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InTroducTIon

Computer simulations allow for the investigation of many materials properties and processes 
that are not easily accessible in the laboratory. This is particularly true in the Earth sciences, where 
the relevant pressures and temperatures may be so extreme that no experimental techniques can 
operate at those conditions. Computer modeling is often the only source of information on the 
properties of materials that, combined with indirect evidence (such as seismic data), allows one 
to discriminate among competing planetary models. Many computer simulations are performed 
using effective inter-atomic potentials tailored to reproduce some experimentally observed 
properties of the materials being investigated. The remoteness of the physically interesting 
conditions from those achievable in the laboratory, as well as the huge variety of different atomic 
coordination and local chemical state occurring in the Earth interior, make the dependability of 
semi-empirical potentials questionable. First-principles techniques based on density-functional 
theory (DFT) (Hohenberg and Kohn 1964; Kohn and Sham 1965) are much more predictive, not 
being biased by any prior experimental input, and have demonstrated a considerable accuracy 
in a wide class of materials and variety of external conditions. The importance of thermal 
effects in the range of phenomena interesting to the Earth sciences makes a proper account of 
atomic motion essential. Traditionally, this is achieved using molecular dynamics techniques 
which have been successfully combined with DFT in the first-principles molecular dynamics 
technique of Car and Parrinello (1985). Well below the melting temperature, the numerical 
efficiency of molecular dynamics is limited by the lack of ergodicity, which would require 
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long simulation times, and by the importance of long-wavelength collective motions (phonons), 
which would require large simulation cells. Both difficulties are successfully dealt with in the 
quasi-harmonic approximation (QHA) where the thermal properties of solid materials are 
traced back to those of a system of non-interacting phonons (whose frequencies are however 
allowed to depend on volume or on other thermodynamic constraints). An additional advantage 
of the QHA is that it accounts for quantum-mechanical zero-point effects, which would not be 
accessible to molecular dynamics with classical nuclear motion. The availability of suitable 
techniques to calculate the vibrational properties of extended materials using a combination of 
DFT and linear-response techniques (resulting in the so-called density-functional perturbation 
theory, DFPT; Baroni et al. 1987, 2001) makes it possible to combine the QHA with DFT. The 
resulting simulation methodology has shown to be remarkably accurate in a wide temperature 
range, extending up to not very far from the melting line and has been applied to a wide variety 
of systems, including many which are relevant to the Earth sciences. This paper gives a short 
overview of the calculation of thermal properties of materials in the framework of the QHA, 
using DFT. The paper is organized as follows: in the “Thermal Properties and the Quasi-
Harmonic Approximation” section, we introduce some of the thermal properties of interest and 
describe how they can be calculated in the framework of the QHA; in the “Ab Initio Phonons” 
section, we describe the DFPT approach to lattice dynamics; in the “Computer Codes” section, 
we briefly introduce some of the computer codes that can be used to perform this task; in the 
“Applications” section, we review some of the application of the first-principles QHA to the 
study of the thermal properties of materials; finally, the last section contains our conclusions. 

THErMal ProPErTIES and THE QuaSI-HarMonIc aPProxIMaTIon

The low-temperature specific heat of solids is experimentally found to vanish as the cube 
of the temperature, with a cubic coefficient that is system-specific (Kittel 1996; Wallace 1998). 
This is contrary to the predictions of classical statistical mechanics, according to which the 
heat capacity of a system of harmonic oscillators does not depend on temperature, nor on its 
spectrum. One of the landmarks of modern solid-state physics, that greatly contributed to the 
establishment of our present quantum-mechanical picture of matter, is the Debye model for 
the heat capacity of solids. This model naturally explains the low-temperature specific heat of 
solids in terms of the (quantum) statistical mechanics of an ensemble of harmonic oscillators, 
which can in turn be pictorially described as a gas of non-interacting quasi-particles obeying 
the Bose-Einstein statistics (phonons). 

