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Phenotypic plasticity (genotype × environment interaction) is an especially important

means for sessile organisms to cope with environmental variation. While kelps, the

globally most productive group of seaweeds, generally possess a wide thermal

performance range, kelp populations at their warm distribution limits are threatened

by ocean warming. Here, we investigated effects of temperature during ontogeny

of the kelp Laminaria digitata across haploid gametophyte and diploid sporophyte

life cycle stages in five distinct genetic lines. We hypothesized that thermal plasticity

increases trait performance of juvenile sporophytes in experimental temperatures that

match the temperature experienced during gametogenesis and recruitment, and that

plasticity differs among genetic lines (genetic variation for plasticity). We applied a full-

factorial experimental design to generate different temperature histories by applying

5 and 15◦C during meiospore germination, gametogenesis of parental gametophytes

and recruitment of offspring sporophytes (19–26 days), and juvenile sporophyte rearing

(91–122 days). We then tested for thermal plasticity among temperature history

treatments at 5 and 15◦C in a final 12-day experiment assessing growth, the storage

compound mannitol, carbon and nitrogen contents, and fluorometric responses in 3–

4 month old sporophytes for five genetic lines. Our study provides evidence for the

importance of cold temperatures at early development on later sporophyte performance

of L. digitata. Gametogenesis and recruitment at 5◦C promoted higher growth of

offspring sporophytes across experimental temperatures. While photosynthetic capacity

was higher at 15◦C, carbon and nitrogen storage were higher at 5◦C, both showing fast

acclimation responses. We identified an important role of genetic variation for plasticity

in shaping L. digitata’s thermal plasticity. Trait performance at 5 or 15◦C (reaction

norm slopes) differed among genetic lines, even showing opposite response patterns.

Interestingly, genetic variation for plasticity was only significant when sporophytes were

reared at 5◦C. Thus, we provide evidence that the cold-temperate to Arctic kelp species,

L. digitata, which possesses a wide temperature tolerance between 0 and 23◦C, is

impaired by warm temperature during gametogenesis and recruitment, reducing growth

of juvenile sporophytes and expression of variable thermal plasticity in the wild.

Keywords: phenotypic plasticity, temperature acclimation, developmental plasticity, carry-over effect, biphasic

life cycle, gametogenesis, ontogeny, genetic variation
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INTRODUCTION

In a changing environment, organisms have few mechanisms
to cope with temporal habitat heterogeneity. In order to
prevent range contractions, populations can move according
to their environmental requirements (i.e., range shifts) or
they can acclimate and/or adapt to the new conditions, all
of which are interactive processes within a complex response
framework (Donelson et al., 2019). Especially for sessile species,
phenotypic plasticity is an important means of quick response
to environmental change. Phenotypic plasticity has been studied
for decades (Bradshaw, 1965; Sultan, 1995; Chevin et al.,
2010; Fox et al., 2019), and describes phenotypic changes
in an individual in response to its environment (genotype
× environment interaction). This includes fast and reversible
acclimation responses, but also carry-over effects due to exposure
during early ontogeny which persist during development (COE,
also developmental plasticity; Palmer et al., 2012; Byrne et al.,
2020). Additionally, the environment experienced by parents
can influence offspring traits regardless of offspring environment
(parental effects sensu Salinas et al., 2013). Importantly,
environmental change cues may elicit different plastic responses
among genotypes (genetic variation for plasticity; Newman, 1994;
Nicotra et al., 2010), thereby increasing trait variability within a
population that selection can act on. These concepts highlight
the importance of taking into account environmental history
and investigating multiple genotypes when assessing thermal
plasticity of populations and species.

Brown seaweeds of the order Laminariales (i.e., kelps sensu
stricto) are especially important habitat builders along warm-
temperate to polar rocky shorelines (Lüning, 1990). They provide
a three-dimensional, species-rich and highly productive habitat,
the marine forest (Wernberg and Filbee-Dexter, 2019), which
is globally under threat by rising sea temperatures especially
at their equatorward margins (Wernberg et al., 2016; Vergés
et al., 2019). Many kelps have a broad thermal performance
range spanning 20◦C or more (e.g., Lüning, 1984; tom Dieck,
1993; Wiencke et al., 1994), within which their metabolism
can quickly adjust (i.e., acclimate) and prevent irreversible
stress responses. This high acclimation capacity allows kelps to
persist along environmental gradients by fast adjustment of e.g.,
photosynthesis (Davison and Davison, 1987; Davison et al., 1991;
Rothäusler et al., 2011), carbon metabolism (Scheschonk et al.,
2019), or pigment contents (Li et al., 2019; Mabin et al., 2019b)
in response to a variety of factors. All laminarian kelps alternate
between independent generations of haploid gametophytes and
diploid sporophytes in their life cycle. Therefore, kelps provide a
useful experimental system to investigate thermal plasticity across
ontogeny.We consider the kelp germline to encompass the whole
process between meiosis and production of eggs and sperm (see
also Grossniklaus, 2011; Schmidt et al., 2015). Therefore, the
majority of the kelp germline is contained in the autonomous
gametophyte generation, which allows for experimental control
of the germline environment from meiospore release to zygote
formation. Further, this facilitates breeding of gametophytes
obtained from one sporophyte, allowing comparisons among
genetic lines and tests of genetic variation for plasticity.

In this study, we investigated thermal plasticity of the
kelp Laminaria digitata (Hudson) J.V. Lamouroux, which is
a key habitat-former in the upper sublittoral and infralittoral
fringe of cold-temperate and Arctic rocky coasts (Lüning, 1990;
Dankworth et al., 2020). In the North Atlantic, L. digitata
is one of four kelp species of the genus Laminaria (among
other kelp genera), which occur across marine biogeographical
regions (sensu Lüning, 1990): L. solidungula is an Arctic
species; L. digitata occurs in Arctic and cold-temperate regions;
L. hyperborea is a cold-temperate species and co-occurs along
most of its distribution with L. digitata in the sublittoral;
and L. ochroleuca is a warm-temperate species and co-occurs
with L. digitata only in Brittany and South England (Smale
et al., 2015). Along the European coast, L. digitata occurs
between the 0◦C February isotherm on the archipelago of
Spitsbergen and the 18◦C August isotherm in southern Brittany,
France (for isotherms, see Müller et al., 2009). In Brittany,
the species marginally extends into the warm-temperate region
(February isotherm > 10◦C sensu Lüning, 1990). Despite a high
gametophyte temperature tolerance of 23◦C over several weeks
(tom Dieck, 1993), models predict the loss of the southernmost
L. digitata populations due to ocean warming (Raybaud et al.,
2013; Assis et al., 2018).

At our study location on the North Sea island of Helgoland
(Germany), L. digitata meiospore release occurs mainly between
May and November (Bartsch et al., 2013), but it is not known
when gametogenesis and recruitment of juvenile sporophytes
are most prevalent, especially as vegetative gametophytes
might provide a perennial “seed bank” (tom Dieck, 1993;
Edwards, 2000). Therefore, temperatures might vary greatly
during formation of primordial germ cells in gametophytes and
during subsequent recruitment and growth of juvenile offspring
sporophytes. Despite L. digitata’s potentially broad thermal
performance spectrum, a relatively warm temperature of 15◦C
was shown to enhance gametogenesis, sporophyte growth and
sporogenesis (tomDieck, 1992; Bartsch et al., 2013; Martins et al.,
2017; Franke, 2019) compared to a cool temperature of 5◦C,
whereas sporophyte recruitment was most successful under cool
conditions (Martins et al., 2017). Importantly, it is unknown
whether and how temperature variation during early life stages
of gametogenesis and recruitment influences thermal plasticity of
juvenile sporophytes.

Generally, temperature responses of L. digitata are not static,
but may vary across seasons (Lüning, 1984) and are shaped
by endogenous and annual abiotic changes. For example, the
endogenous growth rhythmicity present in laminarian kelps is
modulated and synchronized by changes in daylength (Lüning,
1991; tom Dieck, 1991; Schaffelke and Lüning, 1994), but the
influence of rhythmicity and daylengths on the temperature
performance of kelps is unknown. Daylength and temperature
may control the seasonal accumulation of the carbon storage
compounds mannitol and laminarin in Laminariales (Schaffelke,
1995), which naturally peak in late summer (Black, 1954; Schiener
et al., 2015; Manns et al., 2017). Additionally, few indications
for carry-over and parental effects have been shown in kelp
and fucoid seaweeds. Li and Brawley (2004) demonstrated a
positive parental effect of warm receptacle environment on
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Fucus vesiculosus embryo survival during heat stress. Mabin
et al. (2019a) demonstrated significant variation in morphology
between lineages of Ecklonia radiata gametophytes at different
temperatures and irradiances, which they attributed to potential
parental and genetic effects. The latter further indicates that
individual phenotypic variation may play a substantial role in
shaping response variability of kelp populations. Phenotypic
differences among genotypes have been shown to modulate
plasticity in terrestrial plants (Galloway, 2001; Suter and
Widmer, 2013), but similar research in kelps does not exist
to our knowledge.

