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Concrete thermal parameters in a natural pouring environment are essential inputs for simulating the temperature feld of a
concrete dam. Tis paper proposes a two-stage thermal parameters inversion method for a concrete dam based on optimal
temperature measuring point selection to improve the accuracy of parameters. Firstly, a selection method of optimal measuring
point for thermal parameters inversion is presented and the temperature response sensitivity of measuring points when the
parameters disturb is taken as the critical evaluation index. And then, an inversion model is established based on support vector
regression (SVR) and particle swarm optimization (PSO). Finally, the proposed method is applied to the thermal parameter
inversion of a concrete dam. Te results show that the proposed method is efective for improving the inversion accuracy and
obtaining accurate parameters. Te average error of the inversion results based on the SVR-PSO model is 28.54% lower than that
of the genetic algorithm optimization using a back propagation neural network (BPNN-GA). Besides that, the average error of the
inversion results based on the optimal measurement points is 35.57% lower than that of the nonoptimized ones.

1. Introduction

Temperature control and crack prevention are some of
the key technologies for concrete dam construction [1].
Te large size of the pouring block makes it difcult for
the heat from the young concrete to dissipate, resulting in
an apparent temperature diference near the heat dissi-
pation boundary. Additionally, the old concrete is
strongly constrained by the adjacent layers or the dam
foundation. Tese two factors may cause some adverse
temperature stress within the structure. When this
temperature stress exceeds the concrete’s tensile strength,
cracks will occur [2]. Cracks will directly afect the
construction quality, construction progress, and struc-
tural safety of the dam. It efectively reduces the cracking
risk by simulating the temperature feld in the con-
struction period of concrete dams and obtaining the
appropriate temperature control scheme [3].

In order to obtain the temperature feld of concrete dam,
scholars have proposed many calculation models based on
the fnite element method (FEM) [4–10]. Above studies
focus on the improvement of the calculation model, theory,
and method of temperature feld during the construction
period of concrete dams, which improves the calculation
efciency and the accuracy of calculation results. However,
the reliability of temperature feld simulation results is not
only related to the algorithm model but also depends on the
accuracy of thermal parameters [11]. Generally, the thermal
parameters of concrete refer to similar projects or laboratory
test data, which are afected by the batch of rawmaterials and
environmental conditions. However, in a real pouring en-
vironment, the thermal parameters difer greatly from those
derived by the above methods [12]. According to the
monitoring data on the construction site, some scholars use
inversionmethod to calculate the thermal parameters, which
improves the accuracy of the parameters.

Hindawi
Mathematical Problems in Engineering
Volume 2022, Article ID 4677344, 16 pages
https://doi.org/10.1155/2022/4677344

mailto:zyhwhu2003@163.com
https://orcid.org/0000-0002-9578-9627
https://orcid.org/0000-0003-3918-2967
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4677344


Inversion is a method for solving the model or its pa-
rameters of a system throughmeasurable physical quantities.
It is widely used in dam deformation analysis [13, 14] and
seepage analysis [15]. Te inversion problem of the tem-
perature feld of a dam is mainly related to solving the
concrete thermal parameters based on the measured tem-
perature. Te inversion methods can be divided into ana-
lytical and iterative methods.Te analytical method involves
simplifying the concrete heat transfer problem to obtain an
analytical expression between the inversion parameters and
the monitored temperature, and then obtaining the tem-
perature data to complete the inversion. Tis method is only
suitable for parameter identifcation in a one-dimensional
(1D) heat transfer problem [16], which makes its application
range limited. Te iterative method transforms the pa-
rameter solving problem into the optimization problem by
gradually modifying the parameter value until approaching
the optimal value.Tis method is easy to operate with a wide
range of applications, and has become the main method of
concrete thermal parameter inversion.

In recent years, the iterative inversion method for the
thermal parameters of a concrete dam has developed rapidly.
Ding and Chen [17] combined the precise algorithm for
calculating a temperature feld and the GA for solving an
inverse problem and inversed the concrete thermal pa-
rameters according to the measured temperature data at the
construction site. In order to improve the inversion accu-
racy, Chen and Yang [18] used the improved GA and the
FEM to carry out an inversion analysis according to the
concrete temperature observation data for a concrete dam.
Pei et al. [19] combined a response surface model and a
genetic algorithm to determine the concrete thermal pa-
rameters according to the internal temperature data of a
dam, which improved the computational efciency. Zhou
et al. [20] frst used the dam monitoring temperature and
FEM to obtain the datasets, and then used BPNN to establish
a mapping model between thermal parameters and concrete
temperature. Finally, GA was used to invoke the trained
neural network model to obtain the thermal parameters.
Ouyang et al. [21] used the Levenberg-Marquardt algorithm
to invert the thermal parameters of concrete based on the
temperature data of a reservoir inlet tower. Wang et al. [22]
used an improved PSO for concrete thermal parameter
identifcation based on the internal temperature monitoring
data of a concrete dam and verifed it. A number of existing
studies have focused on the selection and improvement of
the optimization algorithm, and the accuracy and efciency
of inversion have been improved. In addition, the location of
temperature measurement points is also one of the im-
portant infuencing factors of the inversion.