The internal energy of a single harmonic oscillator of angular frequency ω, in thermal 
equilibrium at temperature T, is: 

< E >
ekBT

= +
−

 



ω ω
ω

2 1
1( )

where kB is the Boltzmann constant. By differentiating with respect to temperature the sum 
over all the possible values of the phonon momentum in the Brillouin zone (BZ) of Equation 
(1), the constant-volume specific heat of a crystal reads: 
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where ω(q,ν) is the frequency of the ν-th mode (phonon) at point q in the BZ,  n′(q,ν) =  
′ , = ∂ ∂ −, −n T e k TB( ) ( / )[ ]( ( )/ )q qν ω ν 1 1, and the sum is extended to the first BZ. By assuming that there 

are three degenerate modes at each point of the BZ, each one with frequency ω(q,ν) = c|q|, c 
being the sound velocity, and converting the sum in Equation (2) into an integral, the resulting 
expression for the heat capacity, valid in the low-temperature limit, reads: 
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where Ω is the volume of the crystal unit cell and Θ ΩD Bk c= ( / ) ( / ) /2 3 4 1 3π π  is the so-called 
Debye temperature. 

In the Born-Oppenheimer approximation (Born and Oppenheimer 1927), the vibrational 
properties of molecules and solids are determined by their electronic structure through the 
dependence of the ground-state energy on the coordinates of the atomic nuclei (Martin 
2004). At low temperature the amplitudes of atomic vibrations are much smaller than inter-
atomic distances, and one can assume that the dependence of the ground-state energy on the 
deviation from equilibrium of the atomic positions is quadratic. In this, so called harmonic, 
approximation (HA) energy differences can be calculated from electronic-structure theory 
using static response functions (DeCicco and Johnson 1969; Pick et al. 1970) or perturbation 
theory (Baroni et al. 1987, 2001) (see the next section). 

In the HA, vibrational frequencies do not depend on interatomic distances, so that 
the vibrational contribution to the crystal internal energy does not depend on volume. 
As a consequence, constant-pressure and constant-volume specific heats coincide in this 
approximation, and the equilibrium volume of a crystal does not depend on temperature. Other 
shortcomings of the HA include its prediction of an infinite thermal conductivity, infinite 
phonon lifetimes, and the independence of vibrational spectra (as well as related properties: 
elastic constants, sound velocities etc.) on temperature, to name but a few. A proper account 
of anharmonic effects on the static and dynamical properties of materials would require the 
calculation of phonon-phonon interaction coefficients for all modes in the BZ. Although the 
leading terms of such interactions can be computed even from first principles (Baroni and 
Debernardi 1994; Debernardi et al. 1995)—and the resulting vibrational linewidths have in 
fact been evaluated in some cases (Debernardi et al. 1995; Lazzeri et al. 2003; Bonini et 
al. 2007)—the extensive sampling of the phonon-phonon interactions over the BZ required 
for free-energy evaluations remains a daunting task. The simplest generalization of the HA, 
which corrects for most of the above mentioned deficiencies, while not requiring any explicit 
calculation of anharmonic interaction coefficients, is the QHA. 

In the QHA, the crystal free energy is assumed to be determined by the vibrational 
spectrum via the standard harmonic expression: 
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where X indicates any global static constraint upon which vibrational frequencies may depend 
(most commonly just the volume V, but X may also include anisotropic components of the 
strain tensor, some externally applied fields, the internal distortions of the crystal unit cell, or 
other thermodynamic constraints that may be applied to the system), and U0(X) is the zero-
temperature energy of the crystal as a function of X. In the case X = V, differentiation of 
Equation (4) with respect to volume gives the equation of state: 
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are the so-called Grüneisen mode parameters. In a perfectly harmonic crystal, phonon 
frequencies do not depend on the interatomic distances, hence on volume. In such a harmonic 
crystal Equation (5) implies that the temperature derivative of pressure at fixed volume vanish: 
(∂P/∂T)V = 0. It follows that the thermal expansivity, β = V−1(∂V/∂T)P, which is given by the 
thermodynamical relation:
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where BT =V(∂P/∂V)T  is the crystal bulk modulus, would also vanish for perfectly harmonic 
crystals. Inspired by Equation (2), let us define C n VV ( ) ( ) ( )q q q, = , ′ , /ν ω ν ν  as the contribution 
of the ν-th normal mode at the q point of the BZ to the total specific heat, and γ as the weighted 
average of the various Grüneisen parameters:
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In terms of γ, the thermal expansivity simply reads:

