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1Boone Pickens School of Geology, Oklahoma State University, Stillwater, Oklahoma, USA, 2Department of Geography,

Geology and Planning, Missouri State University, Springfield, Missouri, USA, 3Department of Earth and Environmental
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Abstract We used aeromagnetic and gravity data to investigate the thermal structure beneath the

incipient Okavango Rift Zone (ORZ) in northwestern Botswana in order to understand its role in strain

localization during rift initiation. We used three-dimensional (3-D) inversion of aeromagnetic data to estimate

the Curie Point Depth (CPD) and heat flow under the rift and surrounding basement. We also used

two-dimensional (2-D) power-density spectrum analysis of gravity data to estimate the Moho depth. Our

results reveal shallow CPD values (8–15 km) and high heat flow (60–90 mWm�2) beneath a ~60 km wide

NE-trending zone coincident with major rift-related border faults and the boundary between Proterozoic

orogenic belts. This is accompanied by thin crust (<30 km) in the northeastern and southwestern parts of

the ORZ. Within the Precambrian basement areas, the CPD values are deeper (16–30 km) and the heat flow

estimates are lower (30–50 mWm�2), corresponding to thicker crust (~40–50 km). We interpret the thermal

structure under the ORZ as due to upward migration of hot mantle fluids through the lithospheric column that

utilized the presence of Precambrian lithospheric shear zones as conduits. These fluids weaken the crust,

enhancing rift nucleation. Our interpretation is supported by 2-D forward modeling of gravity data suggesting

the presence of a wedge of altered lithospheric mantle centered beneath the ORZ. If our interpretation is correct,

it may result in a potential paradigm shift in which strain localization at continental rift initiation could be

achieved through fluid-assisted lithospheric weakening without asthenospheric involvement.

1. Introduction

Numerical models presented to explain the initiation of continental rifts highlight the importance of magma

ascending from an elevated asthenosphere in softening the lithosphere, hence enhancing lithospheric

stretching [e.g., Buck, 2006; Bialas et al., 2010; Schmeling, 2010]. Buck [2006] suggested that continuous

intrusion of dikes thermally weakens the lithosphere, therefore reducing the amount of driving force needed

to nucleate rifting. In this model, extensional strain is localized and maintained through magma intrusions.

Such magma-assisted rifting models have been validated through geophysical observations in the more

developed segments of the East African Rift System (EARS) such as the Afar Depression and the Main

Ethiopian Rift (Figure 1) [Ebinger and Casey, 2001; Ebinger, 2005; Kendall et al., 2005]. Nonetheless, the role of

magma in the initiation of rifting within nascent segments of the EARS such as the southwestern branch

(Figure 1) where magmatism has yet to breach the surface has not been fully validated.

Our understanding of the initiation of extension within amagmatic and magma-poor rift zones is limited

due to the paucity of geophysical observations of the crust and upper mantle underlying these structures.

Within amagmatic rift segments of the EARS, surface magmatism is often missing despite the presence of

diagnostic rift features such as well-developed border faults and deep asymmetrical grabens [e.g., Chorowicz,

2005]. These observations call into question that magma injected into the lithosphere from an elevated

asthenosphere might be the only process responsible for rift initiation. Thus, there is a need to consider

alternative geodynamic processes to explain rift initiation within amagmatic rift segments.

Hence, the thermal structure beneath incipient rift zones is an important parameter that could be used to

understand and constrain mechanisms responsible for strain localization during the onset of rifting. Heat flow

measurements obtained from boreholes and deep mines provide direct assessment of the thermal structure

of the lithosphere [e.g., Pollack et al., 1993]. The sparse distribution of boreholes and their limited depth
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(<2 km) restrict mapping of the

thermal structure of the lithosphere to

only low horizontal spatial resolution

and a few kilometers depth.

Alternatively, estimates of temperature

variations of the lithosphere can be

obtained from silica thermometry

of thermal waters [e.g., Chandrajith

et al., 2013], magnetotelluric (MT)

measurements [e.g., Muller et al.,

2009], seismic velocity data [e.g.,

Furlong et al., 1995], mantle xenoliths

[e.g., Begg et al., 2009], or magnetic

data using two-dimensional (2-D)

power-density spectrum analysis

and three-dimensional (3-D) inversion

[e.g., Hussein et al., 2013].

The Okavango Rift Zone (ORZ)

(Figure 1) is a young segment of the

EARS and serves as an ideal laboratory

for deciphering the role of thermal

perturbations as a mechanism for

strain localization during the onset of

continental rifting. However, the

thermal structure of the ORZ is

poorly constrained as direct heat flow

measurements from boreholes are

sparse [Ballard et al., 1987]. Here we

use 3-D inversion of aeromagnetic

data and 2-D power-density spectrum

analysis of gravity data to investigate

the thermal structure and thickness

of the crust, respectively, under the

incipient ORZ and the surrounding

Precambrian basement. We then

compute a 2-D forward model of

gravity data that suggests a zone

of metasomatized lithospheric mantle resides beneath the ORZ. This suggests a major role of mantle fluids

in strain localization during the initiation of ORZ.

2. The Okavango Rift Zone

The EARS is a classic example of a continental rift system. The EARS is divided into the eastern, western,

and southwestern branches (Figure 1). Current ~E-W extension across the EARS (Figure 1) is largely due to

5–6 mm/yr of Nubian-Somalian plate divergence in the north with a general decrease in extension rate from

north to south accommodated by Victoria, Rovuma, and Lwandle block rotation reaching less than 1mm/yr in

the southernmost extension of the EARS [e.g., Calais et al., 2006; Horner-Johnson et al., 2007; Stamps et al.,

2008; Saria et al., 2014]. Most of Africa’s recorded seismicity is concentrated along the EARS with larger

magnitude and deeper seismicity concentrated where lithospheric estimates are thickest within the western

branch [Yang and Chen, 2010; Craig et al., 2010]. The age of rift initiation varies in different parts of the EARS.

However, a recent study suggests that rift initiation was probably coeval at 25Ma within the eastern and

western branches [e.g., Roberts et al., 2012]. The southwestern branch extends southwestward for ~1700 km

from Lake Tanganyika and Lake Malawi as a ~250 km wide zone of extensional structures [Reeves, 1972;

Scholz et al., 1976; Ballard et al., 1987; Modisi et al., 2000; Kinabo et al., 2007, 2008; Mosley-Bufford et al., 2012].

Figure 1. Digital Elevation Model (DEM) extracted from the Global 30 Arc

Second Elevation Data (GTOPO30, 1 km spatial resolution) showing the

different parts of the southwestern branch of the East African Rift System.

