend the analysis of thermoelectric pheno
mena in degenerate stars due to Urpin & Yakovlev (1980b) and calculate necessary condi

tions for field generation. In Section 3, a linearized calculation of the growth of the field in 
the solid crust is given, which demonstrates that small seed fields can grow exponentially for 

sufficiently large heat fluxes. Non-linear growth of the field in the liquid is described in 
Section 4. If the field strength can grow to ~ 1011 G, the electron gyrofrequency will exceed 
the collision frequency and the field growth in the solid will enter the non-linear phase. The 

Hall effect will lead to rapid convection of magnetic flux and the creation of progressively 
larger scale structure, perhaps resulting in the establishment of an axisymmetric field geo
metry. In the absence of external heat sources, the interior of the star will cool and the field 
will decay. These issues are discussed in Section 5. In Section 6 we outline some of the 
observational consequences of this theory for pulsars, binary X-ray sources, X- and ,-ray 
bursters and white dwarfs. 

2 Thermoelectric effects 

We are concerned with the properties of the outer crust in the density range 107 gm/ cm3 ,,;;;; 

p,,;;;; 1011 gm/cm 3, and for temperatures T ~ 108 K. Under these conditions the electron gas is 

degenerate, and may be treated as ultrarelativistic and free to an accuracy of better than a 

few per cent. In the presence of electric fields and gradients of chemical potential and 
temperature the laws of charge and heat transport are 

➔ ~ -,. ;p ;:; 

j =a·e-'A.·vT (2.la) 

and, 

(2.lb) 

where the electrochemical field e is the sum of the electric field and the chemical potential 

gradient e=E + V µ/e (cf Landau & Lifshitz 1960; Ashcroft & :t-1errnin 1976; Ziman 1972). 
In these expressions 7 is the electrical current, Fis the heat current and~ is the electrical 

s_onductivity. The thermal conductivity k and thermopower ~ are related to the coefficients 

I andf by 

Q = c'cjr-r 
'ft = 'fy - TQ · I. 

(2.2a) 

(2.2b) 
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Thermal origin of neutron star magnetic fields 1029 

The difference between rt and r is of order ( T/ µ ) 2 for a free electron gas and will be 
neglected in this paper. Various thermogalvanomagnetic effects (Hall, Nernst, Leduc-Righi 
and Ettingshausen; cf Landau & Lifshitz 1960) result from electric currents driven by 
temperature gradients, heat currents driven by electric fields, and the magnetic field 
dependence of the coefficients in equation (2.la, b). The magnetization of the crust is much 
smaller than the magnetic field (Blandford & Hernquist 1 ~2) and will be neglected. 

Expressions for the transport coefficents CJ, rt and X" are derived from the relativistic 
Boltzmann transport equation 

...... ...... ...... ............ ;::; Jd3k' ............ , rt...... - ...... , v·Vrf-e(E+vxB)·vkf= - 3 W(k,k )[f1J,k)-f(r,k )] 
(2rr) 

(2.3) 

where f (!, k) is the electron distribution function and W (k, k ') is the scattering rate. The 
scattering of electrons is by individual ions in the case of a liquid, and by phonons in the 
case of a solid. The scattering in the liquid is always elastic (ion mass ► electron mass); the 
scattering by phonons is elastic if the temperature exceeds the Debye temperature. As these 
are the important scattering mechanisms for the case of interest, elastic scattering is 
assumed and the energy-dependent relaxation time approximation used (cf Yakovlev & 
Urpin 1980). 

The Boltzmann equation (2.3), is solved by linearization in the standard manner (cf 
Ashcroft & Mermin 1976). The distribution function is split into a Fermi-Dirac distribution, 
t<0), evaluated at the local values of T andµ and a perturbation of responsible for transport
lng heat, charge, etc. The scattering term in (2.3) is replaced by - of/r, where the relaxation 
timer is given by 

(2.4) 

where €k = (k 2 + m 2 ) 112 is the single particle energy. The resulting momentum space differ
ential equation is integrated along unperturbed orbits to give 

( a/(o)) '-> ~ [ ...... (€k - µ) ] 
of= - aek TV ·x · elf+ Vµ + -T- VT 

where the inverse of the tensor X is 

(X-1 )ij = Oij + €ijkXk 

(2.5) 

(2.6) 

with X = (er/µ) ff. 
Expressions for the transport coefficients 11, rt and f are obtained by substitution of 

(2.5) into expressions for the currents 

f d 3 k 
7=-2e -- vof 

(2rr)3 

F=2 -v(€k-µ)of. l d 3 k 

(2rr)3 

(2.7a) 

(2.7b) 

The electrical current, (2.7a) is the current of electrons times the charge per electron. The 
thermal current, (2.7b ), is obtained by applying the first law of thermodynamics to a fixed 
volume. The change in energy is - V · f (ek + ¢)vol where ¢ is the single particle potential. 
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1030 R. D. Blandford, J. H. Applegate and L. Hernquist 

However, adding particles with energy equal to the chemical potential adds no heat. To 

obtain the heat added - V · (µ + </>) fvof must be subtracted from the energy added, where 

µ is the chemical potential of the system in the absence of the single particle potential. 

Writing the heat added as the negative of a divergence gives (2. 7b) for the heat current. 

The transport coefficients obtained by substitution of (2.5) into (2.7a, b) are 

2 -= .= nee r -= 
a,= aox =-- x, 

µ 

~ -= n2 neTr ~ 
K=Kox=--- X 

3µ 

and 

~ n2 T eta 
"A..=---

3e dµ 

where ne is the density of electrons. 

(2.8) 

(2.9) 

(2.10) 

Equation (2.1 a) can be written in the form of a fluid equation as follows. Use the thermo

dynamic identity dµ = dP/ne - SedT, where Se = n2 TfpFvF is the entropy per electron of the 

electrons, and multiply equation (2.la) by the inverse of the electrical conductivity tensor, 

(2.8), to obtain 
---> 

---> -r _, _, µJ ;::t d (µfr) 
- eneE +J xB - VPe +- -1' -- = 0 (2.11) 

er dµ 

where -'if ·VT has been replaced by the heat flux F, which is accurate to order (T/µ) 2 • The 

direct influence of gravity upon the electrons has been neglected, which is acceptable for 

µ~mp, 

The first two terms in (2.11) constitute the Lorentz force per unit volume acting upon 

the electron gas. The third term is the electron pressure gradient. The fourth and fifth terms 

are derived from the force density exerted by the lattice upon the electrons, which may be 

written as 

- 2 f d3k p of=µj - F d(µfr) 

(2n)3 r er dµ 
(2.12) 

expanding in a Taylor series about Ek=µ. In a non-relativistic system with an energy inde

pendent relaxation time the vanishing of the electrical current implies the vanishing of the 

force density (2.12). This is not the case in a relativistic system because the ratio of momen

tum to velocity, k/v = Ek, is variable; thus, the second term in (2.12) can contribute even if 

the first term vanishes and r is constant. 