Due to the large thermal resistance of concrete, the tem-
perature response caused by some external disturbances [23],
such as air temperature and water pipe cooling, is only in a
limited space range, whichmeans that the temperature response
will gradually decay in this range.Moreover,measurement error
is inevitable in the actual temperature monitoring of the
pouring block. Tese results in that when the observed tem-
perature response is small to a certain extent, the measurement

error may be larger than the temperature response and over-
whelm it. As a result, based on such temperature monitoring
information, the thermal parameters obtained by inversion are
often inaccurate. Te traditional temperature control mode
focuses on the variation of the average temperature inside the
casting block [24], and the average temperature monitoring
information from a few internal thermometers is sufcient for
the inversion accuracy. It can be seen that the infuence of
temperature measurement point location is not signifcant, and
relevant research rarely has been conducted. However, under
the current background of refning temperature control of the
concrete dam, besides the average internal temperature, the
temperature variation in other parts, such as the surface of the
pouring block and near the cooling water pipe, also attracts the
attention of engineers [25, 26].Terefore, it is necessary to study
the selection method of temperature measurement points in
concrete thermal parameter inversion to improve the accuracy
of inversion results.

In this study, a two-stage thermal parameters inversion
method for a concrete dam based on optimal temperature
measuring point selecting was proposed. Te frst stage is to
select the optimal temperature measurement point, and the
second stage is to invert the thermal parameters based on the
monitoring data from the above measurement points. And
then, taking a concrete arch dam as an example, the optimal
temperature measuring points required was selected by the
proposed method, and the thermal parameters such as thermal
difusivity, adiabatic temperature rise, and surface heat ex-
change coefcient were inverted. Finally, the accuracy and
efciency of the method was verifed.

Te paper is organized as follows: Section 2 introduces the
selection principle of optimal temperature measurement point
for thermal parameter inversion, and the evaluation index and
calculation method are determined. Section 3 introduces the
inversion principle of concrete thermal parameters and the
inversion model is constructed. Section 4 introduces the en-
gineering background, data acquisition, datasets generation,
and fnite element modeling. Sections 5 and 6 verify the validity
of the proposed methods and draw some main conclusions,
respectively.

2. Selection Method of Optimal Measuring
Point for Thermal Parameters Inversion

2.1. Selection Principle of Optimal Temperature Measuring
Point. For the thermal parameters’ inversion of concrete,
the relationship between the monitoring temperature ηk and
the inversion parameters βi can be expressed as follows [27]:

ηk � fk β1, β2, · · · , βm( 􏼁. (1)

Taking the concrete thermal parameters of the true value
for β∗ � (β∗1 , β∗1 , · · · , β∗m) as the benchmark parameter values,
and setting the benchmark monitoring quantity as η∗k , it can
be written as follows:

η∗k � fk β∗1 , β∗2 , · · · β∗m( 􏼁. (2)
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Equation (1) is always established when the parameter βi

varies within its range. Te right side of equation (1) is
transformed into a Taylor expansion at the reference pa-
rameter value as follows:

ηk � fk β∗1 , β∗2 , · · · β∗m( 􏼁 + 􏽘
m

i�1
Ski βi − β∗i( 􏼁, (3)

where, Ski is the sensitivity coefcient of the parameter βi,
characterizing the sensitivity of temperature response at a
certain location to parameter disturbance; S(βi) can be
denoted as follows:

S βi( 􏼁 �
zη(β)

zβi

. (4)

Te monitoring error and the inversion error are given
by δηk � ηk − fk(β∗1 , β∗2 , · · · β∗m) and δβi � βi − β∗i . Equation
(3) can be written as follows:

δηk � 􏽘
m

i�1
Skiδβi. (5)

Equation (4) can be used to approximately represent the
relation between the monitoring error and the inversion
error. Terefore, according to the monitoring temperature
in the construction site, the system matrix of the concrete
thermal parameters is as follows:

δη � Sδβ, (6)

where δηk � ηk − fk(β∗1 , β∗2 , · · · β∗m), δβi � βi − β∗i , and S is
the sensitivity coefcient matrix.

We obtained the norm from both sides of equation (6)as
follows:

‖δβ‖≥
 

‖S‖
‖δη‖. (7)

It can be seen from equation (7) that, when the moni-
toring error is constant, the more signifcant temperature
response at a certain location caused by parameters dis-
turbance, that is, the larger the sensitivity coefcient is, the
smaller inversion error based on the temperature moni-
toring information of the location would be. On the con-
trary, the smaller the sensitivity coefcient is, the larger the
error of inversion error will be. Adding the infuence of error
propagation, too small temperature response may even lead
the inversion results to deviate from the actual.

Terefore, this paper took sensitivity coefcient as the
key index for selecting the optimal temperature measuring
point, and select the measuring point with the largest
sensitivity coefcient for thermal parameter inversion.