KR = Kenya rift; KG = Kivu rift; TR = Tanganyika rift; TC = Tanzanian craton;

MWR=Mweru rift; LR = Luangwa rift; MR =Malawi rift; ORZ =Okavango

Rift Zone.

Journal of Geophysical Research: Solid Earth 10.1002/2014JB011029

LESEANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 1211



It consists of a series of ~100 km long

and 40–80 km wide Quaternary rift

basins. The most prominent of these

rift basins is the Mweru rift which

extends southwest from the

Tanganyika rift and the Luangwa rift

which extends southwest from the

Malawi rift (Figure 1). The ORZ

represents the southwesternmost

extensional structures along the trend

of the southwestern branch of the

EARS (Figure 1). TheORZ is developing

within Precambrian orogenic belts,

namely, the NE trending

Mesoproterozoic-Neoproterozoic

Ghanzi-Chobe belt in the southeast

and the Neoproterozoic-Early

Paleozoic Damara belt to the

northwest (Figures 2 and 3b). These

two belts, together with the

Paleoproterozoic Magondi and Kheis

belts, are sandwiched between the

Archean Congo craton to the

northwest and the Kaapvaal and

Zimbabwe cratons to the southeast

(Figure 2). The Damara-Ghanzi-Chobe

orogenic belts are characterized

by NE-trending folds and faults

[Modisi et al., 2000; Kinabo et al.,

2008; Mosley-Bufford et al., 2012].

This Precambrian basement is

partially covered by unconsolidated

Quaternary sediments of the Kalahari

alluvium and Holocene lacustrine

sediments within paleo-lakes

[Ringrose et al., 2005].

The northeastern part of the ORZ is

underlain by the Karoo sedimentary

and volcanic rocks that rest

unconformably on the Precambrian

crystalline rocks (Figure 3b) [Key and

Ayres, 2000]. In northwestern

Botswana, the Karoo sedimentary rocks are represented by Triassic age Lebung group which is made up

dominantly of sandstones and siltstones [Key and Ayres, 2000]. The thickness of this group is not known, but we

expect it to be less than 2000 m since it represents only one of four groups forming the entire Karoo

sedimentary section which collectively have a maximum thickness of 2000 m. The Karoo volcanic rocks are

represented by the Jurassic age Karoo basalts which have an average thickness of 1000m [Key and Ayres, 2000].

From a compilation of previous work, surface geology, interpretation of aeromagnetic data, and borehole

data Key and Ayres [2000] divided the Ghanzi-Chobe belt into five formations (Figure 3b). These include the

Mesoproterozoic age Kgwebe (metamorphosed rhyolites, basalts, and volcaniclastic metasedimentary rocks)

and Goha formation (metamorphosed rhyolites and volcaniclastic metasedimentary rocks with minor

cherts) as well as the Neoproterozoic age Ngwako Pan (metamorphosed arkosic sandstones), D’kar

(metamorphosed sandstones, siltstones, and mudstones), and Chinamba Hills formation (metamorphosed

Figure 2. Precambrian tectonic map of (a) southern Africa and (b) Botswana

outlining the spatial extent of Archean cratons and Proterozoic orogenic

belts. White lines represent the fault system of the Okavango Rift Zone.

Modified after Singletary et al. [2003] and Begg et al. [2009].
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sandstones and siltstones). Key and Ayres [2000] also divided the Damara belt into four units (Figure 3b). These

include the Neoproterozoic age Koanaka (granitic gneisses and marbles), Chihabadum (undifferentiated

igneous and metaigneous rocks), and Roibok formation (granitic gneisses and amphibolite schists) as well

as the Neoproterozoic-Cambrian age Kwamdo complex (granitic gneisses, granites, granites, amphibolite

gneisses, migmatities, and metadolerite). Additionally, Key and Ayres [2000] divided the part of the

Paleoproterozoic age Congo craton that extends into northwestern Botswana into the Quangwadum (granitic

gneisses), Tsodilo (dominantly quartzites and quartz-mica schists), and Xaudum group (siliciclastic and

carbonate sedimentary rocks and ironstones).

In the Okavango, rifting has diverted several of Africa’s major river systems (Zambezi, Kwando, and

tributaries), altering surface drainage and thereby proving a dramatic example of how rifting affects surface

processes [Ringrose et al., 2005]. Additionally, the ORZ hosts the Okavango “Delta” (Figure 3a) the largest

inland (continental) alluvial fan in the world, with an approximate area of 22,000 km2, supporting a very

delicate ecosystem and a freshwater reservoir [e.g., McCarthy et al., 1997; McCarthy and Ellery, 1998; Wolski

and Savenije, 2006]. Within the Okavango Delta, neotectonic activity has strongly influenced the drainage and

geomorphology of the alluvial fan system.

Figure 3. (a) Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) of the Okavango Rift Zone

showing the geomorphological features of the study area including the different subbasins and fault systems of the

ORZ. (b) Geological map covering the same area as Figure 3a showing the surface and subsurface Precambrian-Paleozoic

geology below the Kalahari alluvium, Holocene lacustrine sediments, and rift sediment fill. Modified after Key and

Ayres [2000].
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The ORZ contains three areas of maximum sedimentary deposition including the Ngami, Mababe, and

Linyanti-Chobe subbasins (Figure 3a). The Linyanti-Chobe subbasin is found in the northeastern part of

the ORZ and is bounded by the Chobe and Linyanti faults. The Mababe subbasin is bounded by the

Chobe fault to the northwest and the Mababe fault to the southeast. The Ngami subbasin forms the

southwestern terminus of the ORZ and is bounded by the Kunyere to the northwest and Thamalakane

faults to the southeast [Modisi et al., 2000; Kinabo et al., 2008; Mosley-Bufford et al., 2012]. These

subbasins are filled with Quaternary lacustrine and fluvio-deltaic sediments. Previous studies used Euler

deconvolution solutions of aeromagnetic data to estimate sediment thickness within the Ngami and

Mababe subbasins and found it to be between 400 and 800 m, respectively [Kinabo et al., 2007; Shemang

and Molwalefhe, 2009].

The ORZ has been the focus of surface and subsurface geologic and geophysical investigations aimed at

determining its geometry and deciphering the nature and kinematics of the associated faults. Passive

seismic investigations have focused on resolving the focal mechanisms associated with rift-related faulting

[Reeves, 1972; Scholz et al., 1976]. Scholz et al. [1976] determined that focal mechanisms of the NE trending

faults of the ORZ indicate normal faulting within a 150 km wide zone of extension occurring between

the Gumare and the Thamalakane faults (Figure 3a). Modisi et al. [2000] used filtered aeromagnetic data

and cross-cutting relationships between the rift faults and the Okavango Dike Swarm to postulate that the

faults within the ORZ are normal faults that exploited preexisting zones of weaknesses in the Precambrian

basement (Figure 4). Kinabo et al. [2008] integrated Shuttle Radar Topography Mission (SRTM) Digital

Elevation Models (DEM) and aeromagnetic data to reveal the fault development pattern and suggested

that although the width of the ORZ is approximately 150 km, most of the subsidence and strain localization

is occurring within a ~60 km wide graben along the southeastern margin of the rift between the Tsau

and Thamalakane faults (Figure 3a).

