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Abstract: Inorganic lead-halide perovskite, cesium lead bromide (CsPbBr3), shows outstanding
optoelectronic properties. Both solution- and melt-based methods have been proposed for CsPbBr3

crystal growth. The solution-based growth was done at low-temperature, whereas the melt-based
growth was done at high-temperature. However, the comparison of optical, physical, and defect
states using these two different growth conditions has been scarcely studied. Here, we have compared
the thermal and optical properties of solution-grown and melt-grown single crystals of CsPbBr3.
Positron Annihilation Lifetime Spectroscopy (PALS) analysis showed that melt-grown crystal has a
relatively smaller number of defects than the chemical synthesis method. In addition, crystals grown
using the chemical method showed a higher fluorescence lifetime than melt-grown CsPbBr3.

Keywords: perovskite; CsPbBr3; single crystal; X-ray; gamma ray detector; PALS

1. Introduction

Thin-film-based lead halide perovskite has long been used in the construction of solar
cells [1]. Because of the improvement in the synthesis and understanding of the perovskite,
the light conversion efficiency has increased from 3.8% (2009) [1] to 25.7% (2021) [2]. The
stability and performance of the device could be further improved by employing single
crystal perovskite [3,4]. The synthesis of single crystal perovskite can be divided into four
categories: (i) slow crystallization [5–7], (ii) antisolvent crystallization [8,9], (iii) inverse
temperature crystallization [10–12], and (iv) melt method [13–17]. A comparison of hybrid
organic-inorganic perovskite (e.g., MAPbBr3) and complete inorganic perovskite (CsPbBr3)
showed that the organic elements might potentially decrease stability [9,18–20].

Due to defect tolerance [21,22] of halide perovskite materials, they have been pro-
posed in various optoelectronics applications such as high-efficiency solar cells [23,24],
LED [25,26], laser [27], UV-NIR photodetectors [28–32], X-ray detector [33,34], and γ-ray de-
tector [13,17,35–37]. In spite of the presence of a large number of point defects, remarkably, halide
perovskite materials have a low density of trap states (~109–1011/cm3) [8,11]. For comparison,
trap density of some materials are- monocrystalline Si: 108–1015/cm3 [38,39]; polycrystalline
Si: 1013–1014/cm3 [40,41], CdTe/CdS: 1011–1013/cm3 [42], MAPbBr3: 5.8 × 109/cm3 [8],
and MAPbI3: 3.3 × 1010/cm3 [8]. Furthermore, perovskite single crystal offers better
electronic properties compared to their nanocrystals and thin-film counterparts. The carrier
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mobility of single crystal MAPbI3 is ~200 cm2 V−1 s−1, whereas that of thin films is up to
40 cm2 V−1 s−1. Similarly, the carrier lifetime in a single crystal can reach up to 500 µs [5],
whereas the lifetimes in nanocrystals and thin films are limited to about 1 µs [22].

Although the synthesis of CsPbBr3 using both solution-based [9,18,43,44] and melt-
based methods [3,13,37,45] has been reported for CsPbBr3, detailed comparison of their
performance has not been made yet. Here, we have compared the optical performance of
solution-grown and melt-grown single crystals of CsPbBr3. Further, we have compared
the thermal, and structural properties of solution grown and melt-grown single crystals
of CsPbBr3. We have used several structural (XRD, EDX, WSAXS), thermal (specific heat,
thermal conductivity, thermopower, DSC, TGA), electrical (XAS), and optical (Raman,
PALS, UV-Vis, PL, FLIM) measurements to understand the potential of CsPbBr3 crystals for
optoelectronics applications.