The main objective of this study was to investigate thermal
plasticity of juvenile Laminaria digitata sporophytes in the
context of their temperature history across ontogeny and among
genotypes. Our approach tested for effects of temperature
treatments of 5 and 15◦C over the kelp life cycle on thermal
plasticity of juvenile L. digitata sporophytes. First, we assessed
growth at 5 and 15◦C across multiple seasons using wild
adult sporophytes to relate our experimental results to adult
sporophyte responses in the wild. We then released meiospores
from five wild sporophytes, cultivated them separately as
genetic lines and produced four temperature history treatments
by applying 5 and 15◦C during meiospore germination,
gametogenesis and sporophyte recruitment, and during growth
of juvenile sporophytes. In a final 12-day experiment, we split
3–4 month old centimeter-sized sporophytes again between

5 and 15◦C, and assessed thermal plasticity of growth, the
storage compound mannitol, carbon and nitrogen contents, and
fluorometric parameters.We hypothesized that trait performance
of juvenile sporophyte offspring would increase in experimental
temperatures that matched the temperature experienced
during gametogenesis and recruitment (COE or developmental
plasticity) in comparison to mismatching temperature history
treatments (match-mismatch approach; Engqvist and Reinhold,
2016). We further hypothesized that genetic lines would
differ in their capacity for thermal plasticity (genetic variation
for plasticity), potentially contributing to thermal response
variability of L. digitata populations under ocean warming.

MATERIALS AND METHODS

Experimental Design
To assess seasonal thermal plasticity of adult sporophytes
in the wild, we first followed growth of field-collected
sporophyte meristems at 5 and 15◦C at three time points
over the year (experiment 1, Figure 1). At these temperatures,
sporophyte growth is in its optimum range (Bolton and Lüning,
1982) and gametogenesis is not inhibited (tom Dieck, 1992;
Martins et al., 2017).

Following this, we tested for effects of temperature during
early ontogeny on trait plasticity of juvenile offspring L. digitata

FIGURE 1 | Experimental design to test for thermal plasticity of wild adult sporophytes (experiment 1) and juvenile sporophytes (experiment 2) of Laminaria digitata.

Twenty fertile L. digitata sporophytes were sampled in the field (Helgoland, North Sea). Excised meristems from 20 individuals sampled in May, July 2017 and

February 2018 were used for experiment 1. Meiospores of five sporophytes were released and genetic lines were maintained by self-fertilization in 5 and 15◦C

(gametogenesis, 19–26 days). Throughout the flowchart for experiment 2, each colored box represents five separate genetic lines. Following recruitment, each

gametogenesis treatment was divided to rear juvenile microscopic sporophytes at 5 and 15◦C (rearing, 91–122 days). An acclimation period of 4 days was applied

for all treatments, with stepwise temperature change of 2◦C d−1 for treatments in which rearing and experimental temperatures differed. Experiment 2 was

conducted with 7–11 cm long sporophytes from five genetic lines at 5 and 15◦C for 12 days. The schematic life cycle represents life stages at the different treatment

steps of the experiment.
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sporophytes. Here, we employed a full-factorial experimental
design using five genetic lines of L. digitata at two experimental
temperatures (5 and 15◦C), and encompassing parent (F0)
and offspring (F1) generations at three time periods: during
gametogenesis and recruitment (F0/F1), early sporophyte (F1)
rearing, and growth of F1 juvenile sporophytes (experiment 2;
Figure 1). This full-factorial experimental approach on distinct
genetic lines allowed disentanglement of the roles of genetic
background and environmental effects, as well as assessments
of genetic variation for plasticity (Herman and Sultan, 2016;
Donelson et al., 2018).

Sampling and Cultivation of Laminaria

digitata
We collected 20 fertile L. digitata adult sporophytes from the low
intertidal zone on the island of Helgoland (North Sea, Germany;
54.1779 N, 7.8926 E) on 10 May 2017, 10 July 2017 and 04
February 2018. For the seasonal growth experiment (experiment
1), two discs (Ø 24mm) were cut from each sporophyte meristem
at a distance of 5 cm from the stipe-blade transition zone and
transported to the laboratory wet and cool. In July, we also
sampled fertile blade parts to be used for meiospore release in the
main experiment on thermal plasticity of juvenile sporophytes
(experiment 2). The use of blade tissue samples is an established
experimental method to gain approximations of whole-organism
responses (Graiff et al., 2015; Hargrave et al., 2017; King et al.,
2019). For example, excised meristematic tissue can be used to
investigate growth activity and photosynthesis (Buchholz and
Lüning, 1999; Scheschonk et al., 2019), and vegetative blade tissue
can be used to induce sporogenesis (Bartsch et al., 2013).

All samples were cultivated in 10 mL L−1 Provasoli-enriched
sterilized natural seawater (PES; Provasoli, 1968; modifications:
HEPES-buffer instead of TRIS, double concentration of
Na2glycerophosphate, iodine enrichment after Tatewaki, 1966) in
temperature-controlled chambers (5, 10, 15◦C, variation ± 1◦C).
The light:dark photoperiod of 16 h:8 h applied in this study
induces constant, year-round growth in L. digitata (Schaffelke
and Lüning, 1994). Irradiance varied depending on the life
cycle stage to accommodate the irradiance requirements of
each stage (Lüning, 1980; tom Dieck, 1992; Han and Kain,
1996): 30–40 µmol photons m−2 s−1 for meristem discs and
juvenile sporophytes, and 16–18 µmol photons m−2 s−1 for
gametophytes (ProfiLux 3 with LED Mitras daylight 150, GHL
Advanced Technology, Kaiserslautern, Germany). Sporophytes
and meristem discs were cultivated in aerated one liter glass
beakers filled with 800 mL PES.

Experiment 1: Seasonal Growth of Wild
Laminaria digitata Sporophytes
Growth of meristem discs at 5 and 15◦C was assessed in
February, May and July (Figure 1, experiment 1). Discs were
first acclimated to laboratory conditions for two to three days
at 10◦C (n = 20 individuals each held separately). Subsequently,
two discs per individual were divided between 5 and 15◦C in a
paired design (Figure 1). Medium in the beakers was changed
weekly. After 14 days, we assessed area growth via image analysis

(WinFolia Pro 2006a software; Regent Instruments Inc., Quebec,
Canada). Absolute area growth rates were calculated with a
linear formula:

AGR (cm2
∗ d−1) =

x2 − x1

t2 − t1

where x1 = area at time 1, x2 = area at time 2, t1 = time 1 in
days (d), t2 = time 2 in days. We also measured quantum yield of
photosystem II (Fv/Fm) as a stress parameter in the center of each
disc using pulse-amplitude modulation fluorometry (PAM-2100,
Walz, Effeltrich, Germany) after 5 min dark-acclimation.

Meiospore Release, Gametogenesis,
Recruitment, and Rearing
Sori sampled in July were stored for 1–2 days in plastic bags
at <5 µmol photons m−2 s−1 in sterilized natural seawater
(SW) prior to meiospore release. Meiospores were released from
sori following the method of Bartsch (2018). Meiospores from
five adult individuals were sowed separately into plastic dishes.
These five genetic lines were followed separately throughout
the experiment. Each set of meiospores was immediately
split to germinate, grow, complete gametogenesis and recruit
microscopic sporophytes at 5 and 15◦C (gametogenesis
treatment: G5 and G15; Figure 1).

Gametogenesis in L. digitata is a gradual process stretching
over one to several weeks depending on environmental
conditions (Lüning, 1980). In our experiment, following
settlement overnight, meiospores germinated within four days
and further developed into one- to few-celled male and
female free-living gametophytic filaments, which subsequently
became fertile. Fertile female gametophytes extrude single eggs
which remain loosely attached to the discharged oogonium
(Schreiber, 1930). Free-swimming spermatozoids produced by
male gametophytes subsequently fertilize the eggs (Lüning, 1980).
The resulting zygote is the initial cell of the next generation, the
diploid F1-offspring sporophyte, which is physically separated
from the parental gametophyte generation (Schreiber, 1930).

