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Abstract. Pulsating heat pipe (PHP) is one of the prominent research areas in the family of heat pipes. Heat

transfer and fluid flow mechanism associated with PHP are quite involved. The analytical models are simple in

nature and limited in scope and applicability. The regression models and Artificial Neural Network (ANN) are

also limited to a number of input parameters, their ranges and accuracy. The present paper discusses the thermal

performance prediction models of a PHP based on ANN and RCA approach. Totally 1652 experimental data are

collected from the literature (2003–2017). Nine major influencing input variables are considered for the first

time to develop the prediction models. Feed-forward back-propagation neural network is developed and verified.

Backward regression analysis is used in RCA-based regression model. Linear and power-law regression cor-

relations are developed for input heat flux in terms of dimensionless Kutateladze (Ku) number, which is a

function of Jakob number (Ja), Morton number (Mo), Bond number (Bo), Prandtl number (Pr) and geometry of a

PHP. The prediction accuracy of present regression models (R2 = 0.95) is observed to be better as compared

with literature-based correlations.
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1. Introduction

Pulsating heat pipe (PHP) is a two-phase heat removal device

that works on the phase change phenomena. It has become a

promising passive cooling technique after its invention by

Akachi [1] in the field of electronics, space, manufacturing

and automobile due to wickless structure, same directional

liquid–vapour flow and shape flexibility compared with the

heat pipe. It consists of three sections, namely an evaporator

section, an adiabatic section and a condenser section (fig-

ure 1). In PHP, heat is received from the source via evapo-

rator section and rejected through the condenser section. The

adiabatic section can be added to or removed from a PHP

based on the application. Heat is transmitted from the evap-

orator to the condenser by the oscillating/pulsating motion of

two-phase vapour bubble and liquid slug [2].

PHP has been investigated by several researchers since

its invention in 1990. Experimental investigations carried

out on a PHP during 2009–2016 are reviewed by Han et al

[3]. They reported geometrical parameters, operational

parameters and working fluids (WFs) as influencing

parameters to predict the thermal performance of a PHP.

They grouped inner diameter (Di) and number of turns

(N) as geometrical parameters, and filling ratio (FR), ori-

entation of a PHP (h) and heat flux (q) as operational

parameters. Pure fluids, binary fluids and nanofluids are

considered as WFs. Alongside this review, the authors have

also performed the experimental investigations on a PHP

with various WFs [4] and observed that these parameters

influence the internal heat and mass transfer mechanism

significantly and make a PHP more complex.

In conjunction with the experimental investigations on a

PHP, theoretical predictionmodels are proposed to understand

the complex thermo-hydrodynamics of a PHP.As heat transfer

from evaporator to condenser in a PHP is mainly due to the

oscillating/pulsating motion of vapour bubbles and liquid

slugs, various models are developed to understand the influ-

ence of oscillating/pulsatingmotions on heat transfer [5–9]. In

order to predict the thermal performance of a PHP, heat

transfer correlations are developed [10–13]. However, these

correlations were developed with limited experimental data

and applicable at specified operational ranges. Chaotic beha-

viour of a PHP is analysed based on wall temperature fluctu-

ations and implementing various nonlinear models [14, 15].

Start-upmechanismand start-up heat flux correlation of a PHP

are theoretically reported by Qu and Ma [16]. Numerical
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investigations are carried out with limited mass transfer

mechanism and dimensionality of the PHP [17, 18]. Artificial

Neural Network (ANN) methods are also reported to predict

the nonlinear behaviour and thermal performance of a PHP

[19–23]. Nevertheless, it is worth noting that influence of flow

pattern transition during operation on the oscillating/pulsating

motion of vapour bubbles and liquid slugs is not considered.

Moreover, prediction models are developed with a limited

number of vapour bubbles, liquid slugs and input parameters.

It is therefore difficult to develop a prediction model of a PHP

involving intricate heat and mass transfer mechanism due to

simplified physics and limited influencing parameters. There

is no unified heat transfer correlation available that can

effectively predict the thermal performance of a PHP. Hence,

the development of a unified heat transfer correlation involv-

ing all major influencing parameters for a PHP is still chal-

lenging due to diverse experimental dataset reported in the

literature. In view of these facts, the present research work is

carried out to develop thermal performance prediction models

of a PHP using ANN and RCA approach.

2. Data collection

Thermal performance of a PHP is a function of geometrical

parameters (Di, Do, Le, Lc, N), working fluids (WFs) and

operational parameters (h, FR, Q). In order to

systematically investigate the models and to develop uni-

fied heat transfer correlation, totally 1652 experimental data

of copper-based closed loop PHP are collected from the

available literature (2003–2016) and tabulated in table 1.

Water, methanol, ethanol, acetone, R-123 and FC-72 are

considered as WFs and numbered in order as 1–6 in the

table. Three orientations of a PHP reported in the literature

are considered for modelling specified as vertical bottom

heating (h = 0�), horizontal heating (h = 90�) and top

heating (h = 180�). The range of each parameter is sepa-

rately shown in table 2.