2.2. Calculation of Sensitivity Coefcient. On the basis of the
principle described in “Selection Principle of Optimal
Temperature Measuring Point,” how to calculate the sen-
sitivity coefcient is a key issue to be solved. Since the three-
dimensional (3D) temperature feld of the pouring block is
highly nonlinear, it is difcult to establish the temperature

response model by analytical method. In this study, estab-
lishing temperature simulation model by FEM, and the
improved Morris method [28] was used to calculate the
sensitivity coefcient as follows:

S �
1

q − 1
􏽘

q−1

j�1

Yj+1 − Yj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/Y0

Pj+1 − Pj􏼐 􏼑/100
, (8)

where Y0 is the output value of the input reference pa-
rameter, Pj is the percentage of the parameter variation of
the jth input of the calculation model relative to the ref-
erence parameter, and q is the number of times the model
runs.

In order to unify the magnitude of the sensitivity co-
efcient, normalization is carried out as follows:

S′ �
S − Smin

Smax − Smin
, (9)

where S′ is the normalized sensitivity coefcient.

2.3. Determination of Dam Temperature Field. According to
the analysis in “Calculation of Sensitivity Coefcient,” the
temperature feld calculation model needs to refect the
temperature diference at diferent positions to realize the
sensitivity analysis of the whole concrete pouring block.
Since concrete dams generally adopt water pipe cooling
(Figure 1), obviously, the equivalent algorithm [20] of ho-
mogenizing water cooling into a whole negative heat source
is no longer applicable. Taking into account the model
analysis accuracy and modeling efciency, the heat-fuid
coupling algorithm [29] is selected for simulating the
temperature feld of concrete containing cooling water pipes.

According to the heat conduction theory, an unstable
temperature feld T is governed by the following diferential
equation:

zT

zt
� a

z
2
T

zx
2 +

z
2
T

zy
2 +

z
2
T

zz
2􏼠 􏼡 +

zθ
zt

, (10)

where T is the concrete temperature, t is the time, a is the
concrete thermal conductivity, and θ is the adiabatic tem-
perature rise of concrete.

Te boundary conditions for equation (10) are as follows:

T � Ts,

zT

zn
� −hf Tf − Ts􏼐 􏼑,

T(0, t) � T0(t),

(11)

where Ts is the concrete temperature of the cooling pipe
surface, n is the normal outside direction of the concrete
surface, hf is the convective heat transfer coefcient, Tf is
the water temperature around concrete, and T0 is the water
temperature at a pipe inlet.

Te heat-fuid coupling algorithm is often used to
simulate the arrangement of a water pipe and the variation of
water temperature, from which the accurate temperature
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feld can be obtained without encrypting the fnite element
grid near the water pipe. Te concrete and the cooling water
pipe in the concrete were simulated by solid elements and
heat-fuid pipe elements, respectively. Te convection heat
transfer between the cooling water and the concrete is
simulated by coupling the additional nodes of the heat-fuid
pipe element with the concrete element nodes. Te heat-
fuid coupling element is shown in Figure 2. Compared with
the equivalent algorithm, the heat-fuid coupling algorithm
could accurately simulate the temperature gradient of the
concrete near the cooling pipe, and it could simulate the
arrangement of the water pipe and the water temperature
within the water pipe, which was more in line with the actual
cooling process.

3. Inversion Method of Concrete
Thermal Parameters

3.1. Inversion Principle. Te iterative inversion method for
thermal parameters involves the continuous modifcation of
the thermal parameters through a certain strategy. When the
temperature calculated value and the monitored value are
ftted optimally, the corresponding parameters are the
thermal parameters to be inverted. Tis method has
transformed parameter inversion into a nonlinear optimi-
zation problem. Te objective function of optimization can
be expressed as follows:

F � 􏽘

p

i�1
􏽘

q

j�1

Tij − T
F
ij

Tij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (12)

where F is the objective function value, i is the number of
temperature measuring points, j is the number of moni-
toring time series, TF is the temperature calculated tem-
perature, T is the monitored temperature, p and q are the
total number of monitoring points and the total number of
monitoring times.

3.2. InversionModel Construction. In iterative inversion, it
would be time-consuming and inefcient to repeatedly
invoke the fnite element subroutine directly for

optimization. To solve this problem, surrogate model is
used as an efective alternative in this regard [30]. Te
core idea of this approach is as follows: frst, a small
number of expensive fnite element simulations are
performed to obtain the modeling samples. Ten, an
approximate mapping model between model inputs and
outputs is constructed based on samples, as mentioned.
Finally, the optimization algorithm is used to invoke the
model to search for the optimal solution.