The equation of hydrostatic equilibrium for the crust as a whole is 

(2.13) 

where ¢ is the gravitational potential, including centrifugal terms, and Y is the force density 

given by the divergence of the lattice stress tensor. The total charge density is negligible on 

length scales much larger than the Debye length. In writing the centrifugal terms as the 

gradient of a potential we have assumed that the crust is not differentially rotating. The 

equation of hydrostatic balance for the ionic lattice is the difference of (2.13) and (2.11) 

_, _, µj _, ;::td (µfr) 
eneE-p'v<J>-- +Y+f'--=O. (2.14) 

er dµ 
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Thermal origin of neutron star magnetic fields 1031 

To calculate the growth rate of the field write (2.la) as e = CJ-i -7 + Q · VT, and take the 
curl, using Faraday's law to obtain 

~ ➔ ➔ 
.=:; ➔ rt --> ➔ ➔ .:; [" X B] - = - v XE= 'iJ X ( v X B )- VQ0 x VT- v x ~~ at 41TOo 

(2.15) 

with 

~ ➔ 

din (µfr) 
-t 

"i<·VT J v=-
neµ dinµ ene 

(2.16) 

and where 

1T2T dlnK0 
Qo=--

3eµ dinµ 
(2.17) 

is the thermopower of the unmagnetized electron gas (cf. Urpin & Yakovlev 1980b ). The 
three terms in (2.15) are interpretable as: 

(i) A convection of the field at a velocity given by the sum of the thermal diffusion 
velocity and the electron mobility. Note that at low field strength ( X ~ 1) the thermal drift 
is in the direction of the temperature gradient. 

(ii) A battery term a: Vne x VT, which describes the creation of field by thermoelectric 
currents. If, as is usually the case, VT· Bx F > 0, this term will contain a part a: (- Vne · F) if 
leading to exponential field growth when the heat flows down the density gradient. In a 
fluid the isotherms and equipotentials will coincide with the constant density surfaces and 
this term will vanish* (cf equation 2.13). 

(iii) An ohmic decay term ( third term in 2 .15). 

3 Growth of magnetic field in the solid crust 

3.1 STRUCTURE OF CR UST 

We are interested in the crust at densities high enough to solidfy at temperatures T ~ 108 K 
and low enough to be a poor enough electrical conductor to allow ohmic decay in a million 
years. These requirements confine our attention to the density range 107 gm/cm 3 ,a;; p ,a;; 
1011 gm/cm3• Here the crust is supported by degenerate relativistic electron pressure. The 
mean molecular weight per electron, µe, and the nuclear charge, Z, vary as a function of 
density through the crust (e.g. Baym & Pethick 1975); we adopt the average values µe= 
2.5 and Z = 32 and use these throughout the crust. For a thin crust the depth below the 
surface is given as a function of density as 

Z - 1 5pl/3g-1 
4 - · 9 14 (3.1) 

where 104 z4 cm is the depth, 109 p9 gm/cm 3 is the density, and 1014g 14 cm/s 2 is the effective 
surface gravity. For a non-rotating star of gravitational mass M and surface area 41rR2 the 

* A rather different view has been expressed by Dolginov & Urpin (1980b) (cf also Dolginov & Urpin 
1980a). They consider the possibility of thermomagnetic instability within fluid white dwarfs. They per
form a linearized perturbation analysis based on the induction and energy equations (2.15) and (2.1 b). 
However, they do not include hydrostatic equilibrium, which should be achieve<!+ on &me-scales far 
shorter than those associated with thermoelectric effects. In particular, in a fluid V p XV T = 0, which 
implies that the right-hand side of their equation (7b) vanishes, along with their growth rate. 
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1032 R. D. Blandford, J. H. Applegate and L. Hernquist 

surface gravity is 

g = GM (l _ 2GM)-112 

R 2 R 

l dP 

p dz 
(3.2) 

Most models of 1.4M0 neutron.stars have radii in the range 8-16 km and surface gravities 

0.85.;;; g 14.;;; 4.2. 

· The ions will form a Coulomb crystal when the plasma parameter r [r = (Ze)2 /akBT, 

where a is the interionic spacing] exceeds "" 150 (Pollack & Hansen 1973; Slattery, Doolen & 

DeWitt 1980). Using the average values for Zand µe given above, the melting curve is 

Combining this with (3 .1 ), we find that the ions will be crystalline below a depth 

zM, 4 = 0.4 Tsgil 

(3.3a) 

(3.3b) 

where 108 T8K is the temperature. At depths less than the melting depth, zM, the ions form 

a liquid metal. 

3.2 TRANSPORT COEFFICIENTS 

We require transport coefficients for both the solid and liquid metal regimes and consider 

two calculations: those of Flowers & Itoh (1976) and Yakovlev & Urpin (1980). We include 

electron-phonon scattering above the Debye temperature in the solid and electron-ion 

scattering in the liquid. Impurity scattering and the electron-electron contribution to the 

thermal conductivity, which is small for the large nuclear charges found in the crust, are 

neglected (cf Urpin & Yakovlev 1980a). Quantizing effects of the magnetic field (Yakovlev 

1980a, b; Kaminker & Yakovlev 1980; Blandford & Hernquist 1982) are neglected. 

Consider first the solid metal regime. 

Electron-phonon scattering is elastic for temperatures well above the Debye tempera

ture; the electron-phonon relaxation time is calculated explicitly by Yakovlev & Urpin 

(1980). They obtain 

(3.4) 

independent of density. The relaxation time may be extracted from table 3 of Flowers & 

Itoh (1976) with the result that 

(3.5) 

a factor of 2.7 larger than 7yu. Note that (3.4) and (3.5) scale the same way with tempera

ture and density. Yakovlev & Urpin (1980) argue that the discrepancy between the calcula

tions is due to their use of the Monte Carlo results of Pollack & Hansen (1973) for the 

phonon spectrum of a Coulomb crystal, as opposed to Flowers & Itoh's use of an approxi

mate spectrum. In particular, Yakovlev & Urpin (1980) use the Pollack & Hansen (1973) 

value of the moment of the phonon spectrum u~2 = < w- 2 (k)/w-i,2 > = 13, where Wp is the 

ion plasma frequency. The approximation used by Flowers & Itoh (197 6) corresponds to 

u..2 = 4.4. Flowers & Itoh (Itoh 1982, private communication) argue that their calculation 

is more accurate due to their inclusion of electron screening (kTF "' 1 /4q 0 where kTF is 

the Thomas-Fermi wavevector, and q 0 is the Debye wavevector) and its neglect (Pollack & 

Hansen assume a static neutralizing background of electrons) by Yakovlev & Urpin (1980). 
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Thermal origin of neutron star magnetic fields 1033 

We shall, without prejudice, use the Flowers & Itoh (1976) value in our numerical 

estimates, and consider the relaxation time for electron-phonon scattering to be uncertain 

to a factor~ 3. Using the relaxation time (3.5), the coefficients o0 and 1<0 are 

Evaluating these at the melt surface, using (3.3a), gives 

oM = 1.4x 1021 T8 s-1 

l<M = 3.8 x 1016 1'g ergcm- 1 s-1 K-1. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

These coefficients must be reduced by a factor of 2. 7 if the relaxation time (3 .4) is used. 