2. Materials and Methods

Synthesis: CsBr (Alfa Aesar, 99.9%) and PbBr2 (Alfa Aesar, 99.998%) were mixed in
a molar ratio of 1:1 and placed in an evacuated quartz tube. The tube was heated up to
580 ◦C at a rate of 60 ◦C/h and remained at that temperature for 24 h. The sample was
then cooled down at a rate of 20 ◦C/h to room temperature. The obtained polycrystalline
product was orange in color. Next, the polycrystalline CsPbBr3 was sealed in a quartz tube.
Single crystals were grown in a floating zone furnace using a growth speed of 0.5 mm/h.
The obtained crystals have an orange color and are transparent.

PXRD and EDX measurement: The powder X-ray diffraction has been performed
on a grounded piece of a single crystal and on a flat surface of a single crystal. The
LeBail analysis was done using FullProf software. CsPbBr3 crystallizes in an orthorhombic
crystal structure Pnma (#62) with lattice parameters: a = 8.2055(3) Å, b = 8.2580(4) Å, and
c = 11.7568(3) Å, which is in good agreement with the previously reported data. The crystal
cleaved along (010), which was determined from PXRD obtained from a flat surface.

WSAXS measurement and analysis: The wide-angle X-ray measurements were per-
formed with grounded polycrystalline pieces of the sample. The powder sample was
measured at CAMD, LSU. The Ganesha beamline system (Xenocs) is equipped with a
Pilatus3 R 300 K detector (Dectris) and a Cu-Kα X-ray source (Xenocs) running at 50 W. In
order to enhance the measurement range to higher angles, several detector pictures were
set together to cover a 2θ range from 0.5◦ to 33◦. Data reduction was performed with the
SAXSGUI program (Xenocs).

Specific heat and thermal transport measurements: Specific heat, thermopower, and ther-
mal conductivity were measured using a Physical Property Measurement System (PPMS).
Specific heat was carried out using the standard relaxation method, while thermopower
and thermal conductivity by the four-probe method.

XAS measurement: The sample current was measured at the varied-line-space plane
grating monochromator (VLSPGM: 200−1100 eV) beamline at CAMD, LSU. The sample
was placed on a stainless-steel sample holder and held on the holder by two tantalum
strips spot welded onto it. The electron yield detection mode was employed, and the
sample current was recorded with a Keithley-6514 programmable electrometer. The high
energy grating (500–1100 eV) and a 100 µm slit width were used for the sample current
measurement.

Differential Scanning Calorimetry (DSC): DSC analysis was conducted on a TA Instru-
ments (New Castle, DE) TA Discovery DSC250 calorimeter under nitrogen (50 mL/min),
using T Zero Aluminum pans. The following program was used: (1) Equilibrate at –40 ◦C;
(2) Ramp to 150 ◦C at 10 ◦C/min; (3) Ramp to –40 ◦C at 10 ◦C/min; (4) Ramp to 400 ◦C at
10 ◦C/min; (5) Ramp to –40 ◦C at 10 ◦C/min.

Thermogravimetric Analysis (TGA): TGA analysis of solid samples was conducted on a
TA Instruments (New Castle, DE) TA Discovery TGA550 under nitrogen purge (60 mL/min
furnace, 40 mL/min balance) at a heating rate of 10 ◦C/min. The decomposition tempera-
ture (Td) can be obtained at the onset point of the maximum weight loss rate.
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Positron Annihilation Lifetime Spectroscopy (PALS): A custom-made PALS system with a
PALS spectrometer having two scintillator detectors, one Na22 source, and a time-correlated
single photon counting (TCSPC) unit were used. PALS system measures the lifetime of the
positron (time interval between the implantation of the positron in the materials and the
annihilation of the positron). The pore size in the materials (atomic defect, point defect)
can be inferred from the positron lifetime.

Raman Spectroscopy: The Raman measurements were performed using a Renishaw
inVia Reflex system. The laser excitation wavelength was λ = 633 nm, objective: 50× long
working distance (air). The acquisition time per spectrum was 10 s.