Whether the inversion can achieve good results or not
mainly depends on the performance of the surrogate
model. Over the past few decades, several surrogate models
have been most widely used, including support vector
regression (SVR) [31], kriging (KRG) [32], and radial basis
function (RBF) [33]. By comparing diferent models, the
results show that SVR has some advantages in terms of
sparsity, accuracy, and fexibility, especially in dealing with
small samples and nonlinear problems. In addition, the
quality of the inversion results is also related to the opti-
mization method. A variety of optimization algorithms,
such as artifcial bee colony (ABC) [34], PSO [35], gray wolf
optimization (GWO) [36], GA [37], whale optimization
algorithm (WOA) [38], and bat algorithm (BA) [39], ap-
plied in the model parameter identifcation have shown
good adaptability. Compared with other methods, PSO has
the characteristics of simple implementation, wide appli-
cation, and strong global search capability. Terefore, this
paper combined these two to construct a concrete thermal
parameters inversion model.

Before establishing the SVR-PSO inversion model, the
combination scheme of thermal parameters should be
determined frst. It is input into a fnite element model to
obtain the corresponding temperature response, which is
applied to the follow-up inversion of the thermal pa-
rameters. To reduce the calculating works of the nu-
merical simulation, the uniform design method [40] is
introduced to design the combination scheme of thermal
parameters, which will signifcantly reduce the numerical
computational workload.

Te inversion process based on SVR-PSO is shown in
Figure 3, and the steps are as follows:

(1) Generating training sample parameter combination
schemes using uniform designs and randomly
generating a small number of test sample parameter
combination schemes;

(2) Input the sample combination in (1) one by one into the
fnite element model of the temperature feld, and
obtain the calculated temperature. Based on the cal-
culated temperature and the monitored temperature at
that point, the objective function value is calculated
using equation (12);

(3) Take the parameter samples as input and the ob-
jective function values as output, the SVR model is
trained and validated to obtain a surrogate model
between the thermal parameters and the objective
function;

Concrete

Cooling water

Cooling pipe

Concrete

Heat exchange

Figure 1: Heat exchange between cooling water and concrete.
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(4) Use the PSO algorithm to search the feasible domain of
the parameters and the trained SVR model to calculate
the objective function. When the value of the objective
function reaches the minimum, the sets of parameters
are the optimal solution to be inverted.

4. Method and Materials

4.1. Project Background. Te Baihetan arch dam is located in
the lower reach of the Jinsha River, Sichuan Province, in
Southwest China, as is shown in Figure 4. It is a concrete
double curvature arch dam with a maximum height of 289m
and a total concrete volume of 8.03 million m3. Te super-
high arch dam has the characteristics of a huge scale,
complex structure, and high quality requirements. In ad-
dition, the dam is located in a dry-hot valley area, where the
temperature diference between day and night is large, the
solar radiation is strong, and the environmental conditions
of dam construction are relatively harsh, which poses
challenges to the temperature control and crack prevention
of the dam concrete.

To prevent temperature cracks, the dam uses low-heat
cement concrete. Compared with medium-heat cement,
low-heat cement has the advantages of a slow heat release
rate in the early stage and low total heat of hydration. Te
performance of this concrete in the late stage is close to or
better than that of medium-heat Portland cement, which can
improve the crack resistance of mass concrete. However, the
early strength development of low-heat cement concrete is
slower, and this concrete’s temperature control and crack
prevention at an early age have become the focus of engi-
neers. Terefore, it is necessary to invert the concrete
thermal parameters of the early age under actual pouring
conditions to provide basic simulation parameters for
cracking risk analysis.

Te temperature monitoring data of a pouring block was
selected for inversion. Its thickness is 3m, and two layers of
cooling water pipes were arranged inside. Distributed
temperature sensing optical fber was embedded in the
pouring block to monitor the concrete temperature [41].Te
technical specifcations of the temperature sensing system
are shown in Table 1. Te distributed optical fber ar-
rangement and temperature measuring points distribution

are shown in Figure 5. It can be seen that the measuring
points 1–9 are located in the middle of the two layers of
cooling water pipes to monitor the internal temperature of
the pouring block. Te no. 1 point was 3m away from the
upstream surface, and the distance between the no. 1–9
points was 1m. Te measuring points 10–13 are located
within 0.4m of the top surface of the pouring block, and they
are 0.1m, 0.2m, 0.3m, and 0.4m, respectively, from the top
surface of the pouring block to monitor the surface
temperature.

4.2. Inversion Parameters Determination. Te commonly
used thermal parameters include thermal conductivity λ,
thermal difusivity a, adiabatic temperature rise θ, concrete
density ρ, specifc heat c, surface heat release coefcient β,
and temperature rise law n. Te concrete density ρ and the
specifc heat c can be obtained accurately by experiment.Te
coefcient of thermal conductivity λ can be determined with
the formula a � λ/cρ. In this study, the hyperbolic equation
was used to express the adiabatic temperature rise and the
adiabatic temperature rise θ, and the temperature rise law n

had to be inversed. After the completion of the concrete
pouring, cooling water and the curing of the storehouse
surface were required. At this time, the heat exchange be-
tween the concrete and the outside world needed to be
expressed by the equivalent surface heat exchange coefcient
of the air-concrete β and the water-concrete β′.