In order to estimate the prediction accuracy of models

developed using ANN and RCA, the experimental data

reported by authors [4] are used. Various WFs considered

in the experiments are deionized (DI) water (1), methanol

(2), ethanol (3) and acetone (4) as pure fluids, FR = 50%,

Di = 2 mm, Do = 4 mm, Le = 40 mm, Lc = 50 mm, N = 9

and Q = 10–110 W. Thermal resistance (Rth) was consid-

ered as a performance parameter of a PHP. As shown in

figure 2, Rth is observed to decrease (1.43–0.34 K/W) with

an increase in heat input (10–110 W) and found to be the

minimum for acetone as compared with its counterpart

fluids.

3. Thermal performance prediction models

This section discusses the construction and comparison of

prediction models developed based on a wide range of 1652

experimental data using ANN and Regression/Correlation

Analysis (RCA). These models are developed with totally

nine input parameters such as inner diameter (Di), outer

diameter (Do), evaporator length (Le), condenser length

(Lc), number of turns (N), working fluids (WFs), orientation

(h), FR and heat input (Q). Thermal resistance (Rth) is

considered as an output parameter. Each prediction model

is systematically discussed in the subsequent sections.

3.1 Prediction model using ANN

ANN is a data-driven machine learning tool to mimic the

human brain and nervous system. It consists of large

interconnected processing elements called neurons. It has

an input layer (receives data), a hidden layer (processes

data) and an output layer (sends computed information).

These layers can learn, memorize and establish a relation-

ship between inputs and outputs and make ANN better than

an empirical model [49]. The desired output is obtained by

adjusting associated weights through a learning process to

match with actual output.

In recent years, ANN has proved its capability to effec-

tively predict the behaviour of a complex and nonlinear

system [50, 51]. ANN modelling of a PHP is reported by

various researchers as tabulated in table 3. However, these

ANN models are limited to a number of input parameters

Figure 1. Pulsating heat pipe [2].
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and experimental data considered for the modelling of a

PHP. Since the working of a PHP is intricate in nature, a

limited number of input parameters and experimental data

cannot predict the performance of a PHP accurately. Hence,

the present ANN modelling involves nine major influencing

input parameters and a wide range of 1652 experimental

data.

The present ANN model is developed using a neural

network toolbox of MATLAB. The feed-forward network

based on the back-propagation learning procedure is used to

develop the present ANN model. Totally nine geometrical

and operational parameters are considered as input vari-

ables and thermal resistance (Rth) of a PHP is set as an

output parameter. Neurons of input layer receive the

information from nine input variables. The input layer

passes these data to the first hidden layer. The weighted

input parameters (weight 9 input parameter) and bias are

processed through a transfer function in this layer. Sig-

moidal (tansig) function (Eq. (1)) is extensively used as a

transfer function [52–55]. The preliminary output of the

first hidden layer goes to the second hidden layer. The

process is repeated in the second hidden layer and generates

Table 1. Experimental dataset of various researchers.

Researchers Di (mm) Do (mm) Le (mm) Lc (mm) N WF FR h Q (W) Rth (K/W)