β γ= C

B
V

T

( )11

The vanishing of the thermal expansivity in the HA would also imply the equality of the 
constant-pressure and constant-volume specific heats. By imposing that the total differentials 
of the entropy as a function of pressure and temperature or of volume and temperature coincide, 
and by using the Maxwell identities, one can in fact show that (Wallace 1998): 
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We conclude this brief introduction to the QHA by noticing that the ansatz given by Equation 
(4) for the crystal free energy in terms of its (volume-dependent) vibrational frequencies gives 
immediate access to all the equilibrium thermal properties of the system. Whether this implicit 
account of anharmonic effects through the volume dependence of the vibrational frequency 
only is sufficient to describe the relevant thermal effects, or else an explicit account of the 
various phonon-phonon interactions is in order, instead, is a question that can only be settled by 
extensive numeric experience. 

Ab InItIo PHononS

lattice dynamics from electronic-structure theory

Several simplified approaches exist that allow to calculate full (harmonic) phonon 
dispersions ω(q,ν) from semi-empirical force fields or inter-atomic potentials (Brüesch 1982; 
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Singh 1982). The accuracy of such semi-empirical models is however often limited to the 
physical conditions (pressure, atomic coordination, crystal structure, etc.) at which the inter-
atomic potentials are fitted. Really predictive calculations, not biased by the experimental 
information used to describe inter-atomic interactions require a proper quantum-mechanical 
description of the chemical bonds that held matter together. This can be achieved in the 
framework of electronic-structure theory (Martin 2004), starting from the adiabatic or Born 
and Oppenheimer (BO) approximation, and using modern concepts from DFT (Hohenberg and 
Kohn 1964; Kohn and Sham 1965) and perturbation theory (Baroni et al. 2001). 

Within the BO approximation, the lattice-dynamical properties of a system are determined 
by the eigenvalues E and eigenfunctions Φ of the Schrödinger equation: 
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where rI is the coordinate of the I-th nucleus, MI its mass, {r} indicates the set of all the 
nuclear coordinates, and EBO is the ground-state energy of a system of interacting electrons 
moving in the field of fixed nuclei, whose Hamiltonian—which acts onto the electronic 
variables and depends parametrically upon {r}—reads: 

H
m

e
V EBO

i i i j i j i
{ } N{ } ( ) { } (r

r r r
r rr i( ) = − ∂

∂
+

| − |
+ + ( )∑ ∑ ∑

≠



2 2

2

2

2 2

1
115)

−e being the electron charge, V{r}(r) = −ΣI(ZIe2/|r−rI|) is the electron-nucleus interaction, 
and EN({r}) = (e2/2)ΣI≠J(ZIZJ/|rI−rJ|) the inter-nuclear interaction energy. The equilibrium 
geometry of the system is determined by the condition that the forces acting on individual 
nuclei vanish: 
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whereas the vibrational frequencies, ω, are determined by the eigenvalues of the Hessian of the 
BO energy, scaled by the nuclear masses: 
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The calculation of the equilibrium geometry and vibrational properties of a system thus 
amounts to computing the first and second derivatives of its BO energy surface. The basic tool 
to accomplish this goal is the Hellmann-Feynman (HF) theorem (Hellmann 1937; Feynman 
1939), which leads to the following expression for the forces: 
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where n{r}(r) is the ground-state electron charge density corresponding to the nuclear configu-
ration {r}. The Hessian of the BO energy surface appearing in Equation (17) is obtained by 
differentiating the HF forces with respect to nuclear coordinates: 
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Equation (20) states that the calculation of the Hessian of the BO energy surfaces requires 
the calculation of the ground-state electron charge density, n{r}(r), as well as of its linear 
response to a distortion of the nuclear geometry, ∂n{r}(r)/∂rI. This fundamental result was 
first stated in the late sixties by De Cicco and Johnson (1969) and by Pick, Cohen, and Martin 
(1970). The Hessian matrix is usually called the matrix of the inter-atomic force constants 
(IFC). For a crystal, we can write: 

C
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s s

′
′

′
′− ′ =
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where us
α(r) is the α-th Cartesian components of the displacement of the s-th atom of the 

crystal unit cell located at lattice site r, and translational invariance shows manifestly in the 
dependence of the IFC matrix on r and r′ through their difference only. 

density-functional perturbation theory

We have seen that the electron-density linear response of a system determines the matrix 
of its IFCs, Equation (20). Let us see now how this response can be obtained from DFT. The 
procedure described in the following is usually referred to as density-functional perturbation 
theory (Baroni et al. 1987, 2001). 