In summary, the parameters a, θ, n, β, and β′ were
chosen as the inversion parameters. Te approximate range
of each parameter was determined according to literature
[16]: a ∈ [0.0017, 0.0050]m2/h, θ ∈ [20, 30]°C,
β ∈ [10, 60]kj/(m2 · h·°C), n ∈ [1.5, 3.5], and
β′ ∈ [200, 1400]kj/(m2 · h·°C).

4.3. Combination Scheme Design of Multiple Termal
Parameters. Based on the parameter value range deter-
mined in Section 4.2, multiple combination schemes of
parameters should be designed for the subsequent calcu-
lation of temperature response and objective function
values. According to the principle of uniform design, the
number of levels is generally taken as 3 to 5 times the
number of factors, which is determined as 50 in this paper in
order to further make the test points evenly scattered. Te
uniform design table U50(505) given in Table 2 is used for
training sample input. In addition, 10 sets of parameter
combination schemes were randomly generated as test
sample inputs, as shown in Table 3.

4.4. Finite Element Modeling. One dam monolith was se-
lected to establish the fnite element model. Te coordinates
were the X-axis in the transverse direction, Y-axis in the
downstream direction, and Z-axis in the vertical direction.
Te heat-fuid coupling algorithm was used to simulate the
water pipe cooling, as shown in Figure 6. Te total numbers
of the nodes, elements, and cooling pipe elements were
22473, 17118, and 3438, respectively. In order to refect the
temperature gradient of the top surface concrete, a dense

Concrete element

Heat exchange

temperature variation

Pipe element

Concrete node

Pipe node

Figure 2: Heat-fuid coupling element.
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fnite element mesh was divided on the top surface. Te
material parameters are shown in Table 4, and the cooling
water pipe parameters are shown in Table 5. Te side, up-
stream, downstream, and top surfaces of the pouring block
were assumed to be the third type of heat transfer boundary.
And the heat exchange between the surface of the pouring
block and the cooling water pipe were refected by the
equivalent surface heat release coefcient.

5. Results and Discussion

5.1. Selection of Optimal Temperature Measurement Points.
Te optimal temperature measurement points used for the
thermal parameter inversion were selected using the method
proposed in this paper. First of all, a set of reference values
was determined by referring to the thermal parameters of
several typical dam concrete given in literature [16]. Ten,
the reference parameters were proportionally disturbed one
by one, as shown in Table 6, and the sensitivity coefcient
was calculated using equation (8). In sensitivity analysis, the
construction parameters are shown in Table 7. Figure 7
shows the sensitivity coefcient contour of each thermal
parameter in the section.

As can be seen from Figure 7, due to the limited in-
fuence range of external air temperature and water cooling,
the deep temperature of pouring block is mainly afected by
cement hydration heat and cooling water. Te sensitivity of
temperature response of deep concrete is greater than
shallow when θ, n, and β′ were disturbed.Te temperature of
shallow concrete is signifcantly afected by air temperature,
and the degree of infuence gradually decreases with the

Determine the thermal
parameters to be inverted 

Uniform design of
parameter combinations 

Finite element simulation

Calculate the temperature 
deviation between the 

simulated and monitored 
values based on eq (14)

Generate random
parameter combinations 

Finite element simulation

Calculate the temperature 
deviation between the 

simulated and monitored 
values based on eq (14)

Get the training samples

Get the test samples

Establish SVR model

Model training

Meet the
accuracy? 

Establish prediction
model and test the

performance 

Prediction based on
trained SVR model 

Calculate the objective
function value 

Meet the termination
condition? 

Output the inversion
result 

PSO
algorithm
iteration 

Yes

No

Yes

No

Figure 3: Te inversion process based on SVR-PSO.

Figure 4: Construction site.
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increase of depth, when β was disturbed, the temperature
response sensitivity of shallow concrete was greater than
deep. Compared with deep concrete, the heat fow of shallow
concrete is more intense. When a was disturbed, the tem-
perature response sensitivity of shallow concrete was greater
than deep. Te above shows that the thermal characteristics

of concrete have an obvious spatial efect, resulting in dif-
ferent responses of temperature at diferent spatial locations
to the disturbance of each thermal parameter.

Te calculation results of the sensitivity coefcients of
the above 13 temperature measuring points are shown in
Table 8. According to the principle of optimal measurement

Table 1: Technical specifcations of the temperature sensing system.

Technical index Technical specifcation
Temperature resolution (°C) 0.02
Measurement accuracy (°C) 1
Spatial resolution (m) 1.02
Acquisition frequency Every 2 hours
Optical fber type Multimode fber (50/125 μm)

Cooling pipe
A

A´Pouring block

Optical fiber DTS host

Single dam section

A-A´ 1.5 m

1.5 m 3 m

Display interface

0.75 m

0.4 m

(a)

Cooling pipe

Concrete

1 2 3 4 5 6 7 8 9

10
11
12
13

Temperature measuring point

1.5 m

3 m

0.1 m
0.1 m
0.1 m

0.1 m

3 m 1 m

Top surfaceUpstream surface

(b)

Figure 5: Temperature measuring points distribution. (a) Embedding scheme of temperature measuring optical fber. (b) Distribution of
temperature measuring points.
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Table 2: Training sample input.