Chien et al [24] 2 – 15 40 8 1 40–70 0–90 10–130 0.62–2.13

Karthikeyan et al [25] 2.3 3.3 40 60 5 1 50 0 50–180 0.65–0.73

Lin et al [26] 2.4 3 22 35 5 1 20–80 0 9–87 0.83–2.88

Baitule [27] 2 3 360 280 2 1,2,3,4 0–100 0 7–81 0.28–3.48

Clement and Wang [28] 1.6 3.1 156 156 8 3 45 0 100–150 0.22–1.15

Shafii et al [29] 1.8 3 60 60 5 1,2 30–80 0 5–70 1.06–4.69

Verma et al [30] 1.45 2.54 40 30 6 1,3 10–100 0–90 10–100 0.5–2.49

Naik et al [31] 1.95 3 185 195 1 4 60,70,80 90 9–15 1.72–3.24

Tseng et al [32] 2.4 3 70 70 4 3 60 90 10–140 0.94–2.82

Ji et al [33] 1.65 3.18 40 64 6 1 50–76 0 15–200 0.16–2.64

Kothare et al [34] 1.5, 2 2.9,3.6 60 80 4 2 50 0 10–130 0.67–1.85

Pachghare and Mahalle [35] 2 3.6 42 50 2 1,2,3,4 50 0 7–80 0.27–4.71

Han et al [36] 2 4 80 80 5 1,2,3,4 35,45 0 10–50 0.27–1.74

Wang et al [37] 1.3 2.5 35 35 4 1 50 0,90 10–80 0.89–2.02

Mohammadi et al [38] 2.2 3.2 82 53 4 1 25–70 0–90 25–85 0.5–3.42

Wang et al [39] 2 4 24 106 5 2,4 35–70 0 25–125 0.17–1.95

Mameli et al [40] 2 4 80 80 5 1,3,4 35–70 0 5–100 0.11–2.04

Cui et al [41] 2 4 80 80 5 1,2,3,4 20–95 0 5–100 0.09–2.46

Pachghare and Mahalle [42] 2 3.6 50 50 10 1,2,3,4 50 0 10–100 0.34–1

Borkar et al [43] 2 3.6 42 50 1,2,3 1,2,3,4 30–70 0 7–80 0.17–2.76

Yang et al [44] 1,2 2,3 8 120 20 5 30,50,70 0–180 20–533 0.31–0.65

Khandekar et al [45] 2 3 30 120 5 1,2 0–100 0 4–70 1.18–3.71

Akter Jahan et al [46] 2 3 395 315 5 1,2 70 0–90 4–73 0.55–8.65

Han et al [47] 2 4 80 80 5 1,2,3,4 20–95 0 5–100 0.10–2.17

Mameli et al [48] 1.1 2 6 180 16 6 50 0–90 10–100 0.28–1.56

Table 2. Range of parameters used for modelling.

Parameters Di (mm) Do (mm) Le (mm) Lc (mm) N WF FR H Q (W) Rth (K/W)

Range 1–2.4 2–4 6–395 30–315 1–20 1–6 0–100 0–180 4.07–532.78 0.11–8.65
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Figure 2. Thermal resistance versus heating power input for

different pure fluids [4].
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the final output in the output layer (Rth). This signal flow

from input to output in a network is unidirectional and

hence known as feed-forward network. The output layer

compares output data with original targeted data and gen-

erates an error. Weights and bias of each neuron in hidden

layers are updated based on the Mean Square Error (MSE)

as per Eq. (2) and this process is continued in order to

obtain the acceptable MSE. This is achieved using back-

propagation learning procedure during data training that

works with the supervised learning method. The Leven-

berg–Marquardt optimization algorithm is universally

adopted in training process due to its significant advantages

of high speed, capability and robustness [52–56].

tan sig xð Þ ¼
2

1þ e�2x
� 1; ð1Þ

MSE ¼
1

n

X

n

i¼1

target valuei � predicted valueið Þ2: ð2Þ

ANN is a data-driven model and hence requires a large

number of data to accurately predict the output. Out of

totally 1652 data, 53 data are arbitrarily selected for con-

firmation and verification of final ANN model. Remaining

1599 experimental data are used to develop the ANN

model. In the development of the ANN model, 1599 data

are arbitrarily divided into three parts. The training dataset

uses 1119 data (70% data) to adjust the weights during the

training process; 240 data (15% data) are used for valida-

tion purpose to minimize overfitting of data and remaining

240 data (15% data) are set as testing data.

ANN structure size depends on the data size and type of

system. Optimal ANN structure requires a specific number

of hidden layers with an optimal number of neurons. An

ANN structure with a minimum of two hidden layers and

optimal neurons is able to model the complex behaviour of

PHP system [19–22]. ANN model with an excessive

number of neurons causes overfitting, additional unneces-

sary training time and leads to complex interconnection

weight structure whereas an inadequate number of neurons

are not able to learn the complete relationship between

data. Evaluation of an optimal number of neurons is

achieved through trial and error based on the criteria of

R (coefficient of correlation). Totally 11 ANN models are

developed based on the number of neurons (10–20) and

tabulated in table 4. The value of overall R is found to be

the maximum (0.9448) for the fifth ANN model with 14

number of neurons. Hence, the optimal ANN model is

framed as input layer with nine input variables (i = 1, 2,…,

9), first hidden layers with 14 neurons (j = 1, 2, 3, …, 14),

second hidden layer with one neuron (H2) and an output

layer with output parameter (Rth). Evaluation of Rth is

carried out using Eqs. (3)–(6) and associated weights and

Table 3. ANN modelling of a PHP.

Researchers

Input

parameters

Output

parameter ANN Data

[19] Heat input

Filling

ratio

Inclination

angle

Rth Feedforward

multi-layer

neural network

with back

propagation

Layer = 2

Neuron = 40–50

240

[20] Heat input

Filling

ratio

Rth Feedforward

multi-layer

neural network

with back

propagation

Layer = 3

Neuron\ 10

76

[21] Working

fluid

Filling

ratio

Heat input

Rth 2-layer neural

network with

back

propagation

Layer = 2

–

[22] Heat input

Filling

ratio

Rth Using different

possible neural

models by a

combination of

various

networks and

transfer

functions

Layer = 2

Neuron = 10

Transfer

functions:

Purelin, logsig,

tansig and

Gaussian RBF

47

[23] Filling

ratio

Inclination

angle

Heat input

Q Functional chain

neural network

–

Table 4. Various ANN models based on number of neurons.