Results from shallowMTalong a profile from the Gumare fault to the Kunyere fault and 2-D inversion of direct

current electrical resistivity measurements across the Ngami subbasin were used to show that the ORZ is an

Figure 4. Ternary magnetic image of the Okavango Rift Zone. The image was generated by the combination of the

first vertical derivative (DZ), total magnetic intensity (TMI), and analytical signal (AS) in Red-Green-Blue color space.

The NE trending magnetic anomalies are the result of regional Proterozoic fabric within the Damara-Ghanzi-Chobe

belt. The NW trending magnetic anomalies represent the Okavango Dike Swarm. The white box represents the

location of the 1° × 1° block used for the three-dimensional inversion model shown in Figures 5 and 6. The yellow line

A-B shows the trace of the cross section presented in Figure 12. LF = Linyanti fault; GF = Gumare fault; CF = Chobe

fault; MF = Mababe fault; MB = Magondi belt; TF = Tsau fault; LF = Lecha fault; KF = Kunyere fault; ThF = Thamalakane

fault; PF = Phuti fault.
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asymmetrical half-graben with the main border fault occurring along the southeastern side of the rift

[Mosley-Bufford et al., 2012]. Mosley-Bufford et al. [2012] proposed that the presence of fluids acts as a

lubricant promoting microseismicity along the developing normal faults.

Results from MT surveys along regional profiles carried out as part of the Southern African Magnetotelluric

Experiment (SAMTEX) provided the first lithospheric-scale electrical imaging beneath the region. The

SAMTEX experiment results suggest variations in the thickness of the lithosphere from the cratons to the

orogenic belts, with thicker lithospheric keels (~180–250 km) beneath the Congo and Kaapvaal cratons

compared to a thinner (~160 km) lithosphere beneath the Damara-Ghanzi-Chobe orogenic belts [Muller et al.,

2009; Miensopust et al., 2011; Khoza et al., 2013].

The age of the onset of rifting in the ORZ is not known. However, studies using paleo-environmental

reconstruction from sediments and surface expression of features such as sand dunes and diversion of

major drainage patterns suggest that rifting started in the Holocene. Moore and Larkin [2001] used the

impoundment of the Okavango River (Figure 3a) and change in drainage patterns and displacement along

the NE trending faults of the ORZ to suggest that rifting initiated between ~120 ka and ~40 ka. These

results are supported by evidence from sediments collected in the Mababe subbasin whereby a shift in

hydrology and sedimentation is inferred from grain size distribution, magnetic susceptibility, and inorganic

carbon, organic carbon, and metal concentration data [Gamrod, 2009].

3. Methodology

3.1. Curie Point Depth Analysis

The method to use magnetic data to estimate the Curie Point Depth (CPD) (the depth at which materials of

the crust and uppermost mantle reach their Curie point (CP)) was first suggested by Bhattacharyya [1964]

and subsequently improved by Spector and Grant [1970], Bhattacharyya and Leu [1975], and Tanaka et al.

[1999]. The CP, the temperature at which materials lose their ability to be permanently magnetized, varies

for different minerals but typically ranges between 550 and 580°C for the upper crust. The depth to the

base of the magnetized layer is therefore directly related to the CP, and variations in this depth can be

correlated to either heat flow and geothermal gradient or thermal properties of the lithosphere [Aboud

et al., 2011; Arnaiz-Rodrigues and Orihuela, 2013]. The CPD is largely influenced by the regional tectonic

setting such as old stable cratons versus more active tectonic regimes including subduction and rift zones

[Arnaiz-Rodrigues and Orihuela, 2013]. The CPDs can be used as a proxy for imaging the thermal structure

of the lithosphere [Ross et al., 2006].

The depth and geometry of the base of the magnetized crust beneath the ORZ and the surrounding

Precambrian basement was evaluated using the 3-D inversion of the residual aeromagnetic anomaly data to

estimate the CPD. Inversion models were generated using the MAG3D modeling software developed by the

University of British Columbia, based on the algorithm of Li and Oldenburg [1996]. Traditionally, the CPD is

determined using 2-D spectral methods [Spector and Grant, 1970; Byerly and Stolt, 1977; Shuey et al., 1977;

Bhattacharyya and Leu, 1975; Okubo et al., 1985; Tanaka et al., 1999; Ross et al., 2006; Hussein et al., 2013;

Arnaiz-Rodrigues and Orihuela, 2013]. This method has been used successfully to determine the regional CPD

values over large study areas [e.g., Blakely, 1988; Ross et al., 2006; Hussein et al., 2013; Arnaiz-Rodrigues and

Orihuela, 2013]. The major drawback associated with the 2-D spectral method is the incorporation of local

horizontal variations (<15 km) in the CPD values. Hence, we chose to use the 3-D inversion method instead of

the 2-D spectral method to overcome limitations in delineating smaller-scale variations in the CPDs as

suggested in Hussein et al. [2013].

The aeromagnetic data (Figure 4) used in this study were acquired in 1996 by the Geological Survey of

Botswana at a flight altitude of ~80 m along N-S lines with line spacing of 250 m and E-W tie lines with 1.25 km

separation. The data were provided as a uniform grid with a cell size of 62.5 m using a minimum curvature

technique. The 1995 epoch International Geomagnetic Reference Field (IGRF) was removed from the data. This

is essential in determining the CPD as it represents the noncrustal magnetic field [Ravat et al., 2007].

However, prior to the 2000 epoch, a spherical harmonic degree 10 main field model was used for the IGRF,

and such a removal left behind some portion of the main magnetic field in the resulting crustal magnetic

anomaly [Ravat et al., 2007]. The remaining portion of the main magnetic field has a long wavelength
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(>500 km) which given the size of

our blocks (120 × 120 km) would

not affect the CPD calculations

[Ravat et al., 2007].

To reliably resolve the top and base

of magnetic anomaly sources

without independent constraints

such as seismic data or borehole

information, different inversion

parameters (e.g., weighting of the

data, data errors, choice of objective

function, starting model, and size of

model mesh) were systematically

adjusted so that the inversion

model best agrees with the known

geology of the region (Figure 3b)

following the methods of Hussein

et al. [2013]. Since magnetic data

have no inherent depth resolution,

this means that when inverting for a

magnetic susceptibility distribution,

the distributions tend to concentrate

near the surface. To remedy this

problem, Li and Oldenburg [1996]

used depth weighting of the data by

multiplying the sensitivity matrix by

a function that varies with depth so that the recovered model will be concentrated near the surface. Various

weighting factors were applied, and although values between 2 and 4 produced similar results, we found that a

factor of 3, as suggested by Li and Oldenburg [1996], producedmodels that best agree with the known geology.