Transport coefficients in the liquid metal are, if anything, less certain than those in the 

solid. Comparison of the formulae for the thermal conductivity given by Yakovlev & Urpin 

(1980) and Flowers & Itoh (1981) yield a factor ~ 2 disagreement, with Flowers & Itoh 

giving the larger value. The disagreement is due to different models for the ionic correlations 

and screening. Flowers & Itoh (1976) screen the interaction using the Thomas-Fermi theory, 

and take the ionic correlations into account explicitly by modelling the results of Brush, 

Sahlin & Teller (1966) to obtain a liquid structure function (see Flowers & Itoh 1976 for 

details). Yakovlev & Urpin (1980) ignore electron screening, which is a good approximation 

in the regime of interest (kFrf PF~ 0.1 ), and cut the interaction off at roughly the interionic 

distance. We shall again use the Flowers & Itoh (1981) formula for the thermal conductivity 

due to electron-ion collisions which is a fit to the results of Flowers & Itoh (1976) for the 

thermal conductivity of Baym, Pethick & Sutherland (1971) matter. We omit the electron

electron scattering contribution to the thermal conductivity. This gives 

The electron-ion relaxation time implied by (3.10) is 

T = 4.5 X 10-19 p91;3s. 

3.3 STATIONARY TEMPERATURE DISTRIBUTION WITH HORIZONTAL FIELD 

(3.10) 

(3 .1 I) 

An important physical quantity in the problem is the ratio of the thermal diffusion time to 
I 

the ohmic diffusion time. Numerically, this quantity is 

Cv 
= 5 X 10-4 (3.12) 

evaluated at the solid surface. The smallness of the ratio (3.12) means that the heat flow 

equilibrates rapidly, reaching a steady flow pattern in the presence of a slowly changing 

magnetic field. This behaviour is in contrast to that of laboratory metals; the ratio (3 .L2) 

for copper is ~ 103• Thermally driven growth of magnetic fields will not occur in laboratory 

solids since any magnetic field present will dissipate before significant temperature perturba

tions can be set up. 

Due to the smallness of tne ratio (3.12), which may be thought of as a magnetic Prandtl 

number, the temperature distribution may be calculated from the steady-state heat flow 

equation assuming a slowly changing magnetic field. In particular, consider a constant, 
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1034 R. D. Blandford, J. H Applegate and L. Hernquist 

vertical heat flux, Fo = - Ko V T0 , flowing through a plane-parallel, unmagnetized crust (the 

scale height of the crust is much less than the stellar radius so curvature effects may be 

ignored). Impose a small (X ~ 1), magnetic field 

ff (x, z) =B (z) sin (kx)y (3 .13) 

and calculate the resulting temperature perturbation 

oT(x, z) = oT(z) cos (kx). (3.14) 

Only the horizontal component of the magnetic field affects the heat flow for small fields, 

hence we have specialized to the case of a horizontal field. 

The temperature distribution is given by the solution of the steady-state heat flow equa

tion, which may be written (cf Landau & Lifshitz 1960) 

E= V· Ci<· VT) +j .(tr17 -Tj ·(V·Q) =O (3.15a) 

where E is the internal energy density and a dot denotes a time derivative. If the tempera

ture perturbation and the magnetic field are treated as small perturbations to the heat flow, 

(3.15a) may be simplified to 

E=V·Cft·VT)=O (3.15b) 

where the Joule heat term has been dropped because it is of second order in the magnetic 

field, and the Thomson effect term has been dropped because it is of order (T/µ)2 times the 

terms kept. The divergence of the electrical current has been set to zero. The divergence of 

the zeroth order heat·flux is zero, so we are left with 

v-oF = o 

where the perturbation in the heat flux is given by 

rt ----> dKo ----> ___. -+ 
ol' = - Ko VoT- - oTVT 0 + K0 X xVT 0 • 

dT 

(3.16) 

(3.17) 

The derivative d1<0/dT includes both the explicit temperature dependence of the thermal 

conductivity, which vanishes in our case, and the implicit temperature dependence due to 

the thermal expansion of the lattice. The thermal expansion effect may be shown to be 

negligibly small, thus we set the derivative d1<0 /dT = 0. Setting to zero the divergence of 

(3.17), we obtain an equation for the temperature perturbation 

d ( doT ) 2 
~ Ko-- -Kok oT-kXIFo I =O. 
dz dz 

(3.18) 

We now scale the depth in units of the melting depth,z=zMt define ~=kzM, use (3.1) 

and (3.7) to write Ko= /{,Me, and write A = 41re21<M0TfµM to obtain 

(3.19) 

where 

41re2 rMzM IFo I 
a=------=---

µ2 
(3.20) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

http://adsabs.harvard.edu/abs/1983MNRAS.204.1025B


1
9
8
3
M
N
R
A
S
.
2
0
4
.
1
0
2
5
B

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/2

0
4
/4

/1
0
2
5
/9

9
3
0
9
4
 b

y
 C

a
lifo

rn
ia

 In
s
titu

te
 o

f T
e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 2

2
 M

a
y
 2

0
1
9

Thermal origin of neutron star magnetic fields 1035 

is the diffusion velocity associated with the heat flux measured in units of the melting 
depth and the ohmic diffusion time-scale at the melt surface tM=41ra 0 z2 1M-In (3.20) nM 
is the electron density at the melt surface. As is clear from (3 .19), a describes the strength of 
the coupling between the magnetic field and the temperature perturbation. 