ANN

models

Number of

neurons

R

Training Validation Testing Overall

1 10 0.9183 0.9138 0.8477 0.9054

2 11 0.9079 0.8747 0.9012 0.9022

3 12 0.8973 0.8782 0.9021 0.8954

4 13 0.9333 0.9215 0.8900 0.9256

5 14 0.9405 0.9561 0.9539 0.9447

6 15 0.9251 0.8921 0.9191 0.9173

7 16 0.9378 0.9193 0.9036 0.9292

8 17 0.9552 0.9099 0.9236 0.9428

9 18 0.9100 0.8802 0.9074 0.9051

10 19 0.9530 0.9262 0.7812 0.9164

11 20 0.9557 0.9353 0.8885 0.9379
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biases of each hidden layer of the developed optimal ANN

model are tabulated in tables 5 and 6.

Input A (from input layer) to neuron j of the first hidden

layer is given by

Aj ¼
X

9

i¼1

xiwji þ bj: ð3Þ

Output of neuron j of first hidden layer is given by

Oj ¼
2

1þ e�2Aj
� 1: ð4Þ

Input to second hidden layer neuron is given by

B ¼
X

14

j¼1

OjwH2j þ bh2 ð5Þ

Output of second hidden layer neuron is given by

Rth ¼
2

1þ e�2B
� 1: ð6Þ

The predicted thermal resistance obtained from the pre-

sent optimal ANN model is compared with the literature-

based actual thermal resistance for training dataset as

shown in figure 3. Totally 68% predicted data fall within

Mean Absolute Relative Deviation (MARD) of 24.12%

while remaining 32% data fall outside this range. However,

the values of R and R2 are observed to be 0.9447 and

0.8925, respectively, which shows the overall agreement of

the predicted dataset with the actual dataset. The prediction

accuracy of the developed optimal ANN model is verified

with two sets of data: (1) 53 (3.2%) data out of total 1652

literature-based experimental data and (2) 40 data of

Table 5. Associated weights and bias of the first hidden layer of an optimal ANN model.

Number of neurons (j)

Input variables (i)

Bias (b)Di Do Le Lc N WF h FR Q

1 -3.2929 -0.1933 0.6644 1.5046 0.4403 -0.0708 -1.2960 1.5618 0.1680 3.1185

2 -0.6471 0.4798 0.2466 0.0912 0.1536 -0.0823 -0.1365 -8.6131 0.0882 -9.4070

3 1.2712 -1.0313 0.0382 0.5366 1.5161 -0.4450 -0.3597 -2.6603 2.7851 1.5535

4 -2.5552 -1.1144 0.5360 -1.0508 -2.1014 -0.9898 -1.1787 -3.1578 0.1680 0.8617

5 -0.2048 0.6906 0.2940 -0.8724 -0.4717 0.3748 -2.3945 3.5125 -2.7860 -2.2907

6 0.9731 -0.4258 -3.1084 -2.8252 -1.9464 -0.2051 -4.3702 0.0332 -2.8879 2.7518

7 -4.4496 -4.5608 3.9540 1.6346 5.0125 -0.9048 -5.0805 3.7491 -0.2409 -1.4578

8 -1.6666 0.0191 -1.4214 2.3920 1.8213 1.0250 -0.0115 1.1216 -0.1236 1.2238

9 -4.1632 -2.7859 0.9291 -1.6471 -1.7167 -0.6125 0.4292 -5.9827 -0.3659 -2.9582

10 -0.3547 -1.0247 -3.0310 -0.0195 1.2400 2.5862 -6.4969 -1.9747 -2.6662 2.6495

11 -1.1480 -1.8113 -3.4641 0.9845 0.8690 3.9924 -4.3079 -1.4587 0.7226 1.7478

12 -1.6138 2.1428 -1.8165 -1.6643 0.7241 -0.1105 2.3250 -2.7649 1.0106 0.7801

13 2.5490 2.7925 1.5785 -2.8404 1.3971 0.5187 0.0058 5.4993 -0.0407 2.6955

14 3.0504 2.8828 0.2016 -6.1782 -0.2471 -3.2247 4.6283 -0.3467 -0.5289 3.3963
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Figure 3. Predicted versus literature-based thermal resistance for

training dataset.

Table 6. Associated weights and bias of the second hidden layer of an optimal ANN model.

Neuron 1 2 3 4 5 6 7

Weights -0.5831 2.6641 5.1166 -2.4253 2.3689 3.9312 -2.6755

Neuron 8 9 10 11 12 13 14

Weights -2.2685 -0.6420 -4.6273 -3.2372 4.7401 -1.2140 -4.7347

Bias (bh2) 0.2805

Sådhanå (2018) 43:184 Page 5 of 16 184



authors’ experiments [4] involving four different pure fluids

(figure 2); this comparison is shown in figure 4A and B,

respectively. As shown in figure 4A, 60% testing data fall

within MARD of 23.59% while remaining 40% data fall

outside this range. The R and R2 values are observed as

0.8777 and 0.7705, respectively. This dataset was not used

during the development of an optimal ANN and hence it is

observed that the present ANN model prediction is con-

sistent with the anonymous dataset. In addition to this, the

present ANN predicts thermal resistance with MARD of

34.51% and R=0.72 (R2 = 0.52) when compared with the

authors’ dataset [4]. Hence, on involving more input vari-

ables with a wide range of dataset, the overall prediction of

thermal resistance using ANN is found to be satisfactory

with all statistical parameters.