Because not all gametophyte cells undergo gametogenesis
simultaneously, we ensured saturation of sporophyte recruitment
within each gametogenesis temperature to impede sporophyte
recruitment from remaining vegetative gametophytes in the
following F1 rearing step. In our experiment, most female
gametophytes had released their eggs after 19 days at 15◦C and
after 26 days at 5◦C. At this time, the recruited sporophytes
were between one and seven days old. Following saturation,
recruited microscopic F1 sporophytes were again divided into
5 and 15◦C to enable growth to a sufficient length of several
cm for experiment 2 (rearing treatment: R5 and R15; Figure 1).
The rearing phase took between 91 and 122 days, and produced
four temperature history pre-treatments (G5–R5, G5–R15, G15–
R5, G15–R15).

Experiment 2: Thermal Plasticity in
Juvenile Laminaria digitata Sporophytes
Experiment 2 was conducted in two consecutive runs to reduce
the workload at one time and to accommodate slower sporophyte
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growth at 5◦C. The first run included all sporophytes reared at
15◦C and the second run, which started 24 days later, included
all sporophytes reared at 5◦C. Sporophytes reared at 5◦C had
a mean length of 11 cm and sporophytes reared at 15◦C had
a mean length of 7 cm at the start of the experiment. We
accounted for differences in rearing time and initial length
in the statistical analyses (see below). At this point, the five
genetic lines from four temperature histories were again divided
into 5 and 15◦C (E5 and E15, resulting in eight experimental
treatment groups; Figure 1, experiment 2) to assess their thermal
plasticity in contrasting temperature environments (Sultan,
2004). When the experimental temperature differed from the
rearing temperature, we first acclimated sporophytes for two days
at 10◦C followed by two days at the target temperature to reduce
acute temperature stress responses in the experiment. When
rearing and experimental temperatures matched, sporophytes
were transferred to the experimental setup without a change of
temperature and held for four days prior to the start of the
experiment (Figure 1, acclimation). For each genetic line in the
eight temperature history groups, four replicate beakers each
containing five sporophytes (n = 20 replicates per treatment
group, N = 160 experimental units in total) were held in 1.7 L
PES in aerated plastic (PETG) containers. The medium was
exchanged every three days over the course of acclimation and
the 12-day experiment.

Growth

For experiment 2, photos were taken after acclimation (day 0) and
at the end of the experiment (day 12), and lengths of sporophytes
were measured by tracing a central line along each sporophyte
using the segmented line tool in ImageJ 1.51j8 (Schneider et al.,
2012). Length sums of the five sporophytes per beaker were
used to assess growth (n = 4 replicate beakers per experimental
treatment and genetic line).

Biochemistry

We assessed mannitol content (the primary photosynthetic
product and compatible solute; Davison and Reed, 1985;
Groisillier et al., 2014) to estimate carbon assimilation by
sporophytes. Analyses of elemental carbon and nitrogen provided
insight into assimilation and nutrient storage, while C:N ratios
allowed interpretations of nutrient sufficiency (Hurd et al., 1996;
Rosell and Srivastava, 2004). Before acclimation (day -4), 3–22
sporophytes from each genetic line and temperature history were
pooled to reach sufficient dry weight (> 200 mg), deep-frozen
in liquid nitrogen and stored at −80◦C (n = 5 genetic lines
per treatment; N = 20 samples in total). After the experiment
(day 12), two sporophytes from each experimental replicate
(n = 20 replicates per experimental treatment; N = 160 samples
in total) were deep-frozen. All samples were lyophilized and
ground to a fine powder. Mannitol was extracted in 70%
ethanol from three subsamples (10–15 mg) of each experimental
replicate and analyzed following the HPLC method described
by Karsten et al. (1991). Means of the three subsamples of
each mannitol replicate were used in the statistical analysis.
For carbon and nitrogen analysis, samples of 2–3 mg for
carbon and nitrogen were combusted at 1000◦C in an elemental

analyzer (EURO EA, HEKAtech GmbH, Wegberg, Germany)
with acetanilide as standard.

Fluorometry

Temperature can influence photosynthesis by mediating
pigment, enzyme or photosystem contents (Gerard and Du Bois,
1988; Davison et al., 1991; Machalek et al., 1996; Li et al., 2019).
Therefore, we tested for variation of fluorometric parameters
in response to temperature treatments as a measure of photo-
acclimation. One sporophyte per replicate was randomly chosen
for fluorometric measurements (using a PAM-2100 device)
before temperature acclimation (day -4) and at the end of
experiment 2 (day 12). After 5 min dark acclimation, optimum
quantum yield of photosystem II (Fv/Fm) was measured in the
basal meristematic region of the sporophytes, directly followed
by rapid light curves (RLC) with irradiance steps between
0–511 µmol photons m−2 s−1. Based on the photon flux density
(PFD) and the effective quantum yield, relative electron transport
rates (rETR) in photosystem II were calculated as rETR = PFD
∗ Yield (Maxwell and Johnson, 2000; Hanelt, 2018). rETR was
plotted against PFD, and the resulting rETR vs. irradiance curves
were fit following the model of Jassby and Platt (1976) to calculate
maximum relative electron transport rate rETRmax, saturation
irradiance Ik, and photosynthetic efficiency α of each curve.

Statistics
Because of bleaching of three thalli during experiment 2, we
removed three replicates from all analyses (leading to total
N = 157, and n = 18 and n = 19 in one treatment group each). For
the growth analysis, onemore replicate was removed after the loss
of two sporophytes from a replicate beaker (N = 156). All analyses
were performed in the R statistical environment (R version 3.6.0;
R Core Team, 2019). Linear mixed effects models were fit using
the lme function within the “nlme” package (Pinheiro et al.,
2019) including a weights argument to incorporate the variance
structure (Zuur et al., 2009). Normal distribution of standardized
residuals was assessed visually via Q-Q plots and histograms, and
non-normality was treated by log-transformation (Underwood,
1997). Factor significance was assessed via analyses of covariance
(ANCOVA) and p-values were corrected for multiple testing
following the false discovery rate approach (FDR; Benjamini and
Hochberg, 1995).

In experiment 1, meristem disc growth rates and Fv/Fm
were modeled using temperature treatment, month, and their
interaction as fixed effects, with initial values of area and Fv/Fm as
respective covariates, random intercepts for individuals (area and
Fv/Fm models), and random slopes for experimental temperature
(area model only). Post hoc pairwise comparisons of least-squares
means (Tukey adjusted) between treatments were performed
using the “emmeans” package (Lenth, 2019).

In experiment 2, we fit separate linear mixed effects models
for each rearing temperature (i.e., experimental run) to
account for any potentially confounding effects of assaying
the two rearing temperatures at different times. Response
parameters were modeled using initial values of each parameter
as covariates, temperature treatment steps and their interaction
(gametogenesis ∗ experimental temperature) as fixed effects,
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random intercepts for genetic line, and random slopes for
experimental temperature. We tested for significance of
gametogenesis temperature (temperature effects during early
ontogeny), experimental temperature (temperature acclimation
within the sporophyte stage), and their interaction (modulation
of sporophyte thermal plasticity by gametogenesis temperature)
using two-way ANCOVA. Significance of random factors was
assessed using likelihood ratio tests between full (random slope
for experimental temperature and random intercept for genetic
line) and stepwise reduced models (random intercept for genetic
line, and no random argument).

RESULTS

Experiment 1: Seasonal Growth of Wild
L. digitata Sporophytes
Seasonal growth (Figure 2A) and optimum quantum yield
(Fv/Fm; Figure 2B) of wild L. digitata meristem tissue were
significantly influenced by experimental temperature, sampling
month, and their interaction (Table 1). Mean initial absolute
growth rates between days 0 and 3 (data not shown) decreased
over seasons from 0.39 cm2 d−1 in February to 0.16 cm2 d−1

in May to 0.09 cm2 d−1 in July, and thereby reflected known
seasonal growth responses of L. digitata (Kain, 1979; Lüning,
1979). While in February and July growth rates over 14 days

were significantly higher at 15◦C than at 5◦C (Tukey tests,
p < 0.001), there were no significant differences between growth
at 5◦C and 15◦C in May (Tukey test, p = 0.996; Figure 2A; for
individual growth rates see Supplementary Table S1). Mean daily
sea surface temperatures (SST) over 14 days before sampling in
February, May and July were 5.8◦C ± 1.2◦C, 8.6◦C ± 0.8◦C, and
16.1◦C ± 1.3◦C, respectively (Helgoland Roads data; Wiltshire
et al., 2008). Mean optimum quantum yield (Fv/Fm; Figure 2B)
ranged between 0.7 and 0.8 across seasons, and was always
significantly higher at 15◦C compared to 5◦C (p < 0.0001;
Table 1), while mean Fv/Fm was lowest at 5◦C in July.