Suitable boundary conditions for (3 .19) are o T = 0 at zM and 00 • The former seems 
reasonable because the thermal time greatly exceeds the dynamical time in the liquid. The 
latter embodies our hypothesis that the field is confined to the surface layers. Equation 
(3.19) may be solved by a Green's function if the small variations of T0 through the crust 
are neglected. We find 

41re2 K ,-,,(./ ioo df 
A(~)= M oT=":!!. ~ G(tf)B(f) 

µM ~ 1 c; 

where G (~,~')is given by 

G(tf)=sinh,6(~ -l)exp [-.B(~-1)] 

G (t f) = sin h ,6 (f - 1) exp [ - ,6 (~ - 1)] 

3.4 LINEAR GROWTH OF THE MAGNETIC FIELD 

(3.21) 

(3.22) 

The evolution of the magnetic field is governed by the induction equation (2 .15), with the 
temperature gradient computed from the heat flow equation (3.15a). For small fields the 
heat flow equation becomes (3.19). To linearize the induction equation write the field 

-+ -+ 
convection velocity, (2 .16), as V = - F 0/neµ, where the relaxation time has been taken 
independent of density. The linearized induction equation is as/at= -V x 81 where the 
perturbation in the electrochemical field is 

-+ ->I -+ T7 -> 0€ =j ao +QoVoT+ v x B. (3.23) 

The convection velocity is due to the perturbation of the thermopower caused by the 
magnetic field, o (l-VT0 = Vx B. If the perturbations (3.13) and (3.14) are used, along with 

the scalings leading to (3.19), the induction equation may be written in the form 

(3.24) 

In deriving (3.24) the time dependence of the magnetic field has been assumed to have the 
form 

B (t t) = B (~) exp ('At/tM)- (3.25) 

Equations (3.19) and (3.24) may be combined into a single fourth-order eigenvalue equation 
for the growth rate A. Eliminating A (t t) ex o T we find 

(3.26) 
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1036 R. D. Blandford, J. H. Applegate and L. Hernquist 

The fourth-order equation, (3 .26), requires four boundary conditions. Two are provided 

by the requirement that the temperature perturbation vanish at the melt surface and at 

infinity. A third boundary condition is provided by the requirement that the magnetic field 

vanish at infinity. The fourth boundary condition is less certain. The rate of production of 

magnetic flux in the solid and the rate at which flux is convected in from the liquid may be 

calculated using Faraday's law and (3.23) for the perturbation of the electrochemical field. 

Tb,e magnetic field, (3 .13), varies horizontally as sin (kx ); to calculate the flux production 

and convection integrate Faraday's law over the surface z E [ z M, 00 ), x E [ 0, 1T /k] and use 

Stokes' theorem to obtain, using (3.23) for oe. 

dcp = fd1 · (vx if -QoVoT- v xif) 
dt 41Tao 

(3.27) 

➔ ➔ ➔ ➔ 

where cp = f B · d"i:, is the magnetic flux. Specializing to the case B = B (~) sin (kx )y, V = -V (~) z and o T = o T (~) cos (kx) we see that the thermopower term Q0 Vo T is the only 

term which represents the production of flux. The convection and diffusion of flux through 
➔ ➔ ➔ ➔ 

the melt surface is given by the integral of the V x B and the (V x B )/41Ta0 terms along the 

melt. Evaluating these terms and transforming to the dimensionless variables used above, the 

rate of flux flow through the melt is found to be 

(dcp) 2zK1 [ dB] 

dt conv = ~tM OlB - d~ 
(3.28) 

evaluated at the melt surface. Thus the condition dB/d~ = OlB represents all of the flux 

production taking place in the solid. In Section 4 the possibility of flux production in the 

liquid will be discussed, thus we shall discuss the eigenvalues A of (3.26) corresponding to 

various values of the logarithmic derivative dlnB/d~. 

10 

Amax 

0.1 

-3 
10 -~2·----~---~--~-~----2 

10 0.1 10 10 
a 

Figure 1. Maximum growth rate, Amax, with respect to (3 as a function of a for various boundary con

ditions at t = 1: (a) B' = Ot.B, (b) B' = 0.750t.B, (c) B' = 0.50t.B and (d) B' = 0. For the boundary condition 

B' = 0 two different growing modes are present. Mode 1 resembles the growth mode for B' = Ot.B with all 

of the flux being produced in the solid. In mode 2, all of the flux originates in the liquid and is convected 

across the solid surface into the solid crust. 
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Thermal origin of neutron star magnetic fields 1037 

3.5 NUMERICAL SOLUTIONS 

We have obtained numerical solutions to the fourth order eigenvalue equation (3 .26) for a 

variety of boundary conditions. The solutions were obtained by writing (3.26) in finite 

difference form using the variable s = e~. A grid of 75 equally spaced points on the interval 

SE [O, 2.5] was employed. The boundary conditions at infinity were applied at the right

most point of the grid. We consider two cases: 

(a) The production of magnetic flux is confined to the solid. In this case the proper 

boundary condition is dlnB/d~ = a at the solid surface ~ = 1. We find that a growing mode 

exists for a ;;. 5. In order for the growth rate to be large enough to be of interest in neutron 

star crusts (A;;. 0.1, see Section 6) we require a;;. 22 (Fig. 1 ). If we examine the eigen

functions (Fig. 2) we find that the flux is concentrated well below the surface, near~ = 3 - 4. 

1.0 

0.9 

0.8 

0.7 

0.6 

B o.5 

0.4 

0.3 

0.2 

0.1 

0 
I 2 3 4 5 6 

( 

Figure 2. Eigenfunctions of growing modes with /\.max= 0.1 for three boundary conditions at ~ = 1: 

(a) B' = Oi.B, (b) B' = 0.75a.B and (c) B' = 0. For B' = Oi.B, all the flux is produced in the solid and a.= 22.5. 

For B' = 0.7 50!.B 90 per cent of the flux is produced in the liquid and a.= 5. For B' = 0, (mode 2 in Fig. 1), 

all the flux originates in the liquid and a. = 0.2. 

c53~----~---~----~---~~~~ 
I 10 4 103 102 0.1 

(3 

Figure 3. Growth rate as a function of (3 for fixed a. with /\.max = 0.1 for the boundary conditions (a) -

(c) of Fig. 2. 
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1038 R. D. Blandford, J. H Applegate and L. Hernquist 

The explanation for this form of the eigenfunction can be seen from (3.24). For 1.;;; ~ < 5 

the convection term, (2.17), dominates ohmic loss and produces the steep vertical gradient 

of horizontal field, as V ~ ~-4• For ~ <-5 ohmic loss dominates and the field strength decreases 

exponentially with depth. We find that the growth rates are maximized for {3 ~ 1 (Fig. 3). 

The horizontal and vertical field gradients are comparable, as expected. 