3.2 Prediction model using RCA

Statistical analysis is another mathematical tool that can

identify trends and correlations within complex datasets.

Regression models are statistical methods for estimating the

relationship between the output parameter and the input

(influencing) parameters. An example of a regression

equation is given below:

Yp ¼ A0 þ A1X1 þ A2X2 þ � � � þ AnXn ð7Þ

Y ¼ Yp þ e ð8Þ

where Y is the real output, Yp presents the regression model

output, X1–Xn represent the input variables, A1–An represent

the coefficients for the corresponding influencing variables,

A0 represents the constant term and e is the associated error

term. Usually, the objective of the regression model is to

minimize the sum of squared errors by varying the

coefficients, A1–An. To measure and compare the perfor-

mance of the regression models, the following terms are

used:

Coefficient of DeterminationR2 ¼ 1�
SSE

SST
ð9Þ

Adjusted Coefficient of DeterminationR2
adj

¼ 1�
SSE

SST
�

n� 1

n� k � 1
ð10Þ

In the above equations n represents the number of

observations, k is the number of influencing parameters

(predictors), Sum Squared Error (SSE) and Sum Squared

Total (SST) are the unexplained and total variability of the

measured output respectively. R2 and R2
adj are used to

measure the wellness of the fit by the trained models.

Regardless of the relationship with the input parameters and

output, adding a new parameter to the model results in an

increase in R2. However, R2
adj only increases if the added

parameter is actually a proper predictor. Hence, R2
adj is a

more useful parameter than R2 since it is a better indicator

of whether introducing a new parameter adds any value to

the model. For large datasets, both have similar values

since the penalty term n� 1ð Þ= n� k � 1ð Þ approaches

unity when n is large. In addition to this, p-value is used to

measure the statistical significance of influencing parame-

ters on the output during backward regression based on t-

test. The threshold p-value is considered as 0.05 for the

analysis. Null hypothesis (A1, A2, …, An=0) is investigated

based on p-value. Null hypothesis is rejected for p-value

less than 0.05 (large t-stat value) and changes in input

parameters are significantly related to changes in output.

Conversely, if p-value is found to be greater than 0.05 (t-

stat close to 0), the parameter will be discarded from the
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Figure 4. Predicted versus actual thermal resistance for (a) literature-based testing dataset and (b) authors’ experimental dataset [4].
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regression analysis. Backward regression is performed to

select the combination of parameters that generate the best

model among all parameters. The predictive models are

developed for the output parameter. By defining the

threshold p-value of 0.05 and performing the backward

regression method, all possible predictor parameters are

initially considered for developing the model. Subse-

quently, the least statistically significant parameter with the

largest p-value is iteratively removed in a stepwise manner

until all the remaining parameters in the model contain a

significant predefined p-value\ 0.05. This eliminates

variables from the model individually. The overall R2
adj is

observed every time when a new insignificant variable is

removed from the model.

The objective is to build a regression model to predict the

thermal performance of a PHP in terms of thermal resis-

tance (Rth). Rth is modelled as a function of inner diameter

(Di), outer diameter (Do), evaporator length (Le), condenser

length (Lc), total number of turns (N), working fluids

(WFs), orientation (h), FR and heat input (Q). Total 1652

literature-based experimental data are used to develop the

RCA model.

In the present modelling approach, backward regression

is performed to select the optimal combination of variables

that generates the best prediction model by excluding

insignificant variables step by step. The results obtained

using backward regression analysis are tabulated in table 7

with all potentially relevant nine input variables. In the first

model (model 1), the p-value for all influencing variables

except FR and N is less than 0.05. Hence, less-significant

variable FR is removed for the next step calculation. In the

second step (model 2), N is observed to be less significant

compared with other variables and therefore it is removed

from the next step iteration. In the third step (model 3), all

the variables show significance and hence the calculation

stops afterwards. The values of R2 (0.38) and Adjusted R2

(0.38) are not observed to be affected by the reduction of

input variables. The correlation developed based on the

regression analysis is shown as Eq. (11).

Rth ¼ 1:6983þ 0:8301Di � 0:4778Do � 0:0037Le
þ 0:0054Lc � 0:2174WF � 0:0041h� 0:0062Q:

ð11Þ

The comparison of the predicted thermal resistance using

developed correlation (Eq. (11)) with the literature-based

thermal resistance is shown in figure 5. The prediction is

not found to be consistent with the actual Rth. Moreover, the

prediction contribution of the coefficient of an individual

parameter is carried out based on the percentage normal-

izing approach and shown in figure 6. It is observed that the

contribution of coefficients of all the variables (except Q) is

significant with respect to each other. However, the coef-

ficient value of Q is observed to dominate and govern the

entire prediction. This shows that the prediction accuracy of

the RCA model depends greatly on the value of Q.
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Figure 5. Comparison between predicted (RCA) and literature-

based actual thermal resistance.