Solid State Photoluminescence (PL) measurement (Low and High Temperature): Edinburgh
FLS1000 PL was used for the photoluminescence experiments. The instrument uses a 450 W
Xenon excitation source. Powder samples (using a Starna Cells holder) were used for the
measurements with a pixel dwelling time of 0.5 s. A step size of 1 nm was used. The
low temperatures were achieved using liquid nitrogen on a temperature-controlled stage
(Linkam THMS600).

Fluorescence Lifetime Imaging Microscopy (FLIM): The FLIM measurements were per-
formed using a Leica SP8 Confocal with White Light Laser system (470 to 670 nm tunable
in steps of 1 nm).

3. Results and Discussion

Figure 1a shows the schematic of the floating zone setup. A single crystal obtained
by the floating zone method is shown in Figure 1b. The crystal structure is determined
using powder X-ray diffraction (PXRD), and the PXRD pattern is analyzed using the LeBail
method [46]. Figure 1c shows the comparison of crystal synthesized by chemical synthesis
(brown curve) and floating zone (melt method) (pink curve). The vertical red lines show
the expected Bragg positions for the Pnma space group (#62) that CsPbBr3 forms at room
temperature (PDF#18-0364). The corresponding lattice parameters are a = 8.2055(3) Å,
b = 8.2580(4) Å, and c = 11.7568(3) Å, which is in good agreement with the previous
report [47]. The phase composition is determined by energy dispersive X-ray measurements,
resulting in an average elemental ratio corresponding to CsPbBr3. Figure 1d shows the
SEM image of the location from which EDX spectra were taken. The corresponding
composition spectra and table are shown in Figure 1e. EDX yields a Cs:Pb:Br atomic
ratio of (1.00):(1.38):(3.17). The excess in the Pb signal is due to the reabsorption of X-ray
emission by Cs. Similarly, the excess in the Br signal is because of the reabsorption of X-rays
from Cs and Pb. The wide angle scattering data for CsPbBr3 is shown in Figure 2a. The
corresponding I vs. 2θ is shown in Figure 2b. The WSAXS data for the crystal in Figure 2b
matches well with the XRD data in Figure 1c.

The thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses of
the CsPbBr3 crystal are shown in Figure 3a,b, respectively. CsPbBr3 was stable up to 465 ◦C,
and about 40% mass loss was observed at the melting temperature [9,13] (567 ◦C) (Figure 3a).
DSC analysis showed tetragonal (P4/mbm)↔ cubic (Pm3m) phase transformation at 132 ◦C
and orthorhombic (Pbnm)↔ tetragonal (P4/mbm) phase transformation (Figure 3c) at 88 ◦C,
which agrees with the literature observation [9,13,47–50]. The other peaks at 332 and 335 ◦C
might be due to the melting of PbBr2 [51]. The temperature dependence of the specific
heat (Cp) is presented in Figure 3d. Note that, above ~150 K, Cp reaches the expected
Dulong-Petit value of 3nR = 124.65 J/mol K, where R is the universal gas constant and n is
the number of atoms per formula unit. In the measured temperature range, there is no sign
for any phase transition. To check its low-temperature behavior, we plot Cp/T3 versus T,
which severely deviates from the Debye model (i.e., constant Cp/T3). Such deviation has
been previously reported for CsPbBr3 and CsPbI3 and was explained by possible vibrations
of heavy atoms or acoustic phonon modes with low dispersion at zone boundaries [52,53].
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Figure 1. Synthesis of CsPbBr3 using: (a) floating zone method; (b) Bright field image of single crys-
tal perovskite, and the corresponding (c) X-ray diffraction (XRD) pattern of CsPbBr3. An example of 
the Energy Dispersive X-ray Spectroscopy (EDX) result is shown in (d). In addition, the composition 
of several crystals in different areas (red box) yielded a consistent chemical composition, as shown 
in (e). 

 
Figure 2. (a) Wide angle scattering data for grounded CsPbBr3 set together from several detector 
pictures. The blue horizontal lines are non-sensitive positions of the Pilatus3 R 300K detector; (b) 
I(q) vs. 2q for the detector pictures depicted in (a). 
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ing charge carriers in the system are electrons above 320 K. Note that there is a minimum 
at around 385 K, which is close to the reported structural transition to a cubic Pm-3m space 
group3. However, measurements at higher temperatures are needed to confirm such 
structural transition. 