(b) There is significant production of flux in the liquid. In this case flux will be con

vected into the solid crust from the liquid; the proper boundary condition at the melt 

su;face is dlnB/d~ < Cl!. The amount by which the logarithmic derivative is lowered from the 

case in which all of the flux production takes place in the solid depends on the rate of flux 

production in the liquid. Efficient flux production in the liquid allows growing modes for 

values of Cl! much lower than those needed in case (a). In particular, if we have dlnB/d~ = 

0.75a we obtain a growing mode with 'A~ 0.1 for 1 < a< 5 (see Fig. 1). The fraction of the 

flux convected in from the liquid can be calculated using the eigenfunctions and the bound

ary condition dlnB/d~ = 0.75a. If we consider the mode with Cl!= 5, then we find that 90 per 

cent of the flux production takes place in the liquid. For the case B'= 0 a growing mode 

with 'A= 0.1 is obtained with Cl!= 0.2 (see Figs 1 and 2). 

3.6 COMPARISON WITH COOLING CALCULATIONS 

A calculation of direct relevance to the subject of this paper has been performed by 

Gudmundsson et al. (1982) (see also Gudmundsson 1981). These authors have studied the 

variation of the heat flux through the outer crust assuming a fixed interior temperature, 

evaluated at p ~ 1011 gm/cm 3. They used electron conductive opacities from Yakovlev & 

Urpin (1980) at high density, and the radiative and conductive opacities of the Los Alamos 

group (e.g. Hubner et al. 1977) at lower densities. They find an empirical relation, good to a 

few per cent, that relates the heat flux to the interior temperature and the surface gravity. 

Furthermore, they showed that the flux was almost completely controlled by the electron 

conduction opacity in the liquid at densities 106 gm/cm 3 ,;;;; p,;;;; 108 gm/cm 3 for a central 

temperature T = 108· 5 K. The controlling density range moves to lower density for lower 

central temperatures. 

In common with earlier authors, Gudmundsson et al. confined their attention to a crust 

in local nuclear statistical equilibrium (i.e. composed of 56 Fe for densities p < 8 x 106 gm/ 

cm3, Baym et al. 1971). If we consider the response of the flux to changes in the compo

sition of the crust in the controlling density range we find that the opacities scale as the 

nuclear charge, Z and, for a given internal temperature, the flux scales as 1/Z, since the 

neutron star envelope tends strongly to the radiative zero solution ( e.g. Schwarzschild 

1958). The surface composition of neutron stars has been discussed by Bichel (1975) and 

Rosen & Cameron (1972) with the conclusion that ~ 1021 gm of helium could survive on the 

surface of the star. The helium will compress to a density given by Ml= 4rrR2 J pdz = 4 x 

1021 prtilgm. Thus a small amount of helium can reach a high enough density to be the 

controlling factor in determining the heat flux, lowering the effective Z in (3 .29) and (3 .30) 

to Z = 2 and substantially increasing the heat flux for a given internal temperature. 

We have confirmed and generalized the Gudmundsson et al. relation, using the opacities 

given by Flowers & Itoh (1981) and find, to adequate accuracy 

(3.29) 
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Thermal origin of neutron star magnetic fields 1039 

The flux is a factor~ 2 larger than is obtained using the Yakovlev & Urpin (1980) opacity. 

If we adopt this relation, then we find 

a= 0.5 T¥·3 
(~) (3.30) 

independent of the surface gravity, and only weakly dependent on the interior temperature. 

The numerical value of O'. is sensitive to the collision time 7. As can be seen from (3 .20), 

O'. is proportional to the collision time at the melt surface. In addition, the heat flux F0 is 

proportional to the collision time in the liquid (Gudmundsson et al. 1982). Thus, the factor 

of 2.7 discrepancy between the collision times of Flowers & ltoh (1976) and Yakovlev & 

Urpin (1980) leads to an overall factor ~ 6 uncertainty in the value of O'.. This is in addition 

to the uncertainty in a due to ignorance of the surface composition. 

4 Growth of the field in the liquid phase 

As we showed in Section 2, the battery term which drives the linear growth of the field in 

the solid is absent in the liquid phase because hydrostatic equilibrium requires a vertical 

temperature gradient. However, this implies that a horizontal component of magnetic field 

will produce a horizontal component to the heat flux, given in the linear approximation by 

(4.1) 

where F0 = - K.0 V T0 is the vertical heat flux. For a general field geometry, this perturbation 

will not be solenoidal and as a result temperature perturbations will start to grow, thereby 

generating pressure perturbations and driving a circulation of the fluid in a manner akin to 

the Eddington-Sweet process (e.g. Schwarzschild 1958). The circulation velocity adjusts 

itself to convect away the local entropy production, 

r.'t -> -> ,=l" 
Tp1._u ·V)S+V·oF =0 (4.2) 

where S is the entropy per unit mass and v is the circulation velocity. We rewrite equation 

(4.2) as 

F · V x x [ _, ( F0x ) ] 
PVz = - T(dS/dz) = V x T(dS/dz) z 

(4.3) 

where Fo = I Fo I. Continuity of mass implies that V · pv = 0; thus, a solution for the velocity 

field is 

1 _, [ F0X ] 
v =; 'vx T(dS/dz) . 

(4.4) 

This is the only solution that vanishes in the absence of a field. Equation (4.4) is valid for 

X ~ l. 

We are most interested in the circulation in the liquid close to the solidification point. 

Under these conditions the entropy is dominated by the ionic contribution, and the entropy 

gradient is dominated by the density gradient (dT/dz ~ T/z near the melting depth). We may 

use the results of Pollock & Hansen (1973) to obtain 

(as) . = _ 1.24 (4 .s) 

ani T p 
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1040 R. D. Blandford, J. H Applegate and L. Hernquist 

where ni is the density of ions. Equation ( 4.4) can then be rewritten 

(4.6) 

where we have used the approximation 

(4.7) 

which is valid in the liquid(~< I) (Yakovlev & Orpin 1980). 

There is a competing effect that dominates in normal stars (e.g. Parker 1979). Magnetic 
pressure contributes to the total pressure in the fluid and so, if there is to be static equi

librium, there must be associated temperature gradients. Individual magnetic filaments will 
rise or fall until they are at the same density as their surroundings and stable to buoyancy 

forces. The main difference in pressure between the inside and outside of a filament will be 

contributed by the ions, and so the temperature difference will satisfy (8 T/T) ~ (B 2 /8rrPi) 
where Pi is the ion pressure. This will induce perturbations to the heat flux of magnitude 
8F ~ (B 2 /8rrPi) (kz)F 0 , which are generally small compared to the perturbations caused by 

the anisotropy (4.1). Henceforth, we ignore this effect. 