Experiment 2: Thermal Plasticity in
Juvenile L. digitata Sporophytes
Due to the different rearing temperatures, initial values for most
parameters differed at the start of experiment 2 (Supplementary

Table S2), which we accounted for by including them as model
covariates and by separating the statistical analyses by rearing
temperature. We show residual growth based on linear models
of final length as a function of initial length for each rearing
temperature in Figure 3 (absolute growth rates are given in the
text and Supplementary Figure S1). In Figure 3, the dotted
zero-line represents predicted values based on initial length
and deviations from this line represent temperature effects. All
other response parameters are shown as absolute values. For

FIGURE 2 | Seasonal growth of wild adult Laminaria digitata meristem discs sampled in May and July 2017, and February 2018 cultivated at 5 and 15◦C for 14 days

(experiment 1). (A) Absolute area growth rate over 14 days (primary y-axis, mean values ± SE, n = 20) and field sea-surface temperature around Helgoland

(secondary y-axis). Open circles represent mean temperatures per month and dashed gray lines delimit minimum and maximum monthly temperatures for the year

2017/2018 (Helgoland Roads data, Wiltshire et al., 2008). (B) Quantum yield Fv/Fm at the end of the 14-day experiment (mean values ± SE, n = 20). ***p < 0.001

(Tukey test).
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TABLE 1 | Results of linear mixed effects models to examine thermal plasticity of

wild adult Laminaria digitata meristem discs in the seasonal growth experiment 1.

Area AGR Fv/Fm

Parameter numDF denDF F-value p-value F-value p-value

Initial values 1 56 163.13 <0.0001 19.43 <0.0001

Temperature 1 56 201.68 <0.0001 219.50 <0.0001

Month 2 57 12.17 <0.0001 22.66 <0.0001

Temperature ×

month

2 56 28.21 <0.0001 9.31 0.0003

Absolute area growth rates (AGR) and optimum quantum yield (Fv/Fm) were tested

using initial values as covariates, interactive effects of the fixed factors temperature

and month, and individual (identity) as a random effect. numDF and denDF

denote numerator and denominator degrees of freedom, respectively. Statistically

significant values (p < 0.05) are indicated in bold.

all parameters in experiment 2, we show reaction norms of
traits across experimental temperatures (E5 or E15) color-coded
by gametogenesis temperatures (G5 or G15) in two rearing
temperature panels (R5 or R15). In this context, we define
reaction norms as the relationship (slope) between trait responses
at the two experimental treatments E5 and E15.

Growth

Despite the long rearing period (91–122 days), we found
significant, persistent effects of gametogenesis and recruitment
temperature on growth of 3–4 month old sporophytes (Figure 3
and Table 2). In both rearing temperatures, mean sporophyte
growth was significantly higher following G5 (R5: p = 0.0003;
R15: p < 0.0001; Table 2), whereas mean growth of sporophytes
following G15 remained below the zero prediction across
experimental temperatures. Effects of experimental temperature
and interactive gametogenesis × experimental temperature
effects were only significant in R15 (Table 2). The significant

TABLE 2 | Results of linear mixed effects models to examine thermal plasticity of

length growth of juvenile Laminaria digitata sporophytes in experiment 2.

Length

Rearing Parameter numDF denDF F-value p-value

5◦C Initial length 1 69 285.42 <0.0001

Gametogenesis temp. 1 69 16.14 0.0003

Experimental temp. 1 69 0.38 0.5782

Gameto ×

experimental temp.

1 69 3.63 0.0859

15◦C Initial length 1 69 1173.81 <0.0001

Gametogenesis temp. 1 69 27.45 <0.0001

Experimental temp. 1 69 5.67 0.0273

Gameto ×

experimental temp.

1 69 5.85 0.0264

Length at the end of experiment 2 was tested using initial length as a covariate

and the interactive effects of gametogenesis temperature and experimental

temperature as fixed effects. Genetic line and the interaction between genetic

line and experimental temperature were analyzed as random effects. The two

rearing temperatures were tested in separate models. numDF and denDF denote

numerator and denominator degrees of freedom, respectively. p-values were

adjusted for multiple comparisons with FDR corrections. Statistically significant

values (p < 0.05) are indicated in bold.

main effect of experimental temperature in R15 (p = 0.0273;
Table 2) led to higher overall growth at E15 compared to
E5. This indicates an acclimation response, in which growth
rates were adjusted to the experimental temperature within
12 days. In R15, the significant gametogenesis × experimental
temperature interaction (p = 0.0264; Table 2) modified
sporophyte growth responses. This is shown as higher growth
in the G5–R15–E15 treatment (0.30 ± 0.04 cm sporophyte−1

d−1, treatment mean ± SD) compared to the other treatments
(G5–R15–E5: 0.27 ± 0.04 cm d−1; G15–R15–E5: 0.25 ± 0.04 cm
d−1; G15–R15–E15: 0.26 ± 0.04 cm d−1). Within R5,

FIGURE 3 | Growth reaction norms of juvenile Laminaria digitata sporophytes in experiment 2 to visualize effects of gametogenesis temperature on thermal plasticity

of sporophytes. Primary x-axis: experimental temperature, secondary x-axis: rearing temperature, symbol colors: gametogenesis temperature. Residuals of simple

linear models of final length as a function of initial length are shown as a growth parameter. The zero-line represents the final length modeled based on initial length,

and deviations from the zero-line are interpreted as treatment effects. Mean over all genetic lines ± SE, n = 20. Statistical significance of the fixed factors

gametogenesis temperature (Gam), experimental temperature (Exp) and their interaction (Gam × Exp) is summarized in the figure; ***p < 0.001; *p < 0.05; n.s., not

significant. For full statistical report see Table 2.
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FIGURE 4 | Reaction norms of growth and biochemical parameters for each genetic line of Laminaria digitata in experiment 2 to visualize genetic variation for

plasticity. Primary x-axis: experimental temperature, secondary x-axis: rearing temperature, slope colors: gametogenesis temperature. All plots show values obtained

at the end of the 12-day experiment. (A) residual length growth, (B) mannitol contents in dry mass, (C) total carbon contents in dry mass, (D) total nitrogen contents

in dry mass, (E) carbon to nitrogen mass ratio (C:N ratio). Means over single genetic lines, except for (B) means of mean values due to extraction in triplicates, n = 4.

Statistical significance of the random factors for genetic line × experimental temperature interaction (GxE; random slope) and genetic line (G; random intercept) is

summarized in the figure; ***p < 0.001; **p < 0.01; *p < 0.05; n.s., not significant. For full statistical report see Table 3.

growth was highest in the matching gametophyte-sporophyte
(gametogenesis-experimental) temperature treatment (G5–R5–
E5: 0.38 ± 0.06 cm d−1) compared to the mismatched
treatments (G5–R5–E15: 0.36 ± 0.04 cm d−1; G15–R5–E15:
0.34 ± 0.05 cm d−1; G15–R5–E5: 0.31 ± 0.07 cm d−1). Here,
the gametogenesis × experimental temperature interaction was
marginally non-significant (p = 0.0859 after correcting for
multiple testing; Table 2).

We then tested if genetic lines differed in their thermal
plasticity (genetic variation for plasticity) by investigating if
model fits significantly improved when including random
intercept and slope arguments (Figure 4 and Table 3).
A significant random intercept indicates that the magnitude
of response to the experimental temperatures differed among

genetic lines, whereas a significant random slope indicates that
genetic lines differed in the direction and/or expression of their
thermal plasticity (genotype × environment interaction; GxE;
Saltz et al., 2018). For growth, genetic line (random intercept)
was significant at both rearing temperatures (R5: p = 0.0013; R15:
p = 0.0002; Table 3), indicating differing magnitudes of response
among the five genetic lines within each rearing temperature.
Within R5, GxE (random slope) was significant (p = 0.0001;
Table 3), indicating that the genetic lines differed in their
plastic growth response to temperature, but only when reared
at 5◦C. This genetic variation for plasticity is visible as more
variance among reaction norms within R5, whereas reaction
norm slopes were more similar within R15 (but still differed in
magnitude). This increased variance among individuals in R5
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TABLE 3 | Results of likelihood ratio tests to determine significance of the random effects “experimental temperature | genetic line” (GxE; random slope) and “1 | genetic

line” (G; random intercept) on tested parameters in juvenile Laminaria digitata sporophytes in experiment 2.