The positron in the PALS system is generated by the decay of Na22 to Ne22 with the 
equation: 𝑁𝑎ଵଵଶଶ → 𝛽ାଵ଴ ൅ 𝑁𝑒ଵ଴ଶଶ ൅ 𝛾 ሺ1274 keVሻ. The positron is subsequently annihilated 

Figure 3. Thermal analysis of CsPbBr3. (a) TGA; (b) DSC; (c) schematic of different phases as
a function of temperature; (d) temperature dependence of the specific heat. Inset: Cp/T3 versus
temperature; (e) temperature dependence of the thermal conductivity. Inset: low-temperature thermal
conductivity; (f) Seebeck coefficient versus temperature.

Figure 3e shows the temperature dependence of the thermal conductivity (k), typical
for a single crystal sample. The peak around 10 K indicates that the system reaches the
longest phonon mean-free path. The magnitude and the temperature dependence of the
thermal conductivity is almost the same as that reported for CsPbI3 [54]. For crystalline
CsPbBr3, the thermal conductivity is low in the entire temperature range measured, likely
related to heavy Cs and Pb and/or the unusual acoustic phonon modes.

The temperature dependence of the Seebeck coefficient (S) is presented in Figure 3f.
It is unmeasurable due to electrical insulation until ~320 K, above which its magnitude
increases with increasing temperature. The negative thermopower indicates that the leading
charge carriers in the system are electrons above 320 K. Note that there is a minimum at
around 385 K, which is close to the reported structural transition to a cubic Pm-3m space
group3. However, measurements at higher temperatures are needed to confirm such
structural transition.

The positron in the PALS system is generated by the decay of Na22 to Ne22 with the
equation: Na22

11 → β0
+1 + Ne22

10 + γ (1274 keV) . The positron is subsequently annihilated
by combining with the electron in the medium, which emits a pair of photons with an
energy of 511 keV. The time elapsed between the production of 1274 keV photon and
the emission of 511 keV photon signifies the positron lifetime. The TCSPC of the PALS
system with picosecond resolution measures this lifetime. The positron may undergo
quick thermalization with a lifetime of ~10 ps. The positron may form a pair with the
electrons (called positronium) near the void in the material, whose lifetime may vary
from 0.125–142 ns [55]. The positronium exists in a singlet state (para-positronium with
antiparallel orientation ↑↓ ), or as a triplet state (ortho-positronium with parallel orientation,
↑↑ ). Para-positronium has a lifetime of 0.125 ns, and ortho-positronium has a lifetime of
125 ns in a vacuum. The backscattered positron in a vacuum has a lifetime of 142 ns. The
triplet state (ortho-Ps) prefers defects or pores, where the lifetime is reduced by interacting
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with the electrons. Typically, the lifetime is increased with the size of the void. With the
same size of void, the lifetime is decreased with the increase in temperature. As shown in
Figure 4a (crystal from the floating zone), the yield counts of the system can be fitted with
the following function: Y(t) = ∑N

i=1(ai/τi)exp{−t/τi}+ residual. Here, τ3 is of interest
(inverse slope of the o-Ps components) and the intensity I3 is the area under the slope.
Figure 4b represents the corresponding plot of the lifetime components for the crystal made
using the chemical synthesis method. The fitting parameters are presented in Table S1.
Figure 4c illustrates the comparison of lifetime for the two synthesis methods. The floating
zone method showed a shorter lifetime compared to the chemical synthesis method. τ1
represents para-positrons, and τ2 represents free-positrons. τ3 is directly proportional to
the size of the void, and I3 is related to the concentration of voids. In addition, τav > τb
indicates that vacancy type defects are present in the sample.
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three-lifetime components for crystal obtained using (a) floating zone and (b) chemical synthesis
method. (c) comparison of positron lifetime from chemical synthesis and floating zone method.