Number Parameter θ (°C) Parameter n Parameter a (m2/h) Parameter β [kj/(m2·h·°C)] Parameter β′ [kj/(m2·h·°C)]
1 20.0 2.28 0.1086 53.9 493.9
2 20.2 3.09 0.0955 46.7 812.2
3 20.4 1.83 0.0824 39.6 1130.6
4 20.6 2.64 0.0694 32.4 200.0
5 20.8 3.46 0.0563 25.3 518.4
6 21.0 2.19 0.0433 18.2 836.7
7 21.2 3.01 0.1135 11.0 1155.1
8 21.4 1.74 0.1004 55.9 224.5
9 21.6 2.56 0.0873 48.8 542.9
10 21.8 3.38 0.0743 41.6 861.2
11 22.0 2.11 0.0612 34.5 1179.6
12 22.2 2.93 0.0482 27.3 249.0
13 22.4 1.66 0.1184 20.2 567.3
14 22.7 2.48 0.1053 13.1 885.7
15 22.9 3.30 0.0922 58.0 1204.1
16 23.1 2.03 0.0792 50.8 273.5
17 23.3 2.85 0.0661 43.7 591.8
18 23.5 1.58 0.0531 36.5 910.2
19 23.7 2.40 0.0400 29.4 1228.6
20 23.9 3.21 0.1102 22.2 298.0
21 24.1 1.95 0.0971 15.1 616.3
22 24.3 2.77 0.0841 60.0 934.7
23 24.5 1.50 0.0710 52.9 1253.1
24 24.7 2.32 0.0580 45.7 322.4
25 24.9 3.13 0.0449 38.6 640.8
26 25.1 1.87 0.1151 31.4 959.2
27 25.3 2.68 0.1020 24.3 1277.6
28 25.5 3.50 0.0890 17.1 346.9
29 25.7 2.23 0.0759 10.0 665.3
30 25.9 3.05 0.0629 54.9 983.7
31 26.1 1.79 0.0498 47.8 1302.0
32 26.3 2.60 0.1200 40.6 371.4
33 26.5 3.42 0.1069 33.5 689.8
34 26.7 2.15 0.0939 26.3 1008.2
35 26.9 2.97 0.0808 19.2 1326.5
36 27.1 1.70 0.0678 12.0 395.9
37 27.3 2.52 0.0547 56.9 714.3
38 27.6 3.34 0.0416 49.8 1032.7
39 27.8 2.07 0.1118 42.7 1351.0
40 28.0 2.89 0.0988 35.5 420.4
41 28.2 1.62 0.0857 28.4 738.8
42 28.4 2.44 0.0727 21.2 1057.1
43 28.6 3.26 0.0596 14.1 1375.5
44 28.8 1.99 0.0465 59.0 444.9
45 29.0 2.81 0.1167 51.8 763.3
46 29.2 1.54 0.1037 44.7 1081.6
47 29.4 2.36 0.0906 37.6 1400.0
48 29.6 3.17 0.0776 30.4 469.4
49 29.8 1.91 0.0645 23.3 787.8
50 30.0 2.72 0.0514 16.1 1106.1
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point selection, the temperature measuring points for the
inversion of thermal parameters were determined as no. 1,
no. 9, no. 10, and no. 13.

5.2. Inversion Results

5.2.1. Comparison of Diferent Inversion Model. Te pa-
rameter combinations generated in Section 4.3 were input to
the fnite element model to obtain the training and test
sample outputs, and then, the SVR-PSO inversion model
was constructed. Since the kernel function of SVR plays a
signifcant role in the whole regression and prediction

process, studies have proved that RBF kernel can solve such
nonlinear problems well [31], so it was chosen in this paper,
and the optimal hyper-parameters were searched by using
PSO. Parameters of PSO were set as follows: iteration
population was 40, the maximum number of iterations was
100, inertia weight was 7.28, acceleration factors were 2.8
and 1.3, respectively.

Meanwhile, the BPNN-GA inversion model was con-
structed for comparison. After repeated trial calculation, the
number of nodes of the BP neural network was taken as 3,
and the better network model was retained by multiple
training tests. Parameters of GA were set as follows: pop-
ulation size was 40, the maximum number of iterations was
100, crossover probability was 0.4, and mutation probability
was 0.6.

Te mean absolute percentage error (MAPE) was also
introduced to quantify the efectiveness of the inversion
model, where smaller errors indicate a more valid model. It
is expressed as follows:

MAPE �
100%

n
􏽘

p

i�1

Ti − T
F
i

Ti

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (13)

where n is the number of samples.

Table 3: Test sample inputs.