The region covered by the aeromagnetic data of the ORZ and surroundings (Figure 4) is discretized into 1°× 1°

(~120×120 km) subregions, and the causative magnetization directions for the center of each subregion

are used in the modeling. For each model, the cell mesh size is 900 m for each subblock and is increased to

1800m for regions outside the subblock. Cell blocks are needed outside the region of interest due to anomalies

that are close to the boundary of the subblock or if there are anomalies outside the subblock which cannot be

easily removed [Li and Oldenburg, 1996]. A range in magnetic susceptibility values based on the magnetic

anisotropy results of Aubourg et al. [2008] for the Okavango Dike Swarm (0.0-0.03 SI) were used (due to the

dominance of dikes in the basement) in order to determine which bodies produced by the inversion process

were similar in each inversion. To test the resolution of our models, we inverted the data using at least five

different starting models, where the initial magnetic susceptibility values were varied. For each model we ran a

minimum of five inversions and determined the depth to the bottom of the magnetic sources in the subregion

and compiled this to determine the CPD of the study area. Although each of the inversions produced similar

final models, we have chosen the model that best agrees with the known geology.

Figure 5 shows an example of the observed and calculated magnetic anomalies from a 1° × 1° subregion

(shown in Figure 4) from our 3-D inversion. Figure 6a shows the 3-D inversion model cube of the

aeromagnetic data used in the calculation of the CPD for the same subset together with 2-D E-W slices

(labeled i–v) illustrating the 3-D inversion of the aeromagnetic data used for the calculation of CPD. The CPD

was chosen as the base of high-amplitude magnetic susceptibility anomaly sources (Figure 6a). Figure 6b is

a NW-SE cross section (the cross section baseline is shown in Figure 4) showing the CPD under the ORZ

and surroundings as obtained from the 3-D inversion of the aeromagnetic data.

3.2. Heat Flow Estimates From CPD

The CPD values obtained from the 3-D inversion of aeromagnetic data can be used to estimate regional heat

flow [Tanaka et al., 1999; Bouligand et al., 2009; Hussein et al., 2013]. There are many variables that control

Figure 5. (a) Observed and (b) calculated magnetic anomalies of the three-

dimensional magnetic inversion model of the 1° × 1° block shown in Figure 4.

I = inclination; D = declination; FS = total field strength.
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regional heat flow including Curie temperature of magnetic minerals, the heat flow equation used in the

calculation, and the thermal conductivity of the underlying lithologies. The most common magnetic mineral

causing the regional magnetic anomalies is magnetite that has a Curie temperature of 580°C [Haggerty,

1978]. The Curie temperature can be as high as 600°C if the amount of titanium is increased to the level of

forming titanomagnetite [Stacey and Banerjee, 1974; Frost and Shive, 1986]. The Curie temperature decreases

to below 580°C if the magnetic minerals are forms of iron sulfides (e.g., 325°C for pyrrhotite) [Hunt et al.,

1995]. An additional variable is the thermal conductivity which ranges between 1.3–3.3 Wm�1 K�1 for

granites and 2.5–5.0 Wm�1K�1 for metamorphic rocks [Lillie, 1999]. The dominant lithologies underlying the

ORZ include Precambrian gneisses, volcano-sedimentary rocks, and granitoids [Modie, 2000] (Figure 3b).

Since we are only interested in a first-order estimation of the regional heat flow, we used the one-dimensional

(1-D) conductive heat flow equation where the temperature gradient is constant. Heat-producing radiogenic

isotopes within the Precambrian basement can contribute to the calculated absolute heat flow values. This

contribution is expected to be uniform and will not result in sharp variation in the heat flow values because of

close similarities in lithological units of the region (Figure 3b).

The 1-D Fourier’s Law conductive heat flow equation that assumes constant temperature gradient was used

to calculate the heat flow values under the ORZ and surroundings. The Fourier’s Law is given by

q ¼ k dT=dzð Þ (1)

where q is heat flux, k is thermal conductivity, T is temperature, z is depth, and dT/dz is temperature

gradient.

Tanaka et al. [1999] showed that the Curie temperature, C, can be defined as

C ¼ dT=dzð ÞD (2)

where D is the CPD.

Figure 6. (a) The 1° × 1° block (of the area shown on Figure 5) with E-W depth slices (labeled i, ii, iii, iv, and v) illustrating

the three-dimensional (3-D) inversion of the aeromagnetic data used for the calculation of Curie Point Depth. (b) The

3-D inversion of magnetic data for susceptibility displayed in a cross section along a NW-SE profile showing the distribution

of magnetization beneath the Okavango Rift Zone and surrounding terrains. GF = Gumare fault; TF = Tsau fault;

ThF= Thamalakane fault; KSZ = Kalahari Suture Zone. The pink and red lines are the approximate bases of magnetization and

Moho depth, respectively.
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If we assume that there are no other heat sources between the surface and the CPD as suggested by MT data

[Khoza et al., 2013], then equation (2) can be reduced to

D ¼ kC=q (3)

D, k, C, and q are as defined above.

We calculated the heat flow values at each CPD using equation (3) assuming a Curie temperature of 580°C. Using

the geology map as a guide, we varied the thermal conductivities between 1.3 and 3 Wm�1K�1 to match the

dominant geologic unit for each CPD location. We used this range in values because they closely approximate

the thermal properties of the lithologies of the Precambrian basement measured by Ballard et al. [1987] for

the region. Given the uncertainties in the CPD values determined from the 3-D inversions (estimated to be

between 1 and 3 km) and the thermal conductivities, the heat flow values have uncertainties between 5 and

10mWm�2. We found that the heat flow values calculated are in good agreement with values from two borehole

measurements obtained by [Ballard et al., 1987] from the northeastern and southwestern parts of the ORZ.

3.3. Moho Depth

Available gravity data of northwestern Botswana were used to estimate crustal thickness under the ORZ and

surrounding Precambrian basement. These include the 7.5 km grid data acquired by the Geological Survey of

Botswana, data collected by various mineral exploration companies as well as 605 new gravity stations

collected in this study at a 2 km interval in 2012 along the major roads in northwestern Botswana. The

merged data were tied to the 1971 International Gravity Standardization Net [Morelli, 1996] and reduced

using the 1967 International Gravity formula. Free-air and Bouguer gravity corrections were made using sea

level as a datum and 2.67 gm/cm as a reduction density. The merged gravity data were gridded using the

minimum curvature method at a 3 km interval to produce a Bouguer gravity anomaly map (Figure 7).