Parameter Rearing Random factor df AIC BIC logLik L. ratio p-value

Length 5◦C Exp. temp. | genetic line 10 384.76 408.33 −182.38

1 | genetic line 8 398.50 417.35 −191.25 17.74 0.0001

Null 7 406.90 423.40 −196.45 10.40 0.0013

15◦C Exp. temp. | genetic line 10 355.26 355.26 −155.85

1 | genetic line 8 329.95 348.81 −156.98 2.26 0.3235

Null 7 341.52 358.02 −163.76 13.57 0.0002

Mannitol 5◦C Exp. temp. | genetic line 12 645.86 674.30 −310.93

1 | genetic line 10 665.67 689.37 −322.84 23.81 <0.0001

Null 9 666.27 687.59 −324.13 2.59 0.1070

15◦C Exp. temp. | genetic line 12 636.42 664.70 −306.21

1 | genetic line 10 634.43 658.00 −307.22 2.01 0.3666

Null 9 632.42 653.63 −307.21 0.01 0.9199

Carbon 5◦C Exp. temp. | genetic line 9 487.92 509.24 −234.96

1 | genetic line 7 496.02 512.60 −241.01 12.10 0.0024

Null 6 508.48 522.70 −248.24 14.46 0.0001

15◦C Exp. temp. | genetic line 12 493.15 521.43 −234.57

1 | genetic line 10 490.44 514.01 −235.22 1.29 0.5244

Null 9 500.44 521.65 −241.22 12.00 0.0005

Nitrogen 5◦C Exp. temp. | genetic line 12 323.81 352.24 −149.90

1 | genetic line 10 327.28 350.97 −153.64 7.47 0.0239

Null 9 356.88 378.20 −169.44 31.60 <0.0001

15◦C Exp. temp. | genetic line 12 255.54 283.82 −115.77

1 | genetic line 10 251.56 275.13 −115.78 0.02 0.9894

Null 9 256.71 277.92 −119.35 7.15 0.0075

C:N ratio 5◦C Exp. temp. | genetic line 12 58.44 86.87 −17.22

1 | genetic line 10 65.69 89.38 −22.84 11.25 0.0036

Null 9 91.48 112.81 −36.74 27.80 <0.0001

15◦C Exp. temp. | genetic line 12 73.94 102.22 −24.97

1 | genetic line 10 74.83 98.40 −27.42 4.89 0.0867

Null 9 85.47 106.68 −33.73 12.63 0.0004

Fv/Fm 5◦C Exp. temp. | genetic line 10 −502.63 −478.94 261.32

1 | genetic line 8 −505.93 −486.97 260.96 0.70 0.7036

Null 7 −507.93 −491.35 260.97 <0.01 0.9644

15◦C Exp. temp. | genetic line 12 −496.78 −468.50 260.39

1 | genetic line 10 −500.06 −476.49 260.03 0.73 0.6947

Null 9 −502.06 −480.85 260.03 <0.01 0.9437

rETRmax 5◦C Exp. temp. | genetic line 10 495.61 519.31 −237.81

1 | genetic line 8 499.21 518.17 −241.61 7.60 0.0224

Null 7 497.39 513.98 −241.69 0.18 0.6724

15◦C Exp. temp. | genetic line 12 578.06 606.34 −277.03

1 | genetic line 10 574.06 597.63 −277.03 <0.01 0.9997

Null 9 574.08 595.29 −278.04 2.01 0.1559

Ik 5◦C Exp. temp. | genetic line 12 −72.22 −43.79 48.11

1 | genetic line 10 −74.25 −50.56 47.13 1.97 0.3738

Null 9 −71.69 −50.36 44.84 4.56 0.0327

15◦C Exp. temp. | genetic line 12 −38.42 −10.14 31.21

1 | genetic line 10 −42.42 −18.85 31.21 <0.01 1.0000

Null 9 −44.03 −22.82 31.01 0.39 0.5325

α 5◦C Exp. temp. | genetic line 10 −222.76 −199.06 121.38

1 | genetic line 8 −220.78 −201.83 118.39 5.97 0.0504

Null 7 −222.35 −205.77 118.18 0.43 0.5126

15◦C Full model did not converge. Comparison only between reduced models.

1 | genetic line 8 −222.02 −203.17 119.01

Null 7 −224.02 −207.52 119.01 <0.01 0.9629

Likelihood ratio tests comparing stepwise reduced models of random slopes for experimental temperature * genetic line and random intercepts for genetic line. df, degrees

of freedom; AIC, Akaike’s An Information Criterion; BIC, Bayesian Information Criterion; logLik, Log-likelihood; L.Ratio, Likelihood-ratio. Significant values (p < 0.05) are

indicated in bold text. Description of random model arguments: “Exp. temp. | genetic line” describes random slopes over experimental temperatures for each genetic line,

i.e., genetic variation for plasticity. “1 | genetic line” describes random intercepts for each genetic line, i.e., different magnitudes of response. Lower AIC and BIC indicate

comparatively better model fits. Significant differences are reported for each model in comparison to the model described in the row above.
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TABLE 4 | Results of linear mixed effects models to examine thermal plasticity of biochemical parameters of juvenile Laminaria digitata sporophytes in experiment 2.

Mannitol Carbon Nitrogen C:N ratio

Rearing Parameter numDF denDF F-value p-value F-value p-value F-value p-value F-value p-value

5◦C Initial values 1 70 23.08 <0.0001 7.97 0.0103 11.04 0.0025 42.83 <0.0001

Gametogenesis temp. 1 70 12.81 0.0012 14.38 0.0006 2.14 0.1962 <0.01 0.9792

Experimental temp. 1 70 41.11 <0.0001 25.18 <0.0001 62.69 <0.0001 93.63 <0.0001

Gameto × experimental temp. 1 70 21.64 <0.0001 19.37 <0.0001 12.31 0.0014 16.15 0.0003

15◦C Initial values 1 69 8.46 0.0092 6.70 0.0176 15.91 0.0003 18.88 0.0001

Gametogenesis temp. 1 69 7.08 0.0162 3.16 0.1027 18.77 0.0001 7.51 0.0140

Experimental temp. 1 69 79.16 <0.0001 47.10 <0.0001 1917.75 <0.0001 213.31 <0.0001

Gameto × experimental temp. 1 69 0.30 0.6599 3.77 0.0744 16.57 0.0003 9.62 0.0054

Mannitol content, carbon content, nitrogen content and C:N ratio were tested using initial values as covariates and the interactive effects of gametogenesis temperature

and experimental temperature as fixed effects. Genetic line and the interaction between genetic line and experimental temperature were analyzed as random effects.

The two rearing temperatures were tested in separate models. numDF and denDF denote numerator and denominator degrees of freedom, respectively. p-values were

adjusted for multiple comparisons with FDR corrections. Statistically significant values (p < 0.05) are indicated in bold.

might in turn explain the marginally non-significant interaction
of gametogenesis and experimental temperature in the mean
growth response in R5 (Figure 3).

Absolute growth rates show the same pattern of genetic
variation for plasticity in R5 (Supplementary Figure S1; mind
the effect of initial size on growth rates between R5 and
R15). Higher growth following G5 was evident in three out
of five genetic lines (Supplementary Figures S1A,C,D) and
in the overall mean response (Supplementary Figure S1F).
Growth following R5 was either better at 15◦C (Supplementary

Figure S1A) or 5◦C (Supplementary Figure S1B), and in
one case, growth was higher in matching gametogenesis and
experimental temperatures (Supplementary Figure S1C).

Biochemistry

All biochemical parameters were significantly influenced by
gametogenesis temperature, experimental temperature, and
interactive effects of gametogenesis × experimental temperature
(Figures 4B–E and Table 4; for means over all genetic lines see
Supplementary Figure S2). For all parameters, the main effect
of experimental temperature was most distinct, indicating fast
thermal acclimation capacity of biochemical pathways. Effects
of gametogenesis temperature were weak. Overall, there were
higher carbon, nitrogen and mannitol contents at E5 than at E15
(Figures 4B–E and Table 4). Additionally, genetic variation for
plasticity (i.e., variation in reaction norm slopes) was significant
for all biochemical parameters, but only following rearing at
5◦C (Table 3).