If the magnetic field is strong enough, it will be modified by the fluid motion faster than 
ohmic decay and the thermoelectric effects described in Section 2 can act. This requires that 
the circulation velocity be larger than the ohmic diffusion velocity and the field convection 
velocity. Fluid motion dominates if 

B~ (T/er) [min(l, a)r 1 

or 

When this inequality is strongly satisfied, the electric field will be given by 

rt ➔ 4rrKz M -t ➔ K ➔ ➔ ➔ 
J!, = - V X B = 4 J X B - - (B X O X B 

~ ~6 

where 

eFoTMAmp 
K =~~~~ = 5.5 x 10-25 F19Ti/ c-i 

3.7 PMµMT 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

where F 19 is the heat flux in units of 1019 erg cm-2 s-1. The magnetic field will then evolve 
according to aif /at= - V X J!. 

These thermal effects may drive a non-linear dynamo mechanism. The first term on the 
right-hand side of equation (4.10) dominates in the short wavelength limit, and describes 
the creation of horizontal field out of vertical field and vice versa - a crucial ingredient of a 
dynamo process. However, this term alone does not lead to enhancement of the magnetic 
energy density, as can be seen by noting that it does not contribute to the rate of perform
ance of mechanical work, -7 · E. The second term on the right-hand side of ( 4.10) also 
represents the creation of perpendicular components of magnetic field, and can contribute 
to an increase in the magnetic energy density. 

If thermally driven circulation in the liquid does drive a non-linear dynamo process the 
magnetic field in the liquid will grow to non-linear (X ► I) strength in a time l+~ zM/KB = 

80 Ts/Bsg 14 Jr, shorter than the time-scale for field growth or decay in the solid. In this 
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Thermal origin of neutron star magnetic fields 1041 

case most of the flux is made in the liquid and convected into the solid. The surface bound

ary condition in Section 3 will be determined by the rate of flux production in the liquid 

and the rate at which flux can be convected into the solid. This allows growing modes in the 

solid for values of a much smaller than those required if all of the flux production is to take 

place in the solid. 

5 Growth and decay of the magnetic field 

In the preceding two sections, we have described magnetic field generation in both the solid 

and the liquid under the assumption that the field is weak. Both calculations can break down 

for strong fields. 

The magnetic stress in the liquid may become large enough to influence the circulation. 

The circulation velocity, given by equation (4.4), is sub-Alfvenic; hence, magnetic flux tubes 

will quickly adjust to hydromagnetic equilibrium. This implies that there will be small 

temperature perturbations on the equipotential surfaces of magnitude 8 T/T ~ B 2 /81rPi where 

Pi is the ion pressure, which is larger than the thermal component of the electron pressure. The 

circulation velocity ( 4.4) should be a reasonable approximation for magnetic field variations 

with kz ~ 1 as long as the perturbations to the heat flux ~ K.08T/z associated with the 

temperature fluctuations are small compared to the perturbations due to the magnetic field 

~ XF 0 . The condition for this to be true is that 

(5.1) 

or 

(5.2) 

assuming the relation (3 .29), as we shall henceforth. An equivalent condition arises from the 

requirement that the magnetic stresses be smaller than the thermally induced pressure 

fluctuations and should therefore be unable to influence the circulation. 

Secondly, the non-linear terms in equations (2.15) and (4.10) describing the evolution of 

the field in the solid and liquid respectively must be included when X < 1 or 

(5.3) 

Note that conditions (5.2) and (5.3) are similar for T8 ~ 1. 

We expect that the end result of the evolution of the linear instability will be to produce 

a disorganized array of horizontal magnetic loops of size ~ z. However, when X < l, the 

horizontal temperature gradient should exceed the vertical temperature gradient. The 

dominant contributions to the convective velocity (2.16) are now 

-- F 1 
V""----. (5.4) 

neµ nee 

The battery term in (2.15) is unchanged. There is an additional field convection with the 

drift velocity of the conduction electrons. This term alone, like its counterpart in the fluid 

circulation analysis, causes no change in the total magnetic energy. However, when X < 1,, 

it dominates the ohmic decay term and leads to the production of vertical magnetic field 

out of horizontal field. The vertical field will penetrate the lower density regions where the 

thermal resistance is largest and where X, and therefore the inhibition of the cross-field 

thermal conductivity, is much larger. The vertical heat flux will therefore increase locally 

in those parts of the solid where the field is vertical, increasing the production rate of hori

zontal field. 
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1042 R. D. Blandford, J. H. Applegate and L. Hernquist 

Horizontal electrical current and heat flux can also transport the field horizontally. 

Hence, magnetic field can be generated within one part of the stellar surface where the heat 

flux is large and then transported to another region where the field production is lower. 

As a consequence of these effects, we believe that the rate of field growth in the solid is 

enhanced in the non-linear phase. What probably happens under conditions when field 

growth can occur is that magnetic flux is freely created in the vicinity of the solid surface 

and is then convected downwards into the crust with a speed V ~ F/µne o::z-4 • For~ ► 1 the 

ohmic diffusion term should dominate and in a time 105 t 5 yr, the flux should be able to 

diffuse down to a depth 

z ~ 5 x l0 4g- 112 t 114T.114cm max 14 5 8 • (5.5) 

As long as heat continues to flow through the crust, magnetic flux will be created and 

drawn downwards subject to two saturation effects. When the magnetic stress becomes 

comparable to the yield stress of the solid, the lattice will become visco-elastic and mag

netic buoyancy will oppose field amplification. The shear modulus of the lattice is 4 x 

1025 p'f}3 dyne cm-1 (Ruderman 1972). If the lattice flows when the strain angle is ~ 10-2 , 

then the saturation field strength will be 

B ~ 3 X 1013g t112 T..112 G max 14 5 8 (5.6) 

(Blandford & Hernquist 1982). 

Secondly, the temperature fluctuations induced by the magnetic field can no longer be 

regarded as perturbations when XF/1<.0 ?'. T/z. This condition yields 

B >10'4g ~-3t0.SG max~ 14 8 5 (5.7) 

independent of depth. The field can probably not grow to values much larger than this. This 

condition is similar to, but marginally weaker than, that given by the yield stress. (Note that 

the heat flux used in equation 5. 7 may be reduced from the value appropriate to an un

magnetized crust. Note also that the field strength is not limited to the critical value 

mVe = 4.4 x 1013 G, Adler et al. 1970.) 

After the magnetic field has reached its saturation value, it can still be moved around by 

the Hall currents. Adjacent loops of field will approach one another, establishing steep 

magnetic gradients which aliow reconnection to proceed through X-type neutral points 

located near the surface where the resistivity is larger. We believe that there will be a steady 

progression towards larger scale magnetic structure until the horizontal scale length 

approaches the stellar radius. Thereafter, it seems that the only quasi-steady field geometry 

is one in which the field is axisymmetric and poloidal. In this case, the electrical current will 

be totally toroidal and the heat flux predominantly toroidal. If we estimate the integral 

L"' Bdz 
0 

by BmaxZmax and assume that this is constant over the surface, then we can calculate the 

associated dipole moment. Flux conservation implies that the radial component of the field 

is o:: coW where i:t is the spherical polar angle. (This prescription clearly needs modification 

at the poles.) We can then expand in spherical harmonics to compute the magnetic dipole 

moment,M. 