Number Parameter θ (°C) Parameter n Parameter a (m2/h) Parameter β [kj/(m2·h·°C)] Parameter β′ [kj/(m2·h·°C)]
1 28.1 1.82 0.0925 52.4 726.5
2 29.1 3.44 0.0429 11.9 657.9
3 21.3 3.41 0.1079 26.6 1118.6
4 29.1 2.47 0.1147 12.8 1154.2
5 26.3 3.10 0.0943 15.8 424.2
6 21.0 1.78 0.1006 59.4 787.7
7 22.8 2.34 0.0995 51.7 734.7
8 25.5 3.33 0.0714 29.0 975.6
9 29.6 3.08 0.0924 67.0 1051.2
10 29.6 3.42 0.0537 12.1 1105.6

(a) (b)

Figure 6: Finite element model. (a) Dam model. (b) Cooling pipe model.

Table 4: Material parameters.

Materials Concrete Cooling water
Density (kg/m3) 2601 1000
Specifc heat [kj/(kg·°C)] 0.851 4.187

Table 5: Parameters of the cooling water pipe.

Inner radius (m) Outer radius (m) Arrangement distance (m)
0.014 0.016 1.5×1.5

Mathematical Problems in Engineering 9



Figure 8 shows the comparison of SVR and BP training
and testing results.

As can be seen from Figure 8, both SVR and BP models
have shown certain prediction capabilities. In terms of the
variation trend, the SVRmodel has better ftting than the BP
model. Te training and testing errors of the BP model are
5.20% and 17.68%, respectively, while the SVR model is
0.81% and 8.00%, which is 84.42% and 54.75% lower than
the former, respectively. It indicates that the SVR model can
better describe the small sample spatial information than the
BP model. However, the training and test samples are only a

small part of the space, and their prediction results prove
that the training model may be good. In this paper, we focus
on comparing the generalization efect of the two models. In
this paper, the focus is on comparing the inversion errors of
the two models.

Te inversion of the thermal parameters was performed
using the above two models. Te evolution lines of the two
models are shown in Figure 9. It is clear that SVR-PSO
converges earlier and has higher search efciency. Te fnal
convergence value of BPNN-GA is close to 0, which is almost
impossible for the existence of fnite element modeling

Table 6: Parameter disturbance range.

Disturbance range (%) Parameter θ (°C) Parameter n Parameter a (m2/h) Parameter β [kj/(m2·h·°C)] Parameter β′ [kj/(m2·h·°C)]
−30 18.0 2.10 0.0580 29.2 583.3
−20 20.0 2.40 0.0650 33.3 666.7
−10 22.0 2.70 0.0720 37.5 750.0
0 24.0 3.00 0.0800 41.7 833.3
10 26.0 3.30 0.0880 45.8 916.7
20 28.0 3.60 0.0960 50.0 1000.0
30 30.0 3.90 0.1040 54.2 1083.3

Table 7: Construction parameters.
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Figure 7: Sensitivity coefcient contour. (a)–(e) Show the parameter θ, n, a, β, and β′ inside the pouring block, respectively. (f )–(j) Show the
parameter θ, n, a, β,and β′ on the top surface of pouring block, respectively.
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simplifcation and monitoring errors, again proving that the
BP model has a greater error in the sample space of this
paper.

Te inversion results of the two models are shown in
Table 9. Since the actual parameters in the project are un-
known, the inversion result cannot be compared with the
real value. In this paper, the calculated temperature based on
the inversion result is compared with the monitored tem-
perature, and MAPE is used to evaluate the accuracy of the
inversion result.

Te above thermal parameters were input to the tem-
perature feld simulation program, and the calculated
temperature and the measured temperature were compared
to verify the accuracy and reliability of the parameters, as
shown in Figure 10. Te comparison of MAPE for all
measurement points is shown in Figure 11.

As shown in Figure 10, in general, the temperature
calculated based on SVR-PSO model inversion results is
closer to themonitored values, while the BPNN-GAmodel is
slightly less efective. Te MAPE for the four measurement
points corresponding to the SVR-PSO model was 4.40%,
4.14%, 2.06%, and 1.50%, and the BPNN-GA model was
5.14%, 4.11%, 4.14%, and 2.79%, respectively.

As can be seen from Figure 11, the accuracy of the SVR-
PSO model is generally better than that of the BPNN-GA
model, and their average MAPE at all measurement points
are 2.65% and 3.71%, respectively, with the former being
28.54% lower than the latter. It indicates that the inversion
accuracy of the SVR-PSO model is higher than the BPNN-
GA model in the sample space in this paper.

In addition, it can be seen in Figure 11 that the MAPE of
measurement points no.1–9 corresponding to bothmodels is
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Figure 8: Comparison of SVR and BP training and testing results. (a) Training samples. (b) Test samples.

Table 8: Sensitivity calculation results.