Mean mannitol content (Figure 4B) was significantly
higher at E5 than at E15 for both rearing temperatures
(R5: 128% higher at E5, p < 0.0001; R15: 68% higher,
p < 0.0001; Table 4) irrespective of gametogenesis temperature.
For mannitol, response magnitude (random intercept) did
not differ significantly among genetic lines in either rearing
temperature, but response plasticity (random slope) differed
significantly among genetic lines in R5 (p < 0.0001; Table 3).
The significant interaction of gametogenesis and experimental
temperatures in R5 (p < 0.0001; Table 4) was likely driven
by the reaction norms of two genetic lines in G5–R5 that had
shallower slopes than the rest (Figure 4B; see also the crossing
mean reaction norms in Supplementary Figure S2A).

A similar pattern arose for carbon content (Figure 4C),
where values were significantly higher at E5 than at E15 for
both rearing temperatures (R5: 4.5% higher at E5, p < 0.0001;
R15: 4.0% higher, p < 0.0001; Table 4) irrespective of
gametogenesis temperature. For carbon, response magnitude
differed significantly among genetic lines in both rearing
temperatures (R5: p = 0.0001; R15: p = 0.0005; Table 3), but
response plasticity was only significant within R5 (p = 0.0024;
Table 3). This again indicates genetic variation for plasticity only
following rearing at 5◦C, with two genetic lines in G5–R5 having
comparatively shallow (and even opposite) slopes compared
to the other lines (Figure 4C). The significant interaction of
gametogenesis × experimental temperature in R5 (p < 0.0001;
Table 4) is visible as crossing mean reaction norms of G5–R5
and G15–R5, due to lower mean carbon contents in G5–R5–E5
(Figure 4C; see also Supplementary Figure S2B).

Nitrogen contents (Figure 4D) were also primarily influenced
by experimental temperature, with significantly higher values
at E5 than at E15 for both rearing temperatures (R5: 26%
higher at E5, p < 0.0001; R15: 34% higher, p < 0.0001;
Table 4) irrespective of gametogenesis temperature. Again,
response magnitude differed significantly among genetic lines
in both rearing temperatures (R5: p < 0.0001; R15: p = 0.0075;
Table 3), but response plasticity was only significant within R5
(p = 0.0239; Table 3). The interaction between gametogenesis
and experimental temperatures was significant for both rearing
temperatures (R5: p = 0.0014; R15: p = 0.0003; Table 4), seen as
slight differences in overall reaction norm slopes between G5 and
G15 (Supplementary Figure S2C).

C:N ratios (Figure 4E) generally followed a reverse pattern to
that of nitrogen content because relative differences in carbon
content among treatments were of much smaller magnitude
than differences in nitrogen contents. C:N ratios were primarily
influenced by experimental temperature, with significantly higher
values at E15 than at E5 for both rearing temperatures (R5: 21%
higher at E15, p < 0.0001; R15: 29% higher, p < 0.0001;
Table 4) irrespective of gametogenesis temperature. Response
magnitude differed significantly among genetic lines in both
rearing temperatures (R5: p < 0.0001; R15: p = 0.0004;
Table 3), but response plasticity was only significant within
R5 (p = 0.0036; Table 3). The significant two-way interactions
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FIGURE 5 | Reaction norms of fluorometric parameters averaged over all five genetic lines of juvenile Laminaria digitata sporophytes in experiment 2. Primary x-axis:

experimental temperature, secondary x-axis: rearing temperature, symbol colors: gametogenesis temperature. All plots show values obtained at the end of the

12-day experiment. (A) Optimum quantum yield Fv/Fm. (B) Maximum relative electron transport rate rETRmax. (C) Saturation irradiance Ik (µmol photons m−2 s−1).

(D) Photosynthetic efficiency α (rETR/µmol photons m−2 s−1). Mean values ± SE over all genetic lines, n = 20. Statistical significance of the fixed factors

gametogenesis temperature (Gam), experimental temperature (Exp), and their interaction (Gam × Exp) is summarized in the figure; ***p < 0.001; *p < 0.05; n.s., not

significant. For full statistical report see Table 5.

TABLE 5 | Results of linear mixed effects models to examine thermal plasticity of fluorometric parameters of juvenile Laminaria digitata sporophytes in experiment 2.

Fv/Fm rETRmax Ik α

Rearing Parameter numDF denDF F-value p-value F-value p-value F-value p-value F-value p-value

5◦C Initial values 1 70 7.40 0.0132 0.14 0.7472 1.16 0.3381 1.52 0.2744

Gametogenesis temp. 1 70 0.99 0.3724 3.66 0.0859 6.53 0.0198 2.02 0.2055

Experimental temp. 1 70 0.04 0.8662 90.14 <0.0001 79.38 <0.0001 0.69 0.4591

Gameto × experimental temp. 1 70 3.16 0.1090 0.61 0.4783 1.49 0.2744 4.01 0.0735

15◦C Initial values 1 69 1.85 0.2164 11.67 0.0022 5.69 0.0273 0.21 0.7056

Gametogenesis temp. 1 69 0.09 0.7791 0.66 0.4841 0.20 0.7056 0.16 0.7271

Experimental temp. 1 69 6.92 0.0169 185.16 <0.0001 140.12 <0.0001 <0.01 0.9806

Gameto × experimental temp. 1 69 2.53 0.1451 6.85 0.0169 7.09 0.0162 0.85 0.4249

Optimum quantum yield Fv/Fm, maximum relative electron transport rate rETRmax , saturation irradiance Ik and photosynthetic efficiency α were tested using initial values

as covariates and the interactive effects of gametogenesis temperature and experimental temperature as fixed effects. Genetic line and the interaction between genetic

line and experimental temperature were analyzed as random effects. The two rearing temperatures were tested in separate models. Non-normality of residuals for Ik was

treated by log-transformation (Underwood, 1997). numDF and denDF denote numerator and denominator degrees of freedom, respectively. p-values were adjusted for

multiple comparisons with FDR corrections. Statistically significant values (p < 0.05) are indicated in bold.

of gametogenesis × experimental temperature in both rearing
temperatures (R5: p = 0.0003; R15: p = 0.0054; Table 4) are visible
as slightly different (non-parallel) overall reaction norm slopes
between G5 and G15 (Supplementary Figure S2D).

Fluorometry

Fluorometry results are presented as mean reaction norms over
all genetic lines (Figure 5), as genetic variation for plasticity
among genetic lines was not significant for most fluorometric
parameters (Table 3; reaction norms of single genetic lines
are presented in Supplementary Figure S3). Similarly to
biochemistry, fluorometric characteristics were predominantly
influenced by experimental temperature, with only occasional

significant effects of gametogenesis temperature or interactive
effects (Figure 5 and Table 5). For optimum quantum yield
(Fv/Fm; Figure 5A), only experimental temperature had a
significant effect within R15 (p = 0.0169; Table 5), in which Fv/Fm
was significantly higher at E5 (0.775± 0.007, mean± SD) than at
E15 (0.767 ± 0.011, mean ± SD). Fv/Fm in juvenile sporophytes
thereby showed a different response than the field material
(experiment 1, Figure 2), in which values were significantly
higher at 15◦C across seasons. All samples expressed high Fv/Fm
values (> 0.7), indicating good sample health over the course
of the experiment. For Fv/Fm, response magnitude and plasticity
did not differ significantly among genetic lines (Supplementary

Figure S3, Table 3). Maximum relative electron transport rate
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(rETRmax; Figure 5B) and saturation irradiance (Ik; Figure 5C)
responded similarly. Both were most strongly influenced by
experimental temperature (p < 0.0001 for both parameters
in R5 and R15; Table 5), with values at E15 about 30–70%
higher than at E5. The significant gametogenesis × experimental
temperature interaction within R15 for both rETRmax (p = 0.0169;
Table 5) and Ik (p = 0.0162; Table 5) is shown by the steeper
slopes of G5 compared to G15, leading to the highest values in
G5–R15–E15 (Figures 5B,C). For rETRmax, response plasticity
(random slope) significantly differed among genetic lines at R5
(p = 0.0224, Table 3, Supplementary Figure S3B), while for
Ik, response magnitude (random intercept) significantly differed
at R5 (p = 0.0327, Table 3 and Supplementary Figure S3C).
Photosynthetic efficiency (α; Figure 5D) was not significantly
affected by any of the tested factors (Tables 3, 5). For all
fluorometric parameters, standard deviations among the four
replicates within the genetic lines were comparable to the
extent of variation among genetic lines (data not shown), which
likely caused non-significance of random slopes and random
intercepts, despite visual differences amongmean reaction norms
(Supplementary Figure S3).