We used the 2-D radially averaged power spectral analysis developed by Tselentis et al. [1988] for the

estimation of the thickness of the crust beneath the ORZ and the surroundings. This method has been

widely used for both magnetic and gravity data [Tselentis et al., 1988; Maus and Dimri, 1996; Maden, 2010;

Hussein et al., 2013]. To apply the 2-D radial-power spectrum method, a regional gravity field consisting of a

first-order polynomial surface was removed from the Bouguer gravity data to produce a residual gravity

Figure 7. The Bouguer gravity anomaly map used for estimating the crustal thickness under the Okavango Rift Zone and

surroundings using two-dimensional (2-D) power-density spectrum analysis. White box represents the location of the

1° × 1° block used for the generation the power spectrum curve shown in Figure 8. The yellow line A-B shows the trace of

the cross section presented in Figure 12. Dotted white lines represent the boundaries of the Proterozoic orogenic belts.

LF = Linyanti fault; GF = Gumare fault; CF = Chobe fault; MF =Mababe fault; TF = Tsau fault; LF = Lecha fault; KF = Kunyere

fault; ThF = Thamalakane fault; PF = Phuti fault; B = belt.
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anomaly. The residual gravity

anomaly grid was then analyzed

by calculating the radial-power

spectrum of 1° × 1° subregions

(~120 × 120 km) with a 25 km

overlap on all sides in order to

reduce the Gibbs phenomena in

which the boundaries of the

subregion behave as a jump

discontinuity. Hussein et al. [2013]

used the power spectral analysis

method to estimate CPD from

magnetic data covering the

Death Valley in the Western U.S.

and showed that the maximum

depth of the imaged anomaly

source is approximately one third

to one fourth of the width of the

subregion used in the analysis.

Therefore, we selected the

subregion size to be 1° × 1° to ensure imaging of the Moho found at depths expected for tectonic settings

such as the ORZ and surroundings.

Figure 8 is an example of a radially averaged power spectrum curve of a subregion in the central part of

the ORZ (Figure 7). Breaks in the slope of the power spectrum curve represent density discontinuities

[Gomez-Ortiz et al., 2005]. The linear segment at the lower frequencies is assumed to be related to the Moho

depth since the crust/mantle boundary represents a major density interface [Tselentis et al., 1988] since the

maximum depth of the estimated density interface is directly related to the dimension of the subregion

used in the investigation (~120 × 120 km in this case).

To avoid uncertainties associatedwith selecting the part of the curvewhere the slope of the lowwave numbers is

measured (see Figure 8), three first-order polynomial fits were used to produce straight lines, and the average

slope of these lines was taken to represent the Moho depth. Subsequently, the standard deviation of each fit was

determined. The combination of the variations of the slopemeasurement from the three different polynomial fits

and their standard deviations led us to determine that the error in estimating the Moho depth is ~±3 km.

To test the reliability of estimates of the Moho depth from the 2-D radially averaged power spectrum (Figure 8),

we compared results from this study with previous studies that used passive seismic data (Table 1). For this,

we calculated the crustal thickness of eight 1° × 1° subregions centered on the locations of passive seismic

stations used in estimating crustal thickness in the region by [Nguuri et al., 2001;Nair et al., 2006; Kgaswane et al.,

2009]. A comparison of the results of the two approaches indicates that the Moho depth estimates from the

2-D radially averaged power spectrum method is in good agreement with those obtained from the passive

Figure 8. An example of the two-dimensional power-density spectrum analysis

curve used for the estimation of the crustal thickness values. The radial-power

spectrum is plotted against the wave number, and a series of points that are

represented by one or more straight lines in Layer 2 on the graph are used to

calculate the crustal thickness. See Figure 7 for location.

Table 1. Crustal Thickness Estimation FromGravity Compared to Data From Passive Seismic Stations in Eastern Botswana

From the Kaapvaal Project

Seismic Station

Latitude Longitude
Gravity

method (km)

Nguuri et al.

[2001] (km)

Nair et al.

[2006] (km)

Kgaswane et al.

[2009] (km)Deg. S
a

Deg. E
a

sa63 �23.658 26.082 44.7 ± 3 50–47 44.4 ± 1.12 N/A

sa64 �22.969 26.202 45.3 ± 3 44–41 41.2 ± 0.58 40.5

sa65 �22.818 27.222 48.5 ± 3 50–47 43.1 ± 0.07 40.5

sa66 �21.900 26.373 45.4 ± 3 50–47 46.9 ± 0.16 48.0

sa67 �21.886 27.274 45.9 ± 3 47–44 N/A 45.5

sa68 �21.950 28.188 45.0 ± 3 50–47 50.3 ± 1.19 45.5

sa70 �21.088 26.335 54.3 ± 3 53–56 51.6 ± 0.23 50.5

sa71 �20.926 27.141 44.3 ± 3 47–44 43.6 ± 0.85 43.0

a
Deg. = degrees.
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seismic data with root-mean-square (RMS) error of 2.40 km compared to Nguuri et al. [2001] results, 3.44 km

compared to those of Nair et al. [2006], and 3.92 km compared to those of Kgaswane et al. [2009].

4. Results

4.1. Curie Point Depth and Heat Flow

Figures 9 and 10 show a well-defined NE trending zone of shallower CPDs (~8 to 15 km) and higher heat flow

(>55 mWm�2) extending from the southwestern part of the Ngami subbasin to the central part of the rift

zone. This zone coincides with a region of maximum subsidence within the ORZ and high concentration of

normal faults [Modisi et al., 2000; Kinabo et al., 2007, 2008; Shemang andMolwalefhe, 2009]. The Linyanti-Chobe

subbasin, where maximum subsidence is also observed, is characterized by the presence of lower (8 to

15 km) CPD values and higher heat flow values (up to 83 mWm�2) where the concentration of normal

faults appear to step northward (Figure 9). The elevated heat flow in the Linyanti-Chobe subbasin is correlated

in the presence of at least one hot spring with a measured temperature of 45°C located to the northeast

of the subbasin (grey circle in Figure 10). The overall extent of the low CPD and the high heat flow

values also closely coincides with the boundary between the Neoproterozoic Damara orogenic and the

Paleoproterozoic-Mesoproterozoic Ghanzi-Chobe orogenic belts. Interestingly, the Mababe subbasin, which

lacks significant concentration of normal faults, is not underlain by shallow CPDs or elevated heat flow values.

This suggests that the presence of a combination of Precambrian and rift structures might be needed to

effectively influence the thermal structure under the ORZ.