3rrR
2 I M=-

8
- . Bdz. (5.8) 

At this point we should comment upon the efficiency of the mechanisms that we have 

described. In the linear regime, a fraction ~ B2 /8rrµne ~ B 2 /8rrpgz of the vertical heat flux is 
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Thermal origin of neutron star magnetic fields l 043 

converted into magnetic energy density provided that ohmic losses are not dominant. As we 

have argued, this is probably a conservative estimate in the non-linear phase. However, this 

is always far below the maximum efficiency dictated by thermodynamics ~ zVT/T for a 

heat engine to do work against the magnetic stresses. 

An axisymmetric magnetic structure can be maintained against ohmic loss as long as heat 

continues to flow through the crust. After the interior cools, the electrical conductivity will 

increase and the magnetic flux will diffuse away in a time dictated by its new value. 

6 Astrophysical applications 

Up to this point we have tried to determine general conditions under which magnetic field 

can grow in the outer crust of a neutron star. We now specialize by considering in turn slow 

pulsars, fast pulsars, pulsating X-ray sources, X-ray and -y-ray bursters, binary pulsars and 

white dwarfs. 

6.1 SLOW PULSARS 

The majority of radio pulsars appear to have been formed spinning slowly and to have dipole 

moments ~ 1030 G cm 3 which last~ 3 x 106 yr. Under the assumptions described in Section 3 

we found that l\'."' 0.7, independent of the surface gravity and weakly dependent on the 

temperature. Unless either the transport coefficients in both the liquid and the solid have 

been underestimated by factors ~ 3 or the surface layers are of helium composition, the 

linear instability described in Section 3 will not develop. However, if the neutron star retains 

a seed field ~ 108 G, then, as discussed in Section 4, magnetic flux can be created in the 

liquid and supplied to the solid. 

The cooling of neutron stars has been a topic of considerable theoretical discussion since 

the Einstein X-ray satellite failed to discover hot neutron stars in most young supernova 

remnants. Cooling calculations have not agreed in detail with each other in part because of 

uncertainties in the transport properties of the matter in the crust. At early times the cooling 

is dominated by neutrino processes and the . interior temperature is independent of the 

surface properties. For an unmagnetized 1.4M 0 neutron star with a superconducting interior 

and no pion condensate, (e.g. Richardson et al. 1982; Nomoto & Tsuruta 1981) the interior 

temperature is roughly 

(6.1) 

where t 5 105 yr is the age of the neutron star. This cooling law is valid until the photon flux 

from the surface ~ 2 x 1033 TPerg s-1 for M ~ 1.4M 0 , is able to remove the internal energy 

9 x 1045 71 erg. The cooling time is therefore 

(6.2) 

This estimate of the cooling time will be increased if the magnetic inhibition of the heat flux 

in the liquid is taken into account. 

If the growth rate, A~ 0.1 then a seed field of 108 G will growth to a strength ~ 1012 Gin 

a time t ~ 1 OtM/A ~ 104 yr. This estimate is uncertain due to the dependence on the details• 

of the non-linear evolution and the strength of the seed field; however, it does admit the 

possibility that most supernova remnants contain neutron stars in which the surface fields 

are sufficiently strong to reduce the surface X-ray luminosity but still sufficiently weak and 

disordered to have comparatively small dipole moments. (An investigation of the effects of 

magnetic fields on neutron star cooling is currently in progress.) In this way the theoretical 

expectation that type II supernova explosions generally produce neutron stars can be 
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1044 R. D. Blandford, J. H. Applegate and L. Hernquist 

reconciled with the failure to observe them as either X-ray sources or radio pulsars. Recent 

searches for pulsars associated with supernova remnants in the Galaxy and the Magellanic 

Clouds, which avoid selection effects, have confirmed this discrepancy (Manchester, Tuohy 

& D'Amico 1982.) 

The field will growth to the limiting value, (5.6) or (5.7), in~ 105 yr, and penetrate the 

crust to a depth ~ 500 m. If long range order has been established, the dipole moment will 

be 2 x 1030 G cm 3, using (5.8), in agreement with pulsar observations. Roughly 10-3 of the 

heat flux is converted into magnetic energy. No correlation between the magnetic and spin 

axes is expected, so most stars should be able to pulse. 

After ~ 2 x 105 yr, the interior of a pulsar should cool very rapidly. (The luminosity is 

usually larger than the rate of loss of spin energy.) A simple estimate gives Ts a: r;/. At a 

depth ~ 500 m, the De bye temperature is ~ 4 x 1 as K. Well below the De bye temperature, 

the electron collision time and therefore the ohmic decay time increases unless limited by 

the presence of impurities (Urpin & Yakovlev 1980b). In order for the decay time to be 

lengthened to the observed value of ~ 3 x 108 yr, the conductivity must be increased by a 
factor~ 20, which is certainly allowed but is by no means dictated by our theory. 

6.2 FAST PULSARS 

A subset of young pulsars, including those in the Crab, Vela and MSH 15-52 remnants are 

spinning comparatively rapidly and have inflated 'plerionic' nebulae around themselves. A 

large magnetic dipole moment seems to have formed very quickly in these objects. It is 

possible that the spin energy ~ 1046 P-2 erg, is powering the production of subsurface field, 

perhaps through the dissipation of currents flowing through the magnetosphere. Another 

possibility is that additional heat flux is generated by friction between the core and the 

crust (Greenstein 1971 ). 

The deceleration parameter, n = -PPiP2 + 2, has been measured for the Crab pulsar only. 

with the result n = 2.5, inconsistent with the simple electromagnetic pulsar theory (e.g 

Manchester & Taylor 1977) which predicts n = 3. The measured deceleration parameter can 

be reconciled with the simple theory if the field is still growing, as expected on the basis oJ 

our theory. Specifically, Ba: t 116 gives n = 2.5. 

The recent discovery of a 1.56 ms radio pulsar (Backer et al. 1982) for which F< 10-15 s-1 

(Backer 1982, private communication) is apparently inconsistent with this idea as the sur

face field strength is almost certainly < 1010 G. A possible explanation for this discrepancy h 

that the star is sufficiently massive to allow the formation of a central pion condensate ( e.g 

Baym & Pethick 1975). The core and inner crust would then cool very quicky by neutrinc 

emission. This would also be consistent with the absence of a detectable extended radic 

source surrounding the pulsar. 