DISCUSSION

Our study was designed to test for effects of temperature during
germline development and ontogeny on thermal plasticity of
juvenile kelp sporophytes. Our major findings suggest that
early exposure to cold temperature promotes the development
of juvenile Laminaria digitata sporophytes. This contrasts
our hypothesis that matching temperatures across ontogeny,
specifically in the context of climate warming, should benefit
kelp trait performance. Most importantly, gametogenesis and
recruitment at 5◦C promoted faster growth of 3–4 month
old offspring sporophytes across all thermal environments,
indicating persistent carry-over effects across ontogeny.
Interestingly, reaction norm slopes (i.e., thermal plasticity)
differed significantly among five genetic lines, but this variation
for plasticity only became apparent in sporophytes reared
at 5◦C. Following rearing at cold temperature, there was no
overall growth benefit of either 5 or 15◦C among genetic lines
due to high variation in plasticity. Such effects of temperature
history and genotype may explain slight differences in previous
reports of L. digitata’s temperature characteristics, where growth
was either the same at 5 and 15◦C (Bolton and Lüning, 1982)
or better at 15◦C (tom Dieck, 1992; Franke, 2019). We also
detected interactive effects of gametogenesis and experimental
temperatures on thermal plasticity of growth, biochemical and
fluorometric characteristics of juvenile sporophytes, but these
effects were weak, providing further evidence that potential
cross-generational effects may not be a panacea in the face of
climate change (Byrne et al., 2020). Biochemical and fluorometric
parameters were generally highly plastic and mainly responded
to experimental temperatures, indicating fast acclimation
responses. For example, mannitol, carbon and nitrogen storage
were significantly higher at 5◦C compared to 15◦C, while
photosynthetic capacity increased at 15◦C. Genetic variation
for plasticity was also only evident following cold rearing for

biochemical parameters. Taken together, trait performance was
highest following either cold gametogenesis and recruitment,
cold offspring rearing, or cold experimental temperatures,
suggesting potential consequences for the persistence of
cold-temperate kelp populations under climate warming.

Seasonal Growth of Wild L. digitata

Sporophytes
In experiment 1, meristem tissue fromwild sporophytes generally
grew faster at 15◦C compared to 5◦C or at the same rate (May).
Thus, our field-collected sporophytes responded similarly to
published evidence from juvenile laboratory-grown L. digitata
sporophytes, with either no difference in growth at 5 and 15◦C
(Bolton and Lüning, 1982) or a clear benefit of 15◦C (tom
Dieck, 1992; Franke, 2019). Higher growth at 15◦C was especially
striking in late winter following cold in situ temperatures. High
growth rates in late winter can be explained by the start of
the fast growing season for L. digitata (Perez, 1971; Kain,
1979; Gomez and Lüning, 2001), which is mediated by an
endogenous circannual rhythmicity and the transition from short
to long daylengths (Schaffelke and Lüning, 1994). Therefore,
although conditions in the field modified the magnitude of
temperature plasticity of Laminaria digitata adult sporophytes
throughout the year, the general response pattern was stable,
with warm temperatures generally favoring growth. However, the
observation of higher growth of a few individuals at 5◦C in May
indicates that this pattern might not be true for all genotypes,
especially when taking into account their environmental history.

Gametogenesis at Cold Temperature
Promotes Offspring Sporophyte Growth
Growth responses of 3–4 month old juvenile sporophytes
were not uniform, but differed depending on genetic line
and their temperature history across generations and ontogeny
(experiment 2).When comparingmean growth over G5 andG15,
an experimental temperature of 15◦C was beneficial (following
R15) or the same (following R5) as 5◦C for growth over a
12–day period, as shown in other studies (Bolton and Lüning,
1982; tom Dieck, 1992; Franke, 2019). However, in our study,
growth responses differed significantly among temperature
history treatments. Our initial hypothesis that matching
gametogenesis/recruitment and experimental temperatures
would improve trait performance was not confirmed. Rather, a
gametogenesis temperature of 5◦C increased sporophyte growth
in the mismatching G5–R15–E15 treatment.

Most importantly, the gametogenesis treatment of 5◦C
generally improved growth of juvenile sporophytes in both
rearing temperatures (Figure 3), and this was most strongly
expressed in the matching rearing-experimental environments
(G5–R5–E5 and G5–R15–E15). This indicates a beneficial
effect of a cold environment during gametogenesis and/or
recruitment which persisted in juvenile sporophyte offspring.
Several potential underlying mechanisms may be involved:
exposure of newly recruited sporophytes to the cold parental
environment might have induced beneficial carry-over effects
within the sporophyte generation (Palmer et al., 2012; Byrne et al.,
2020). For instance, a stimulating effect of 5◦C on assimilative
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processes (see carbon and nitrogen storage, Figure 4) of newly
recruited sporophytes might have mediated faster growth in 3–
4 month-old sporophytes. Potentially, epigenetic mechanisms
such as DNA methylation (Qu et al., 2013; Fan et al., 2020) or
histone modification (Bourdareau, 2018; Pearson et al., 2019)
initiated during early ontogeny may facilitate changes in gene
transcription during later life. However, this emerging field of
research does not yet provide substantial evidence for these
processes in kelps. Alternatively, the mediating factor could be
exposure of the parental germline to cold temperature. In this
respect, our results could reflect a “silver spoon” parental effect
(Uller et al., 2013; Baker et al., 2019; Germain et al., 2019).
“Silver spoon” effects describe an advantage for individuals born
to parents with access to abundant resources, which benefits
offspring through, e.g., maternal provisioning. Mechanisms
facilitating resource-based “silver spoon” effects in kelps could
potentially include energy transfer between haploid and diploid
generations, for example via gamete lipid content (Brzezinski
et al., 1993). Neutral lipids are the major form of carbon storage
in kelp meiospores and gametes (eggs and sperm), and are
therefore crucial for kelp reproduction (Brzezinski et al., 1993;
Reed et al., 1999). A higher lipid concentration in germ cells
could give zygotes an energetic advantage across generations, but
temperature effects on lipid storage are as yet unknown.

Interestingly, in L. digitata, gametogenesis is faster at 15◦C
than 5◦C, but recruitment is twice as high at 5◦C (Martins
et al., 2017). This might be due to the prolonged vegetative
growth of gametophytes at 5◦C compared to 15◦C (pers.
obs.), which may result in more female cells per gametophyte.
As all female cells may develop into oogonia, this was
previously discussed as a potentially adaptive response increasing
recruitment at non-optimal reproductive conditions (Bolton
and Levitt, 1985). Our study reveals that in addition to
higher recruitment at cold temperature (Martins et al., 2017),
gametogenesis and recruitment at cold temperature seems to
be a prerequisite for enhanced juvenile sporophyte growth
of L. digitata. This effect was evident under constant long
daylengths, which suppress the free-running growth rhythm of
L. digitata (Schaffelke and Lüning, 1994). Whether photoperiod
or endogenous circannual rhythms also affect thermal plasticity
of L. digitata is yet unknown.

High Acclimation Potential of
Biochemical and Fluorometric
Parameters
Biochemical contents (mannitol, carbon, nitrogen) of juvenile
sporophytes were mostly influenced by acclimation responses
to experimental temperatures, favoring 5 over 15◦C (Figure 4

and Table 4), and only showed weak interactive effects between
gametogenesis and experimental temperature. Therefore, effects
of temperature during gametogenesis and recruitment on
biochemical trait plasticity might be negligible in the wild
compared to the high and fast acclimation capacity in
response to the immediate environment. Increased carbon
and mannitol contents at 5◦C indicated more efficient carbon
assimilation processes at cold temperature, despite possibly lower

photosynthetic capacity (Figure 5). This contrasts the naturally
occurring peaks in carbon storage in late summer when growth
is minimal (Haug and Jensen, 1954; Schiener et al., 2015).
Naturally, a temperature of 5◦C would rather co-occur with short
daylengths at our study location of Helgoland. Therefore, the
pattern of high growth and high carbon storage at 5◦C might be
a product of experimental long days in our experiment, which
may stimulate carbon storage accumulation (in L. hyperborea;
Schaffelke, 1995).