A peculiar region of shallow CPD (~12 to 15 km) and elevated heat flow values (~50–55 mWm�2) occurs

beneath the Makgadikgadi Pans (Figures 9 and 10). This depression is underlain by the Paleoproterozoic

Magondi and the Paleoproterozoic-Mesoproterozoic Ghanzi-Chobe orogenic belts, which are characterized

by deep CPD ranging between 20 and 30 km and low heat flow values of <45 mWm�2 (Figures 9 and 10).

The surface topography suggests NE trending faults in this area with associated seismicity and is suggested

to be a zone of extension albeit to a lesser extent than the ORZ [Baillieul, 1979]. The lithospheric thermal

structure of the Makgadikgadi Pans is beyond the scope of this work, and future work can be focused on

understanding the source of these anomalies.

Figure 9. Curie point depth values in kilometers estimated from the three-dimensional inversion of the aeromagnetic data

covering the Okavango Rift Zone (ORZ) and surroundings. Dotted white lines represent the boundaries of the Proterozoic

orogenic belts. Solid white lines depict the margins of the major subbasins of the ORZ and the Makgadikgadi Pans (MP).

LF = Linyanti fault; GF = Gumare fault; CF = Chobe fault; MF =Mababe fault; TF = Tsau fault; LF = Lecha fault; KF = Kunyere

fault; ThF = Thamalakane fault; PF = Phuti fault; C = craton; B = belt.
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The deepest CPD values (20–30 km) and lowest heat flow values (<45 mWm�2) covering a relatively vast and

continuous region are found to the northwest of the ORZ (Figures 9 and 10). These anomalies closely coincide

with the continuation of the Archean Congo craton in northwestern Botswana as well as portions of the NE

trending Neoproterozoic Damara orogenic belt on the southeastern margin of the craton (Figures 9 and 10).

4.2. Moho Depth

Figure 11 presents the Moho depth estimates of the 2-D radially averaged spectrum analysis of the gravity

data showing that the crustal thickness under the ORZ and the surrounding Precambrian basement ranges

between 25 and 50 km. The shallowest Moho depth values (26 to 32 km) are found within the Ngami and

the Linyanti-Chobe subbasins in the northeastern and southwestern parts of the ORZ. Shallow Moho depths

(~30–35 km) are also found beneath the Makgadikgadi Pans. Moho depth estimates greater than 40 km

occur outside the rift under the Precambrian basement (compare Figures 11 and 3b).

5. Discussion

5.1. Thermal Structure Beneath the ORZ and Surrounding Basement

We have used CPD estimates obtained by inverting magnetic data for 3-D magnetic susceptibility distributions

to estimate heat flow values to evaluate the thermal structure beneath the ORZ and surrounding Proterozoic

basement in order to elucidate processes responsible for initiating the rift. We also estimate the Moho

depths beneath the study region. The 3-D inversion models provide spatially detailed depths to the bottom of

the magnetic sources (e.g., Figures 6 and 10). The variability in the depths obtained and heat flow values

estimated are reflective of the different tectonic elements of the basement geology consistent with the notion

that CPD analyses can be used to estimate the thermal and/or geologic structure of a region [Hussein et al.,

2013]. The CPD values could also be a response to the variations in crustal thickness. Figures 9 and 10 show that

shallower CPD values (<15 km) and elevated heat flow values (>55 mWm�2) occur within the rift zone,

whereas deeper CPD values (>15 km) and lower heat flow estimates (<50 mWm�2) values occur outside

the rift beneath the surrounding Proterozoic mobile belts. Arnaiz-Rodrigues and Orihuela [2013] classified the

Figure 10. Heat flow values in mWm
�2

calculated using the Curie Point Depth obtained from the three-dimensional

inversion of the aeromagnetic data covering the Okavango Rift Zone and surroundings. The white circles are locations

of heat flow values obtained from borehole measurement by Ballard et al. [1987]. The grey circle is the location of a

hot spring with temperature of 45°C. Dotted white lines represent the boundaries of the Proterozoic orogenic belts.

Solid white lines depict the margins of the major subbasins of the ORZ and the Makgadikgadi Pans (MP). LF = Linyanti

fault; GF = Gumare fault; CF = Chobe fault; MF =Mababe fault; TF = Tsau fault; LF = Lecha fault; KF = Kunyere fault;

ThF = Thamalakane fault; PF = Phuti fault; C = craton; B = belt.
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CPD values into two groups based on their position relative to the Moho depth: (1) CPD values shallower

than the Moho are usually associated with areas with high heat flow resulting from crustal thinning due to

extension/rifting, and (2) CPD values deeper than the Moho are typical of tectonically and isostatically stable

areas with low heat flow such as shields and cratons. Therefore, variations in the CPD values can be correlated

with the tectonic processes, especially thermal processes driving rift initiation. Shallow CPD values have

been interpreted as due to heating of the continental crust, typically by underlying magma chambers. For

example, shallow CPD values ranging between 5.2 and 8.3 km from the eastern branch of the EARS in the

southern Kenya rift (Figure 1) have been interpreted as indicating high heat flow associated with the presence

of a magma body at depth [Githiri et al., 2012]. Similarly, CPD estimates from the Death Valley and surrounding

areas in the United States showed that the shallowest CPD values (<15 km) occur over known geothermal

fields, hot springs, and a seismically imaged magmatic body [Hussein et al., 2013].

Our heat flow estimates are similar to those reported from the Kivu, Tanganyika, and Malawi rifts of the

western branch of the EARS (Figure 1) ranging between 53 and 82 mWm�2 [Fadaie and Ranalli, 1990]. Our

estimates are also consistent with the measured heat flow values of Ballard et al. [1987]. For example,

southeast of the southern termination of the Chobe fault (18°31′S, 24°19′E, Figure 10, filled white circle), our

estimated heat flow of 60 mWm�2 is comparable to the ~56 mWm�2 value obtained from borehole data.

Furthermore, our estimated heat flow value of ~53 mWm�2 for a site west of the southern termination of the

Lecha fault (20°35′S, 21°28′E, Figure 10, filled white circle) is comparable to the 60 mWm�2 value measured

in boreholes by Ballard et al. [1987]. This region of elevated heat flow extends to the southwest of the study site

into Namibia. Within the Damaran belt in Namibia, heat flow values from borehole measurements range

between 56 and 92 mWm�2 [Ballard et al., 1987], suggesting that the Damaran belt is characterized by higher

heat flow compared to the surrounding cratons.

What is clear from our study is that the shallow CPD values under the ORZ is strongly correlated with the

presence of major rift-related border faults and the boundary between Proterozoic orogenic belts (Figure 9).