6.3 PULSATING X-RAY SOURCES 

It is thought that the pulsating X-ray sources in massive binary systems are older thar 

~ 106 yr, and those systems with less massive primaries are even older,~ 10syr in the case ol 

Her X-1, since the binary does not become an X-ray source until the primary evolves off tht 

main sequence ( e.g. van den Heuvel 1977). Therefore, it is natural to postulate that tht 

magnetic field in these stars is produced thermally as a result of accretion processes rathei 

than the initial cooling of the neutron star. As the X-ray luminosity of pulsating binar) 

X-ray sources is much greater than that of isolated, cooling neutron stars, the power tc 

generate magnetic fields is readily available. 
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Thermal origin of neutron star magnetic fields 1045 

If the accreted gas were deposited at a uniform rate over the entire surface and the heat 
flow ere radially inward, then the battery term in (2.15) would lead to field destruction, and 
the field convection velocity, (2.16), would lead to the expulsion of field from the star (see 
the discussion following 2 .15). However, it is far more probable that matter will be accreted 
over a small fraction of the surface and that heat will flow from the hot regions to the 
remainder of the surface via the interior since the thermal conductivity of the interior is 
much greater than that of the surface layers. We may idealize the problem as follows. 

Consider a highly thermally conducting sphere of temperature T2 and radius R covered 
with a thin insulating layer. Let a fraction f of the surface be maintained at a temperature 
T1 . Further assume that there exists a relationship F ( T) between the heat flux and the 
maximum temperature on either side of the layer. The central temperature will satisfy the 
relation fF (Ti)= (1 -f)F(T 2 ), as the heat conducted inward must balance the heat con
ducted outward for a steady state to exist. If we substitute equation (3.29) for F(T), then 
we obtain 

[ 
f ] 0.45 

T~ -- T 
2 (1-f) 1· 

The time required to achieve equilibrium is roughly 

u 
t ~ ~---
eq 4rrR2fF(T 1) 

where U is the internal energy of the star. 

(6.3) 

(6.4) 

For L ~ 1038 erg s-1 and f ~ 0 . .1 the interior temperature is ~ 107 K and thermal equi
librium will be established after ~ 3 x 105 yr. Using equation (5.8), the magnetic moment 
is M ~ 4 x 1029 tf4 . After ~ 3 x 106 yr the magnetic moment will be equal to the typically 
observed value 3 x 1030 G cm3 • Therefore, if a neutron star accretes at roughly the Edding
ton rate for a typical mass transfer time-scale (e.g. van den Heuvel 1976) it can generate its 
own magnetic field. Accretion at a much slower rate is probably not able to power magnetic 
field generation. This may have occurred in the majority of cases, in particular in the bulge 
sources with their low mass stellar companions ( e.g. van den Heuvel I 977). 

6.4 X-RAY AND -y-RA Y BURSTERS 

It has been proposed that X- and ')'-ray bursters are differentiated by the absence or presence 
of a strong magnetic field (Woosley & Wallace 1982). A neutron star is a binary system that 
has in the past experienced a large enough and long enough accretion rate will have gener
ated a strong surface field and be susceptible to ')'-ray bursting. A star that has accreted less 
gas will be essentially unmagnetized and observable as an X-ray burster. 

6.5 BINARY PULSARS 

Two of the three known binary pulsars (PSR 1913 + 16 and 0655 + 64) have anomalously 
small values of P (Damashek et al. 1982). Recently P was measured for the third binary 
pulsar PSR0820 + 02 (Manchester et al. 1982). Although the value obtained (F = 0.125 x 
10-15 s-1) is not as small as for the other two binary pulsars, it is nevertheless significantly 
less than the P for most isolated radio pulsars. The inferred dipole moments are, therefore, 
small, ~ 1029 G cm3 (somewhat larger for PSR 0820 + 02, though still significantly smaller 
than values derived for isolated radio pulsars). It is also thought that these objects are older 
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1046 R. D. Blandford, J. H. Applegate and L. Hernquist 

than the typical radio pulsars. In both cases it has been suggested that the observed pulsar 

was formed in a supernova explosion before the companion completed its evolution (Smarr 

& Blandford 1976; Blandford & DeCampli 1981; van den Heuvel 1981 ). It is possible that 

these neutron stars became magnetized during a very long X-ray binary phase and that the 

magnetic field penetrated to a greater depth than in an isolated pulsar, increasing the ohmic 

dissipation time. 

6.6 WHITE DWARFS 

Some white dwarfs are magnetized with surface fields ~ 108 G. However, none of the pro

cesses discussed in this paper are likely to be relevant for white dwarfs. Crystallization does 

not occur until white dwarfs are very old and little thermal energy remains. Thus, the pro

cesses described in Sections 2 and 3 cannot lead to efficient field production. In addition, 

the circulation velocity in the interior of a white dwarf (cf Section 4) is only V ~ FX/[1 ~ 

3 x 10-9 B 8 cm s -l. The turnover time therefore exceeds the cooling time for all reasonable 

field strengths. 

7 Conclusions 

In this paper we have endeavoured to present a complete and self-consistent description of 

neutron star magnetization that is an alternative to the usual view that the magnetic flux has 

been frozen into the collapsing core during the supernova explosion. We have argued on 

observational grounds that neutron star magnetic fields are ephemeral, and on theoretical 

grounds that the field must therefore be confined to the surface layers of the star. 

We have extended the work of Urpin & Yakovlev (1980b) and suggested two possible 

mechanisms for the generation of magnetic flux. We have shown how small seed fields can 

grow exponentially within the solid crust, and specified necessary conditions for this to 

occur. Our understanding of heat transport in neutron stars is still sufficiently uncertain, 

as evidenced by the difficulties posed by the X-ray observations of supernova remnants, that 

we do not know whether or not this instability can be responsible for the production of 

neutron star magnetic fields. Secondly, we have demonstrated that the coexistence of heat 

flux and magnetic field in the liquid will cause the fluid to circulate, which may lead to 

effective dynamo action. If so, seed fields in excess of~ 108 G will grow rapidly and supply 

flux to the solid below. 

Our treatment of the subsequent evolution of the field is far more conjectural. We have 

sketched plausible mechanisms that may occur in the non-linear phase of field growth and 

lead to saturation, explaining the striking clustering of neutron star field strengths around 

1012 G. Finally we have considered the consequences of the theory in the context of various 

types of neutron stars. The theory seems to account for the principal observed properties 

of neutron star magnetic fields. 

The first priority for an improved understanding of these processes is a better descrip

tion of the transport properties of the outer crust and the liquid above it. This should be 

possible in the near future. However, it appears that it will be far more difficult to solve for 

the non-linear and necessarily three-dimensional growth of the field in any satisfactory 

quantitative manner. 
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