Table 7. Summary of results obtained using backward regression analysis.

Model no. Intercept Di Do Le Lc WF h Q N FR.

01 Coefficients 1.6115 0.8624 -0.4845 -0.0035 0.0052 -0.2190 0.0039 -0.0063 0.0067 0.0006

t-stat 10.2830 8.7411 -9.2764 -8.0795 8.9201 -13.5429 5.8997 -17.4065 0.8393 0.7269

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4014 0.4674

R
2 = 0. 0.3843, Adjusted R

2 = 0.3810

02 Coefficients 1.6353 0.8558 -0.4787 -0.0034 0.0052 -0.2198 0.0039 -0.0063 0.0071 *

t-stat 10.6728 8.7124 -9.2758 -8.0479 8.8934 -13.6199 5.9283 -17.4220 0.8901 *

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3735 *

R
2 = 0.3841, Adjusted R

2 = 0.3811

03 Coefficients 1.6983 0.8301 -0.4778 -0.0037 0.0054 -0.2174 0.0041 -0.0062 * *

t-stat 12.5014 8.8437 -9.2611 -10.5705 10.6025 -13.6622 6.9341 -19.6476 * *

p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * *

R2 = 0.3838, Adjusted R2 = 0.3812
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As discussed earlier, the prediction of thermal resistance

using ANN model is reasonably better as compared with

RCA model. However, ANN model acts as a black box and

does not contribute any significant relationship between

input variables and output parameter.

On the contrary, RCA model can develop the input–

output relationship but the predicted thermal resistance is

not found to be in agreement with the actual Rth and heat

transfer is observed to dominate for the prediction of

thermal resistance. In addition to this, critical heat flux

observed is different for different WFs for the same input

heat flux. This shows that input heat flux is not reasonable

to predict the thermal performance of a PHP. Hence, in the

next model development, the thermal performance of a

PHP is defined in terms of well-known dimensionless

Kutateladze number (Ku), which is defined as the ratio of

input heat flux of a PHP to the critical heat flux as per

Eq. (12):

Kutateladze number Ku ¼
q

hlvq
0:5
v rg ql � qvð Þ½ �0:25

: ð12Þ

The RCA model shows that number of turns (N) and FR

do not significantly predict the value of thermal resistance

of a PHP. The orientation of a PHP (h) is found to be less

significant compared with other input variables as shown in

figure 6. Hence, other input variables such as length of the

condenser section (Lc), length of the evaporator section

(Le), input heat (Q), working fluid (WF), outer diameter

(Do) and inner diameter (Di) can be grouped and repre-

sented as per Eq. (13):

Ku ¼ f Bo;Mo;Pr; Ja;Do=Di; Lc=Le;Di=Leð Þ: ð13Þ

The dimensionless number Do=Di represents the geo-

metrical characteristics of the wall. Di=Leand Lc=Le are

ratios of the inner diameter to the evaporator length and

evaporator length to condenser length, respectively, repre-

senting the aspect ratio and geometrical characteristics of

PHP. Other dimensionless numbers defined are Bond

number (Bo), Morton number (Mo), Prandtl number of

liquid (Pr) and Jakob number (Ja) through Eqs. (14)–(17):

Bond number Bo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ql � qvð ÞD2

r

r

; ð14Þ

Morton number Mo ¼
l g ql � qvð Þ½ �0:25

q0:5v r0:75
; ð15Þ

Prandtl number pr ¼
lcp

k
; ð16Þ

Jakob number Ja ¼
CpDT

hlv
: ð17Þ

The dimensionless numbers depend on thermophysical

properties of the WFs, which in turn depend on tempera-

ture. Temperature data reported in the literature are very

limited [41–48]. Hence, the subsequent development of

correlation is carried out with a total of 920 data. The

thermophysical properties of WFs are calculated based on

the average temperature [(Te ? Tc)/2] of the PHP. In order

to develop the linear correlation for Ku as a function of

aforementioned dimensionless parameters (Pr, Ja, Bo, Mo,

Le/Lc, Do/Di and Di/Le), the backward regression analysis is

carried out as discussed before. All the dimensionless

numbers are found to be significant (p-value is less than

0.05 for all) as shown in table 8. The linear correlation

developed for Ku is shown as Eq. (18). The prediction

accuracy of Eq. (18) is observed to be good with R2 as

0.9483 and Adjusted R2 as 0.9479.

Ku ¼ � 0:0713� 0:0028Pr þ 0:2535Ja þ 0:0115Bo

� 0:2651
Di

Le
þ 0:0044

Lc

Le
þ 0:0278

Do

Di

� 0:09Mo:

ð18Þ

Figure 6. Percentage normalized value of the coefficients of

individual parameters.

Table 8. Result summary of backward regression analysis for linear regression.