The shallowest CPD values (8–10 km) occur within a region bounded by the Tsau and Thamalakane faults in

the southwest and within the Chobe and Linyanti faults in the northeast (Figure 9). Previous investigations

using depth to basement estimations from gravity andmagnetic data [Kinabo et al., 2007] and high-resolution

shallow MT measurements [Mosley-Bufford et al., 2012] have suggested that most of the subsidence is taking

Figure 11. Crustal thickness in kilometers obtained from the two-dimensional analysis of the gravity data covering the

Okavango Rift Zone and surroundings. Dotted white lines represent the boundaries of the Proterozoic orogenic belts.

Solid white lines depict the margins of the major subbasins of the ORZ and the Makgadikgadi Pans (MP). LF = Linyanti

fault; GF = Gumare fault; CF = Chobe fault; MF =Mababe fault; TF = Tsau fault; LF = Lecha fault; KF = Kunyere fault;

ThF = Thamalakane fault; PF = Phuti fault; C = craton; B = belt.
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place within the ~60 km wide zone bounded by the Tsau and Thamalakane faults. This zone also closely

coincides with the boundary between the Damara belt to the northwest and the Ghanzi-Chobe belt to

the southeast.

Not surprisingly, the shallow CPD values are accompanied by high heat flow typically higher than 55mWm�2

(Figure 10). Our first-order interpretation is that these high heat flow values are only associated with the

rifted region. However, there is the possibility that high heat flow estimates are also associated with

Proterozoic orogenic belts. For example, Ballard et al. [1987] reported average heat flow values from borehole

measurements for 25 sites in Botswana and Namibia. These values are<40mWm�2within the cratons which

increase to ~60 mWm�2 at the craton margins and to >70 mWm�2 within the Proterozoic orogenic

belts. Heat flow measurements at the surface of the Earth comprise three components: (1) radiogenic decay

of heat-producing elements such as K, Th, and U, (2) heat conducted through the lithosphere from the

underlyingmantle, and (3) orogenic heat, transported by convection frommagmas andmantle fluids into the

lithosphere during orogenic events [Rudnick et al., 1998 and references therein]. It is therefore important

in the interpretation of heat flow data to acknowledge these three components of surface heat flow.

Chapman and Pollack [1975, 1977] and Ballard et al. [1987] acknowledging these three different sources of

heat flow, argued that the variations in heat flow cannot be accounted for by crustal heat production

(component (1) above) and that part of this heat flow may originate from greater depths, suggesting a

possible fundamental difference in the thermal structure of the lithosphere between the cratons and the

orogenic belts in this part of Africa.

High heat flow estimates were also obtained from other parts of the EARS that are underlain by Proterozoic

orogenic belts. Sebagenzi et al. [1993] obtained heat flow values ranging between 48 and 72 mWm�2 from

the Neoproterozoic orogenic belt in southeastern Congo, close to what was later identified as the Mweru

rift (Figure 1). Sebagenzi et al. [1993] argued that these values are higher than what is expected for a

Proterozoic orogenic belt and suggested that these values are due to lithospheric thinning accompanying a

southwestern extension of the EARS. Table 1 shows that our Moho depth estimates are comparable to depths

obtained from seismic studies. The Moho depth estimates from spectral analysis suggest that the crust is

shallower below the ORZ coincident with the shallow CPD values and elevated heat flow than the adjacent

Proterozoic mobile belts. Interestingly, beneath the ORZ in the vicinity of the Ngami subbasin, we estimated

the crustal thickness to be ~30 km (Figure 11). A shallower crust beneath other amagmatic rift segments

has been observed for the western branch of the EARS within a region dominated by low P wave velocity

(3–5% decrease) in the middle crust and the upper mantle lithosphere interpreted as resulting from a

melt fraction of ~ 2%–3.3% or by a temperature increase of at least 248 to 376 K [Wölbern et al., 2012;

Jakovlev et al., 2013].

5.2. Source of the Thermal Anomalies Beneath the ORZ

Assuming that the CPD values in Figure 9 are not due to the lack of magnetic minerals, these results together

with the heat flow data suggest that the lithosphere beneath the ORZ is thermally altered compared to the

surrounding basement rocks. The occurrence of electrical and magnetic anomalies along portions of the

Damara-Ghanzi-Chobe belt has been consistently observed in geophysical surveys. However, the origin of

this conductive anomaly remains debatable even with new MT data. Magnetometer array studies [De Beer

et al., 1975] have indicated strong electrical conductors within the crust in northern Botswana with the spatial

location of this conductive anomaly aligned with our CPD and heat flow anomalies. de Beer et al. [1975]

suggested that the origin of the conductivity anomaly may be either thermal or compositional or both, the

former being associated with anomalously high temperatures in the crust and upper mantle and the latter

with conductive materials such as graphite or sulfides often concentrated within fracture zones. Chapman

and Pollack [1977], citing elevated heat flow measurements over Zambia along the trend of the conductivity

anomaly, suggested that the origin of the conductive anomaly may be at least partly thermal due to a

thinned lithosphere from rifting. This interpretation is in contrast with recent MT results suggesting that the

ORZ lacks a typical rift signature of a thinned lithosphere coupled with the presence of a thermal anomaly

[Khoza et al., 2013]. Khoza et al. [2013] argued that if rifting is indeed taking place in the ORZ, then it must

be initiated through uppermost crustal processes without the involvement of asthenospheric processes.

Ritter et al. [2003] and Khoza et al. [2013] interpreted middle to shallow crustal conductors within the central

zone of the Damara-Ghanzi-Chobe belt as either due to the presence of graphite-bearing marbles or massive
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sulfide mineralization. We note that similar crustal conductors have been observed in Tibet coincident

with locations of major shear zones and interpreted as resulting from elevated fluid content that enhance

deformation by weakening the crust [Bai et al., 2010].

Our results show that the ORZ is associated with shallow CPDs, elevated heat flow, and elevated Moho, within

a 60 km narrow zone marking the southeastern margin of the ORZ (Figures 9–11). Hence, in the absence

of surface magmatism and lack of a MT signature diagnostic of a thinned lithosphere, a possible

interpretation is that the source of the thermal anomaly beneath the ORZ is caused by fluid infiltration

concentrated along the lithospheric-scale zone of weakness presented by the boundary between the Damara

and Ghanzi-Chobe belt. The Damara orogenic belt represents a lithospheric-scale suture zone developed

during the Neoproterozoic final stages of amalgamation of the Greater Gondwana fragments, notably the

collision between the Congo and Kalahari cratons [Gray et al., 2008]. The presence of such structures is

capable of providing conduits for upward migration of fluids throughout the lithospheric column. The

amount and origin of fluids (mostly H2O and CO2) in the lithosphere is actively debated but could represent

metamorphic fluids released from active dehydration reactions or infiltrating water from the surface. Some

studies have highlighted the importance of the upward migration of mantle fluids in triggering earthquakes