Fluorometric results indicated photoacclimative responses to
experimental temperature (Figure 5 and Table 5), but in contrast
to biochemical contents, themaximum relative electron transport
rate (rETRmax) and saturation irradiance (Ik) were promoted
at warm temperature. Photosynthetic rates usually increase at
higher, sublethal temperatures (Delebecq et al., 2016; Burdett
et al., 2019), with photosynthetic thermal optima often exceeding
thermal growth optima (Eggert and Wiencke, 2000; Graiff et al.,
2015; Fernández et al., 2020). In E5, maximum relative electron
transport rate rETRmax was close to the irradiance conditions
in our experiment (30–40 µmol photons m−2 s−1), while
rETRmax was higher at E15. Therefore, faster metabolism and
higher energy demands at 15◦C might have reduced carbon and
mannitol storage compared to 5◦C.

Nitrogen contents were highest in the matching G5–R5–
E5 thermal history and lowest in G15–R15–E15 (Figure 4 and
Table 4). Due to the high amount of nitrogen storage in all E5
treatments, C:N ratios were approximating the Redfield ratio
of 106C:16N (= 6.625). Atkinson and Smith (1983) described
this value as the lower limit, which is only attainable in
strongly nitrogen-enriched environments, such as present in
our PES cultivation medium (Sarker et al., 2013), and which
is characteristic of rapid growth phases in seaweeds (Niell,
1976). As all samples were treated with the same nutrient
enrichment and all grew well, the high nitrogen contents only
in E5 were probably not the cause of fast growth. From an
ecological standpoint, high internal nitrogen concentrations at
cold temperature might indicate a seasonal pattern, as L. digitata’s
growth period starts in late winter to spring, when the nutrient
content of seawater is high (Davison et al., 1984; Wiltshire
et al., 2015). Nitrate reductase (NR) activity peaks in spring
in a Scottish L. digitata population (Davison et al., 1984),
despite a potentially wide temperature range for kelp NR activity
(Fernández et al., 2020), suggesting that the year-round uptake
potential might be controlled by interactive seasonal patterns
of nitrate availability, NR activity, temperature and irradiance,
among others (Young et al., 2007a,b). However, nutrient uptake
across temperature or seasonal gradients is rarely studied for
seaweeds (Roleda and Hurd, 2019).

Genetic Variation for Plasticity
Variation for plasticity among genotypes offers a target for
selection in a warming environment if the variation of traits
is heritable (Chevin et al., 2010; Munday et al., 2017, 2019),
and is an important component of the adaptive capacity of
populations and species. Already during recruitment of juvenile
sporophytes for experiment 2, we observed that one out of ten
genetic lines recruited more sporophytes at 15◦C than at 5◦C
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(Supplementary Figure S4 and Supplementary Table S3). This
was a first indication that the tested genetic lines might express
differential plasticity and differing temperature preferences. This
was also indicated in experiment 1, where in May, a few
individuals had higher growth at 5◦C than 15◦C (Supplementary

Table S1), whereas mean growth of all 20 individuals did not
differ between 5 and 15◦C (Figure 2).

In experiment 2, thermal reaction norms of growth and
biochemical characteristics varied in magnitude (intercept) and
plasticity (slope) among the five genetic lines (Figure 4 and
Table 3), indicating that genetic lines differed in their expression
of genotype× environment interactions (see also Galloway, 2001;
Suter and Widmer, 2013). Interestingly, while the magnitude
of response varied significantly in both rearing temperatures,
only the 5◦C rearing environment was associated with significant
variation for plasticity among the five genetic lines (Figure 4

and Table 3). Therefore, temperature history modulated the
extent of plastic responses, in that cold rearing generally
induced higher thermal plasticity in growth and biochemical
responses than warm rearing. Variation for thermal plasticity
was most obvious for growth, where each genetic line responded
differently (Figure 4 and Supplementary Figure S1). This
variation in thermal responses across genetic lines seemed
to outweigh the effects of temperature history treatments
(gametogenesis/recruitment and rearing) on response plasticity
toward the experimental temperatures (Figures 3, 4).

Our results show that thermal responses were highly plastic,
and that better growth of L. digitata at 15◦C might not be
universal, but differs depending on genetic background and
thermal history. Furthermore, thermal carry-over effects from
the rearing treatment possibly modulated the extent of genotype
× environment interactions on trait responses. As phenotypic
trait variation is an important target for natural selection (Chevin
et al., 2010; Kelly, 2019), this could have important consequences
for the adaptive capacity of Laminaria digitata populations
during ocean warming. For instance, if phenotypic variation of
adaptive traits among genotypes is lower in sporophytes recruited
at warmer temperature, then selection is less able to remove
maladaptations from a population. This in turn would decrease
the strength of directional selection (Ghalambor et al., 2015), and
therefore could reduce the adaptive capacity of the population in
a negative feedback loop under increasingly warm temperature.

The Importance of Cold Seasons
We hypothesized that trait performance should increase
in matching parent gametophyte and offspring sporophyte
environments. However, interactive temperature effects played a
minor role in shaping the reaction norms of juvenile L. digitata
sporophytes. Rather, gametogenesis and recruitment at 5◦C
benefited mean growth of juvenile sporophytes, sporophyte
rearing at 5◦C enabled high thermal plasticity, and carbon and
nitrogen contents significantly increased in the 5◦C experimental
treatment. In this study, we add to previous evidence of higher
recruitment at a cold temperature (5◦C) compared to a warm
temperature (15◦C) for L. digitata (Martins et al., 2017), and show
a general disadvantage of early ontogeny at 15◦C compared to
5◦C for juvenile L. digitata sporophytes.

Across L. digitata’s European distribution, temperature
regimes differ substantially. While mean monthly SST vary
between 0 and 7◦C over the year in Kongsfjorden, Spitsbergen
(Müller et al., 2009; Bartsch et al., 2016), mean monthly
SST range between 7 and 18◦C at the southern distribution
limit in Quiberon, France (Oppliger et al., 2014). L. digitata
sporophytes become fertile mostly from early summer to
late autumn along their latitudinal distribution (Sjøtun and
Schoschina, 2002; Bartsch et al., 2008, 2013; Olischläger and
Wiencke, 2013). According to our results, northern to Arctic
populations may be favored by gametogenesis, recruitment
and growth of early sporophytes during summer to autumn
conditions (Sjøtun and Schoschina, 2002) at cold temperature
(5◦C) and long daylength. Further, these conditions increase
sporophyte recruitment compared to warmer temperatures
and/or a short photoperiod (Martins et al., 2017). Conversely,
summer temperatures at the warm distribution limit (≥18◦C)
such as at our study location Helgoland (Figure 2; Wiltshire et al.,
2008; Bartsch et al., 2013) or Quiberon (Oppliger et al., 2014),
may induce vegetative persistence of gametophytes after summer
spore release (tom Dieck, 1992; Martins et al., 2017). We provide
evidence that recruitment at the end of southern summers,
when decreasing temperatures allow gametogenesis (e.g., 15◦C;
Martins et al., 2017), might lead to reduced growth and reduced
thermal plasticity of juvenile sporophytes. The comparative
benefit of early ontogeny at 5◦Cdemonstrated in this study will be
achievable throughout the year at northern locations, but only in
winter to spring at southern locations. Subsequent investigations
into optimal conditions for recruitment and thermal plasticity
are needed, as temperature and daylength may shape responses
interactively (Schaffelke and Lüning, 1994; Martins et al., 2017),
and as populations might differ in their thermal plasticity (King
et al., 2018, 2019).

With a predicted warming of the North Atlantic by 1–3◦C
(Müller et al., 2009; Schrum et al., 2016), southern L. digitata
populations are threatened by rising maximum temperatures
and marine heatwaves (Raybaud et al., 2013; Assis et al., 2018).
This is especially true for populations where sporophytes already
encounter temperatures at their upper tolerance limit (e.g.,
Helgoland, North Sea, Bartsch et al., 2013; Quiberon, Brittany,
Oppliger et al., 2014), which affect traits such as reproduction,
photosynthesis, growth and mortality (Bartsch et al., 2013;
Burdett et al., 2019; Nepper-Davidsen et al., 2019). As suggested
by our data, rising temperatures might not only have immediate
detrimental effects such as local extinctions of populations due to
marine heatwaves (reviews by Straub et al., 2019; Smale, 2020).
Reduced growth and thermal plasticity induced by warming
during early ontogeny might additionally lead to an overall
weakened performance of southern L. digitata populations.
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