Model no. Intercept Pr Ja Bo Di/Le Lc/Le Do/Di Mo

01 Coefficients -0.0713 -0.0028 0.2535 0.0115 -0.2651 0.0044 0.0278 0.0900

t-stat -7.6987 -6.1215 78.0978 3.6731 -10.566 18.6046 6.6315 4.8176

p value 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000

R
2 = 0.9483, Adjusted R

2 = 0.9479
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It is worth noting that for a linear regression model, the

residual tests are very important to check the goodness of fit

for the developed model. The residual plots for linear

regression model of Eq. (18) have been shown in figure 7.

Figure 7A shows the distribution of residuals as a function

of predicted values of Ku. The distribution is observed to be
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Figure 7. Residual plots for linear regression model (Eq. (18)).

Table 9. Result summary of backward regression analysis for power-law regression.

Model no. Intercept ln(Mo) ln(Di/Le) ln(Ja) ln(Pr) ln(Do/Di) ln(Lc/Le) ln(Bo)

01 Coefficients -7.9620 -1.2046 1.0629 0.5006 1.1771 2.0418 0.1469 0.3232

t Stat -19.8467 -14.4964 14.3788 10.9505 9.4756 7.2744 2.2984 1.6823

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0218 0.0929

R
2 = 0.9035, Adjusted R

2 = 0.9028

02 Coefficients -8.1449 -1.3136 1.1136 0.5044 1.3509 1.8101 0.0906 *

t Stat -21.0706 -25.2037 16.4889 11.0362 19.5789 7.3939 1.6621 *

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0968 *

R
2 = 0.9032, Adjusted R

2 = 0.9026

03 Coefficients -7.7124 -1.3050 1.2021 0.5310 1.3648 1.7758 * *

t Stat -26.9575 -25.1385 28.8883 12.3955 19.9063 7.2727 * *

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * *

R2 = 0.9029, Adjusted R2 = 0.9024
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random and does not show any significant pattern or trend.

This means that the residuals do not contain any predictive

information. This shows that the model is correct for all

fitted (predicted) values of Ku. Another essential condition

of a linear regression model is that the error terms should be

independent, which can be seen by plotting residuals

against observation order as shown in figure 7B. The

residuals bounce randomly around the zero line throughout

the range of observation as it would be expected. In gen-

eral, residuals exhibiting normal random noise around the

zero line suggests that there is no serial correlation.

Moreover, standardized residual (residual/standard devia-

tion of residual) versus observation graph is plotted to

detect the outliers as shown in figure 7C. Approximately

68% standardized residuals fall within ±1 limit, 95%

within ±2 and all of them fall between ±3 limit.

Table 10. Validity ranges of parameters used for linear (Eq. (18)) and power-law (Eq. (21)) regression modelling.

Parameters Pr Ja Di/Le Do/Di Mo Lc/Le Bo

Range 1–14 0–2.5 0–0.25 1.5–2 0–0.36 0.5–30 0.5–3
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Figure 8. Residual plots for power regression model (Eq. (21)).
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Standardized residuals observed outside ±3 limit are con-

sidered as outliers. It is seen that 84% data are observed

between the limit ±1, 94% between the ±2 and 97% are

within the limit ±3. Only 3% data (outlier) fall outside the

range, which shows the goodness of fit for Eq. (18).

Most of the Ku correlations reported in the literature

[57–63] are in the form of the power law and hence it is

also developed in the present paper. Power-law regression

model for Ku is given by Eq. (19). It is converted into

equivalent linear form by taking natural log on both sides

and shown as Eq. (20).

Ku ¼ aPa
rJ

b
aB

c
o

Di

Le

� �d
Lc

Le

� �e
D0

Di

� �f

M
g
0 ; ð19Þ

ln Kuð Þ ¼ ln aþ aln Prð Þ þ bln Jað Þ þ cln Boð Þ þ dln
Di

Le

� �

þ eln
Lc

Le

� �

þ f ln
D0

Di

� �

þ gln M0ð Þ;

ð20Þ

Ku ¼ 0:0004P1:3648
r J0:5310a

Di

Le

� �1:2021
D0

Di

� �1:7758

M�1:3050
0

ð21Þ

All dimensionless data (x) are transformed into natural

log form (ln x) and then backward regression analysis is

carried out for Eq. (20). The power-law correlation

(A) Linear correlation (Eq. (18)). (B) Power-law correlation (Eq. (21))

(C) Power-law correlation proposed by Shafii et al (Eq. (22)).
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Figure 9. Comparison between predicted Ku and actual Ku for a total of 920 data.

Sådhanå (2018) 43:184 Page 11 of 16 184



developed for Ku is represented by Eq. (21) and analogous

regression results are shown in table 9. The values of R2

(0.9029) and Adjusted R2 (0.9024) are not observed to be

affected by the reduction of input parameters. It eliminates

two parameters of Bond number and the ratio Lc/Le from

the correlation as compared with linear regression corre-

lation (Eq. (18)). Hence, the prediction accuracy of the

power-law regression model is observed to be poor as

compared with the linear regression model. Validity ranges

of the parameter used for linear (Eq. (18)) and power-law

(Eq. (21)) regression modelling are tabulated in table 10.