Figure 12. (a) An idealized NW-SE geological cross section of the Okavango Rift Zone (ORZ) and the underlying

Precambrian cratons and orogenic belts along the baseline shown as A-B in Figure 7. (b) Observed and calculated (based

on the two-dimensional (2-D) forward model shown in Figure 12c) Bouguer gravity anomalies along the same baseline

of the geological cross section shown in Figure 12a. (c) A 2-D forward model showing the lithospheric structure under the

ORZ and surroundings. The dashed black line shows the Moho depth estimated from the 2-D power spectrum analysis

of the gravity data covering the ORZ and surroundings. The red solid line shows the Curie point depth (CPD) estimated from

the three-dimensional (3-D) inversion of the aeromagnetic data covering the ORZ and surroundings. The values in

parentheses are densities in gm/cm
3
.
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and in active crustal deformation given the presence of interconnected fractures. For example, Gold and

Soter [1984–1985] discussed that, in the absence of deep fractures, fluids in the lithosphere migrate through

diffusion, a mechanism not effective in upward migration of these fluids. The presence of deep fractures

allows for these fluids to concentrate, forming what is referred to by Gold and Soter [1984–1985] as the “fluid

domain” in which the concentration of the fluids reaches a level capable of inducing enough pressure to

open fractures (analogous to hydraulic fracturing). This upward migration of the fluids ultimately triggers

earthquakes through sudden slip. Kennedy et al. [1997] showed from a helium isotope study in the San

Andreas fault system that mantle fluids can enter the lower crust through brittle fractures rather than by

diffusion. Subsequently, Kennedy and van Soest [2007] used helium isotope study in the Basin and Range

Province to show that there is a direct correlation between the increased mantle fluid concentration and

the increased rate of extension in what is referred to as “deformation-enhanced permeability.” Our proposed

conceptual model (Figure 12) of hot fluids resulting in a metasomatized (probably mineralized) subcontinental

lithospheric mantle is consistent with recent observations made from seismic data beneath the Albertine

rift [Wölbern et al., 2012; Jakovlev et al., 2013]. Here a 3–5% reduction in P wave velocity beneath the rift is

interpreted as resulting from either a 2–3% melt fraction or temperature increase of 248–376 K. The transport

of these fluids upward is enhanced by a network of vertically oriented intersections of preexisting faults

accompanied by pressure perturbations that trigger earthquakes Jakovlev et al. [2013].

Our findings are summarized in a schematic cross section in Figure 12. To test the validity of our conceptual

model in terms of Moho depth and possible compositional variation of the subcontinental lithospheric

mantle under the ORZ, we performed a 2-D forward gravity model along profile A-B (Figure 7). Because

gravity models are nonunique, constraints such as rock densities, thickness, and lateral variations of rock units

must be used to construct meaningful geological models. Constraints in the ORZ and the surrounding

Precambrian basement are not readily available. For this reason, the crustal thicknesses obtained from the

spectral analysis were used as initial constraints in the first iteration of the 2-D forward modeling of the

gravity data. Further, the thicknesses and densities of the upper (2.74 gm/cm3) and lower crust (2.88 and

2.92 gm/cm3) were estimated from gravity and seismic investigations in other parts of the EARS [e.g., Simiyu

and Keller, 2001; Mickus et al., 2007]. Finally, upper crustal bodies of various dimensions and densities were

introduced in the model to account for lithological variations in the Damara, Ghanzi-Chobe, and Magondi

orogenic belts as well as sediment accumulation within Karoo basins as indicated by geological studies

[Singletary et al., 2003;Mapeo et al., 2006]. Given the uncertainties of the density, geometry, and dimension of

these bodies, these parameters were varied by 10% in the modeling process.

The 2-D forward modeling of the gravity data (Figures 12a–12c) shows Moho depths comparable to those

obtained from the 2-D power spectrum analysis of gravity data, especially under the ORZ and the region

to the northwest of it (Figure 12c). However, there is a discrepancy between the Moho depth results of the

two methods in the region to the southeast of the ORZ (Figure 12c). We attribute this discrepancy to the

challenges of the 2-D modeling arising from the presence of numerous short wavelength anomalies

(Figure 12b), possibly associated with upper crust lithological variations within different orogenic belts as well

as the presence of Karoo sedimentary rocks covering the Precambrian basement (Figure 12c). The ORZ

gravity signature depicts an asymmetrical Bouguer gravity low with gravity anomalies reaching �60 to

�80 mGal at the margins of the rift. The asymmetry of the gravity anomaly matches the half-graben

geometry of the ORZ (Figures 12a and 12b). We found that this gravity signature is best modeled by the

inclusion of a slightly lighter (3.12 gm/cm3) altered mantle under the ORZ surrounded by normal mantle with

3.25 gm/cm3 density (Figure 12c). This is consistent with alteration due to upward migration of hot fluids. The

final model represents one geological reasonable model that fits the observed data given the available

constraints. Thus, we surmise that the presence of strong basement fabric and weak zones, especially at the

boundaries between the Damara and Ghanzi-Chobe belts, might have facilitated the upward migration of

hot fluid, hence locally increasing the geothermal gradient in this region as observed by the shallow CPD

values and elevated heat flow, softening the lithosphere, and allowing for strain localization initiating the rift.

6. Conclusion

Three-dimensional inversion of aeromagnetic data and 2-D power spectrum analysis of gravity data covering

the amagmatic ORZ, a nascent segment in the EARS, have shown that this extensional structure is underlain
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by shallow CPD values (<15 km), elevated heat flow (>50 mWm�2), and thin continental crust (~30 km).

These observations are similar to the more well-developed magmatic segments of the EARS. Comparing

these observations with MT results that do not support the presence of magmatic bodies or an elevated

asthenosphere under the ORZ requires an alternative source (other than magma ascending from an elevated

asthenosphere) to explain the anomalous thermal structure of the lithosphere under the ORZ. We hypothesize

that hot mantle fluids ascending through major lithospheric zones of weakness presented by penetrative

Proterozoic structures (including suture zones) associated with the Proterozoic orogenic belts that underlie

the ORZ may explain the shallow CPD value, elevated heat flow, and thin crust beneath the ORZ. Additional

geophysical (active and passive seismic and magnetotelluric) studies and numerical modeling to be

completed as part of the Project for Rift Initiation Development and Evolution is needed in the ORZ to

address what is potentially a paradigm shift for amagmatic rifts suggesting that rifting can be initiated

entirely within the lithosphere without the involvement of asthenospheric processes and/or magmatic

fluids. Instead, we propose a major role of fluids in weakening the lithosphere and localizing strain during

the initial stages of rifting.
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