Figure 5a compares the transmission spectrum of CsPbBr3 synthesized using chemical
synthesis and using the floating zone (melt) route. The floating zone method showed
a considerably higher transmission between λ = 300–550 nm. The crystal made with
the chemical synthesis method showed a smaller bandgap (Eg = 2.25 eV) (Figure 5b)
compared to the melt method (Eg = 2.27 eV) (Figure 5c), which agrees with the previous
literature [13,18,43,56]. The band gap was calculated using the Tauc plot by transforming
the data in Figure 5a through the Kubelka–Munk equation [57]. Next, to understand
the phonon modes in the sample, we performed Raman spectroscopy on the CsPbBr3
crystal. Theoretically, there are 24 Raman active modes in CsPbBr3 [58]. The Raman mode
at 77 cm−1 signifies the vibrational mode of [PbBr6]

4− octahedron [58,59]. The mode
at 132 cm−1 (~16.4 meV) is the transverse optical (TO) phonon due to Pb-Br stretching.
The weak Raman modes at ~150 cm−1 (18.6 meV) and 314 cm−1 are due to the first
and second-order longitudinal optical (LO) phonon modes, respectively [60]. CsPbBr3
crystal was exposed to soft X-ray light at the plane grating monochromator beamline
at CAMD, and the resultant sample current shown in Figure 5e was measured with a
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programmable electrometer. The sample current was collected using the high-energy
monochromator of the beamline over a photon energy range between 500 and 1100 eV. The
monochromator provides its highest photon flux throughput between 700–800 eV. At this
range, ~3 pA sample current is measured from CsPbBr3. The spectrum also reveals the Cs
M5,4 absorption edges at around 750 eV. The dips that appear at around 540 eV and 870 eV
are from oxygen and nickel elements, respectively, located on the surfaces of the focusing
mirrors that the beamline encompasses. The photoluminescence (PL) measurements of
CsPbBr3 powder in solution form (Figure 5f) in a cuvette yields four distinct peaks at
453 nm (2.74 eV), 564 nm (2.2 eV), 682 nm (1.82 eV), and 736 nm (1.68 eV).
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Figure 5. (a) The transmittance spectra of CsPbBr3 crystal, synthesized using the chemical (blue
curve) and floating zone (pink curve) method. The bandgap of the (b) chemically synthesized and
(c) floating zone synthesized CsPbBr3 was calculated using the Tauc plot. (d) Raman spectra show the
phonon modes of CsPbBr3. (e) CsPbBr3 crystal was exposed to soft X-ray light using a plane grating
monochromator beamline, and the resultant sample current was measured with a programmable
electrometer; (f) the PL spectra of CsPbBr3 solution using an excitation of λ = 220 nm.