Measuring point number
Sensitivity coefcient

Parameter θ Parameter n Parameter a Parameter β Parameter β′
1 0.984 0.978 0.215 0.066 0.775
2 0.991 0.986 0.229 0.068 0.678
3 0.993 0.989 0.222 0.068 0.624
4 0.995 0.992 0.217 0.068 0.568
5 0.997 0.995 0.214 0.068 0.532
6 0.999 0.997 0.215 0.068 0.514
7 0.999 0.998 0.216 0.068 0.511
8 0.999 0.998 0.219 0.068 0.526
9 1.000 1.000 0.228 0.069 0.540
10 0.233 0.225 0.321 0.642 0.116
11 0.341 0.328 0.359 0.496 0.171
12 0.436 0.420 0.430 0.446 0.233
13 0.518 0.501 0.467 0.405 0.306
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smaller than that of points no. 10–13. Te main reason for
this was that the temperature of the surface measurement
point (no. 10–13) was greatly afected by random factors
such as the ambient temperature, solar radiation, and
maintenance measures, which were difcult to consider
accurately in the calculation.

5.2.2. Comparison of Inversion Results Based on Diferent
Measurement Points. To further verify the efectiveness of
the proposed method, the surface points measuring no.
10–13 were selected (the following was called combination
②), and the thermal parameters were inverted. Compared
with the Optimal measuring points: no. 1, no. 9, no. 10, and
no. 13 (the following was called combination ①), the
temperature of the measuring point for the adiabatic tem-
perature rise θ, the temperature rise law n, and the cooling
water pipe equivalent surface heat release coefcient β′
sensitivity coefcient were smaller. Te inversion results
based on combination② were as follows: a � 0.0028m2/h, θ
� 28.8°C, β� 51.0 kj/(m2∙h∙°C), n � 1.99, and β′
� 444.9 kj/(m2∙h∙°C).Te above parameters were input into
the temperature feld simulation model, and the MAPE was

calculated. Te comparison of MAPE for the two combi-
nations is shown in Figure 12.

As shown in Figure 12, the MAPE of two combinations
at no. 10–13 measuring points are very close, with the av-
erage values of 4.27% and 4.12%, respectively, indicating that
the calculation accuracy is close. At no. 1–9 measuring
points, MAPE of combination ① was signifcantly lower
than that of combination ②, with average values of 1.93%
and 4.12%, respectively. Since the measurement points of
combination ② are all surface measurement points, the
temperature information monitored mainly refects the
surface temperature characteristics of the pouring block.
When some thermal parameters, such as cooling water pipe
equivalent surface heat release coefcient, are disturbed, the
temperature response of these measuring points is not
sensitive. Under the joint infuence of monitoring errors, it is
difcult for inversion results to refect the temperature
characteristics of the whole pouring block fully. In combi-
nation ①, the monitoring information includes the tem-
perature characteristics of diferent positions of the pouring
block, which allows to take into account the temperature
response caused by the disturbance of diferent thermal
parameters. Te average MAPE of the two combinations at
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Figure 9: Te evolution line of objective function value.

Table 9: Inversion results.

Inversion model Parameter θ (°C) Parameter n Parameter a (m2/h) Parameter β [kj/(m2·h·°C)] Parameter β′ [kj/(m2·h·°C)]
SVR-PSO 25.9 2.00 0.0032 25.6 1152.7
BPNN-GA 24.4 1.67 00044 10.3 356.3
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Figure 10: Comparison of the temperature variation. (a) No. 1 point. (b) No. 9 point. (c) No. 10 point. (d) No. 13 point.
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all measuring points is 2.65% and 4.12%, respectively, and
the error based on the optimal measuring point is reduced by
35.57%. Terefore, the temperature feld with good overall
consistency can be obtained by inversion based on the se-
lection of optimal measuring points, which proves that the
proposed method is efective.

6. Conclusions

To improve the inversion accuracy of thermal parameters of
dam concrete, a two-stage inversion method based on the
selection of optimal temperature measurement points is pro-
posed in this paper. Firstly, the principle, index, and imple-
mentation method of selecting the optimal measuring point are
studied, which solve the problem on the selection of the optimal

temperaturemeasuring points for thermal parameters inversion
in concrete dam. Secondly, based on the optimization method
of the surrogate model, the SVR-PSO inversion model is
constructed, which can further reduce the calculation cost
theoretically. Finally, the proposed method is applied to the
thermal parameter inversion of Baihetan Dam concrete. Te
main conclusions are as follows:

(1) Based on the modeling samples in this paper, SVR is
lower than BPNN in both training and testing errors,
indicating that SVR has an advantage over BPNN in
describing small sample spatial information, which
can reduce the workload of numerical simulation in
inversion. Importantly, the average error of inver-
sion results based on the SVR-PSO model is 28.54%
lower than that of the BPNN-GA model. It shows
that the inversion accuracy of the SVR-PSOmodel is
better than that of the BPNN-GA model.

(2) Te average error of the inversion results based on
the optimal measurement points is 35.57% lower
than the nonoptimized ones. It shows that the in-
version based on the optimal measurement points
can obtain a temperature feld with good overall
consistency and also proves the efectiveness of the
proposed method.

Te application examples show that the proposed
method is helpful to improve the accuracy of thermal pa-
rameters inversion, and can also provide reference for
similar projects.
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