In order to simplify the notation and make the argument more general, we assume that the 
external potential acting on the electrons is a differentiable function of a set of parameters, λ ≡ 
{λi} (λι ≡ rI in the case of lattice dynamics). According to the HF theorem, the first and second 
derivatives of the ground-state energy read:
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In DFT the electron charge-density distribution, nλ, is given by:
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where N is the number of electrons in the system (double degeneracy with respect to spin 
degrees of freedom is assumed), the single-particle orbitals, ψn

λ(r), satisfy the Kohn-Sham 
(KS) Schrödinger equation:
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where µXC is the so-called exchange-correlation (XC) potential (Kohn and Sham 1965). 
The electron-density response, ∂nλ(r)/∂λi, appearing in Equation (23) can be evaluated by 
linearizing Equations (24), (25), and (26) with respect to wave-function, density, and potential 
variations, respectively. Linearization of Equation (24) leads to: 
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where the prime symbol (as in n′) indicates differentiation with respect to one of the λ’s. The 
super-script λ has been omitted in Equation (28), as well as in any subsequent formulas where 
such an omission does not give rise to ambiguities. Since the external potential (both unperturbed 
and perturbed) is real, KS eigenfunctions can be chosen to be real, and the sign of complex con-
jugation, as well as the prescription to keep only the real part, can be dropped in Equation (27). 

The variation of the KS orbitals, ψ′n(r), is obtained by standard first-order perturbation 
theory (Messiah 1962): 

( ) ( ) ( )H VSCF n n SCF n n
o o o− | ′ = − ′ − ′ |ε ψ ε ψ 28

where H m VSCF SCF
o o= − ∂ ∂ +( / )( / ) ( )

2 2 22 r r  is the unperturbed KS Hamiltonian, 

SCFV V n d′ = ′ + , ′ ′ ′ ′∫( ) ( ) ( ) ( ) ( )r r r r r rκ 29

is the first-order correction to the self-consistent potential, Equation (26), κ(r,r′) = (e2/|r−r′|) 
+ [δµXC(r)/δn(r′)] is the Hartree-plus-XC kernel, and ε′n = 〈ψn° | V′SCF | ψn°〉 is the first order 
variation of the KS eigenvalue, εn. Equations (28–30) form a set of self-consistent equations 
for the perturbed system completely analogous to the KS equations in the unperturbed case—
Equations (24), (25), and (26)—with the KS eigenvalue equation, Equation (25), being replaced 
by a linear system, Equation (28). The computational cost of the determination of the density 
response to a single perturbation is of the same order as that needed for the calculation of the 
unperturbed ground-state density. 

The above discussion applies to insulators, where there is a finite gap. In metals a finite 
density of states occurs at the Fermi energy, and a change in the orbital occupation number 
may occur upon the application of an infinitesimal perturbation. The modifications of DFPT 
needed to treat the linear response of metals are discussed in de Gironcoli (1995) and Baroni 
et al. (2001).

Interatomic force constants and phonon band interpolation

The above discussion indicates that the primary physical ingredient of a lattice-dynamical 
calculation is the IFC matrix, Equation (20), from which vibrational frequencies can be obtained 
by solving the secular problem, Equation (17). That phonon frequencies can be classified 
according to a well defined value of the crystal momentum q follows from the translational 
invariance of the IFC matrix. Because of this, the IFC matrix can be Fourier analyzed to yield 
the so called dynamical matrix, prior to diagonalization: 

st st
i

C C eαβ αβ
 ( ) ( ) ( )q r

r

q r= ∑ − ⋅ 30

and the squared vibrational frequencies, ω(q,ν)2, are the eigenvalues of the 3n × 3n dynamical 
matrix: 