The solid-state PL measurements (Figure 6a,b) showed two distinct peaks at 530 nm
(2.34 eV) and 620 nm (2 eV). The peak at 2 eV remains invariant with the temperature
change. The temperature-dependent PL measurements showed a decrease in PL inten-
sity with temperature (Figure 6a,b). The peak at 2.34 eV (curve for −190 ◦C) continu-
ously red-shifted to lower energy with the rise of temperature and reached 2.18 eV at
110 ◦C. The trends are consistent in the samples obtained using chemical synthesis and
melt methods. The melt method showed higher PL intensity compared to the chemical
synthesis method. The peak at 2.25 eV (λ = 550 nm) is also generally observed in room-
temperature PL experiments reported in the literature [9,13,18,43,56]. The peak near the
bandgap (~2.27 eV) is due to the free-exciton emission, and the peak around ~2 eV is
due to bound-exciton emission. The free to bound-exciton peak ratio at low temperature
(–190 ◦C) is close to 1, whereas at higher temperatures (110 ◦C), the free to bound–exciton
peak ratio decreases to <0.5. The FWHM of the free exciton emission is ~89–96 meV
and changes with temperature. The FWHM of bound exciton emission is ~70 meV and
remains invariant with temperature. The electron–phonon coupling can be calculated
using the temperature-dependent PL data by using the Huang–Rhys factor (S) with the
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Here, floating zone synthesized crystal showed shorter intensity weighted mean life-
time of 𝜏௔௩ (1.092 ns) compared to the chemical synthesis method (𝜏௔௩ of 3.791 ns). This 
may be due to the efficient capture of free excitons by trap states in crystals made using 
floating zone [58,62,63]. Figure 7f shows the distribution of photons emitted from the sam-
ple with different lifetimes for the two synthesis methods. The floating zone method 
showed less efficient fluorescence photon emission than the chemical synthesis method. 
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Here, floating zone synthesized crystal showed shorter intensity weighted mean life-
time of 𝜏௔௩ (1.092 ns) compared to the chemical synthesis method (𝜏௔௩ of 3.791 ns). This 
may be due to the efficient capture of free excitons by trap states in crystals made using 
floating zone [58,62,63]. Figure 7f shows the distribution of photons emitted from the sam-
ple with different lifetimes for the two synthesis methods. The floating zone method 
showed less efficient fluorescence photon emission than the chemical synthesis method. 

ωphonon
2kBT . Higher S-factor signifies

a higher amount of self-trapped excitons (STE). Here, S-factor at lower temperatures is
greater than that at higher temperatures. Therefore, the PL emission is higher at lower
temperatures. However, the formation of STE might impede carrier mobility and degrade
the detector’s performance.
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Figure 6. Temperature-dependent solid state PL spectra of CsPbBr3 obtained from (a) chemical
synthesis, λex = 293 nm and (b) floating zone method; λex = 291 nm.

Figure 7a,b show the FLIM image and phasor plot of the CsPbBr3 sample prepared
using the floating zone method. The corresponding FLIM image and phasor plot of the
CsPbBr3 sample prepared using the chemical synthesis method is shown in Figure 7d,e,
respectively. Figure 7c shows the fit for the FLIM spectrum for the floating zone (pink
curve) and chemical synthesis (brown curve) method. The corresponding fit parameters
are provided in Table S2. The lifetime is fitted with the function: I(t) = A1 exp(−t/τ1) +
A2 exp(−t/τ2) + A3 exp(−t/τ3) + A4 exp(−t/τ4). The mean intensity weighted lifetime
was calculated using:

τav =
[(

A1 × τ2
1

)
+
(

A2 × τ2
2

)
+
(

A3 × τ2
3

)
+
(

A4 × τ2
4

)]
/
[
(A1 × τ1) + (A2 × τ2)
+(A3 × τ3) + (A4 × τ4)

]
Here, floating zone synthesized crystal showed shorter intensity weighted mean

lifetime of τav (1.092 ns) compared to the chemical synthesis method (τav of 3.791 ns). This
may be due to the efficient capture of free excitons by trap states in crystals made using
floating zone [58,62,63]. Figure 7f shows the distribution of photons emitted from the
sample with different lifetimes for the two synthesis methods. The floating zone method
showed less efficient fluorescence photon emission than the chemical synthesis method.
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4. Conclusions

We measured the structural, thermal, electrical, and optical properties of CsPbBr3. The
crystal shows low thermal conductivity and high thermopower. The crystal-synthesized
using the floating zone method showed a lower positron lifetime compared to samples
obtained using chemical synthesis methods. The PALS measurement signifies a smaller
defect size in floating zone-grown crystals compared to the chemical synthesis method.
The floating zone method showed higher PL intensity than the chemical synthesis method.
The mean fluorescence lifetime of the floating zone synthesized crystal was lower than the
crystal-synthesized using the chemical synthesis method. The temperature-dependent PL
and FLIM measurements showed that the luminescence property of the crystal originates
from the trapped excitons.
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