As discussed before for a linear regression model, similar

residual tests are carried out to verify the goodness of fit for

the developed power-law regression model and shown in

figure 8.

Ku ¼ a
CpDT

hlv

� �b
lcp

k

� ��0:7
Di

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g ql � qvð Þ

r

r
 !0:85

l gDqð Þ0:25

q0:5v r0:75

 !0:8
Di

Le

� �0:7
Do

Di

� �2:6
ð22Þ

where a ¼ �1258 FRð Þ4þ2663:1 FRð Þ3�2028:9 FRð Þ2

þ 655:28 FRð Þ � 71:22 b ¼ �142:5 FRð Þ4

þ 301:5 FRð Þ3�227:6 FRð Þ2þ72:21 FRð Þ � 6:87

The prediction accuracy of the developed linear and

power-law regression correlations is compared with two

datasets as shown in figures 9 and 10. In addition to this,

the correlation proposed by Shafii et al [29] as Eq. (22)

 

(A)  Linear correlation (Eq. (18)) (B)  Power-law correlation (Eq. (21)). 

 

(C)  Power-law correlation proposed by Shafii et al (Eq. (22)). 
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Figure 10. Comparison between predicted Ku and actual Ku based on authors’ data [4].
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developed on the accessible dataset in the literature is also

compared with these datasets. Figure 9 shows the com-

parison between predicted Ku and actual Ku based on total

920 data. Figure 10 shows the comparison between pre-

dicted Ku and actual Ku based on the authors’ experimental

data [4]. It is observed from figures 9 and 10 that linear

correlation prediction is better for overall dataset while

power-law correlation prediction is better for a specific

dataset of authors’ experiments. In both the comparisons,

the prediction accuracy of Eq. (22) is found to be poor as

compared with developed correlations (Eqs. (18)–(21)).

The poor agreement may be due to authors’ wide dataset

used for the development of Eqs. (18)–(21) as compared

with Eq. (22) of Shafii et al [29].

4. Conclusion

The present research work is an effort towards the devel-

opment of thermal performance prediction models of a PHP

based on ANN and RCA approach using literature-based

dataset. The authors have for the first time involved totally

nine influencing parameters and a wide range of dataset

(1652) for the development of prediction models in a sys-

tematic way. Thermal resistance is considered as a perfor-

mance parameter. The first prediction model is developed

based on feed-forward back-propagation neural network

and found to be in overall agreement with higher prediction

accuracy (R2=0.89). In the absence of a significant rela-

tionship between output and input parameters through ANN

model, the second prediction model is developed using

RCA approach. The backward regression analysis is carried

out to develop the correlation. RCA model is not observed

to be in agreement (R2 = 0.38) for the prediction of thermal

resistance using dimensional parameters (Di, Do, Le, Lc, N,

WF, h, FR, Q). Hence, the third model is developed for the

prediction of thermal performance based on dimensionless

Kutateladze (Ku) number as a function of Jacob number,

Morton number, Bond number and Prandtl number and

dimensionless geometrical characteristics of a PHP. Linear

and power-law regression models are developed. The pre-

diction accuracy of the linear model is observed to be in

overall agreement (R2 = 0.95) as compared with power-law

correlation and Shafii et al [29] correlation. The present

research can be helpful to design and optimize the influ-

encing parameters of a PHP for practical applications such

as electronics, automobile radiator and fuel cell cooling.

Funding The funding was provided by SVNIT, Surat (Grant No.

Dean(R&C)/1503/2013-14).

Nomenclature

Ku Kutateladze number

Ja Jakob number

Mo Morton number

Bo bond number

Pr Prandtl number

Rth thermal resistance (K/W)

Yp predicted output by the regression model

hlv latent heat of vaporization (J/kg)

Cp specific heat at constant pressure (J/kg K)

R2 coefficient of determination

R2
adj

adjusted coefficient of determination

D diameter (mm)

L length (mm)

K thermal conductivity (W/m K)

N number of turns

Q heat input (W)

Y real output

X input parameter

A coefficient

T temperature

R coefficient of correlation

x input data

w weight

b bias

g gravitational acceleration (m/s2)

e error

N number of observations

K number of predictors

Abbreviations

FR filling ratio

WF working fluid

ANN artificial neural network

RCA regression/correlation analysis

Purelin linear transfer function

tansig tangent sigmoid function

logsig log-sigmoid transfer function

RBF radial basis function

MSE mean square error

SSE sum squared error

SST sum squared total

t-stat t-statistic

MARD mean absolute relative deviation

Greek symbols

l viscosity (Pa s)

q density (kg/m3)

r surface tension (N/m)

h orientation

Subscripts

l liquid

e evaporator

c condenser

i inner

o outer

v vapour
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