D
M M

Cst

s t

st
αβ αβ( ) ( ) ( )q q= 1

31

n being the number of atoms in the unit cell. The direct computation of the IFCs is unwieldy 
because it requires the calculation of the crystal electronic linear response to a localized 
perturbation (the displacement of a single atom or atomic plane), which would in turn break 
the translational symmetry of the system, thus requiring the use of computationally expensive 
large unit cells (Martin 2004; Alfé n.d., Parlinski n.d.). The IFCs are instead more conveniently 
calculated in Fourier space, which gives direct access to the relevant q-dependent dynamical 
matrices (Baroni et al. 2001). Because of translational invariance, the linear response to a 
monochromatic perturbation, i.e., one with a definite wave-vector q, is also monochromatic, 
and all quantities entering the calculation can be expressed in terms of lattice-periodic quantities 
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(Baroni et al. 2001). As a consequence, vibrational frequencies can be calculated at any wave-
vector in the BZ, without using any supercells, with a numerical effort that is independent of 
the phonon wave-length and comparable to that of a single ground-state calculation for the 
unperturbed system. 

The accurate calculation of sums (integrals) of lattice-dynamical properties over the BZ 
(such as those appearing in the QHA formulation of the thermodynamics of crystals in the 
“Thermal Properties and Quasi-Harmonic Approximation” section) requires sampling the in-
tegrand over a fine grid of points. This may be impractical in many cases, and suitable inter-
polation techniques are therefore called for. The most accurate, and physically motivated, such 
technique consists in the calculation of real-space IFCs by inverse analyzing a limited number 
of dynamical matrices calculated on a coarse grid. Dynamical matrices at any arbitrary point in 
the BZ can then be inexpensively reconstructed by Fourier analysis of the IFC’s thus obtained. 
According to the sampling theorem by Shannon (1949), if the IFCs are strictly short-range, a 
finite number of dynamical matrices, sampled on a correspondingly coarse reciprocal-space 
grid, is sufficient to calculate them exactly by inverse Fourier analysis. The IFCs thus obtained 
can then be used to calculate exactly the dynamical matrices at any wave-vector not included 
in the original reciprocal-space grid. In the framework of lattice-dynamical and band-structure 
calculations this procedure is usually referred to as Fourier interpolation. Of course, IFCs are 
never strictly short-range, and Fourier interpolation is in general a numerical approximation, 
subject to so-called aliasing errors, whose magnitude and importance have to be checked on a 
case-by-case basis. 

Let us specialized to the case of a crystal, in which lattice vectors r are generated by 
primitive vectors a1, a2, a3: rlmn = la1 + ma2 + na3, with l,m,n integer numbers. The reciprocal 
lattice vectors G are generated in an analogous way by vectors b1, b2, b3, such that 

a bi j ij⋅ = 2 32πδ ( )

Correspondingly we consider a symmetry-adapted uniform grid of q-vectors: 

q b b bpqr

p

N

q

N

r

N
= + +

1
1

2
2

3
3 33( )

where p,q,r are also integers. This grid spans the reciprocal lattice of a supercell of the original 
lattice, generated by primitive vectors N1a1, N2a2, N3a3. Since wave-vectors differing by a 
reciprocal-lattice vector are equivalent, all values of p,q,r differing by a multiple of N1,N2,N3 
respectively, are equivalent. We can then restrict our grid to p ∈ [0, N1−1], q ∈ [0, N2−1], and 
r ∈ [0, N3−1]. The qpqr grid thus contains N1×N2×N3 uniformly spaced points and spans the 
parallelepiped generated by b1, b2, b3. It is often convenient to identify wave-vectors with 
integer labels spanning the [ ]− , −N N

2 2 1  range, rather than [0, N−1]. Negative indices can be 
folded to positive values using the periodicity of discrete Fourier transforms. 

Once dynamical matrices have been calculated on the qhkl grid, IFCs are easily obtained 
by (discrete) fast-Fourier transform (FFT) techniques: 

C
N N N

C e

N N N

st lmn
pqr

st pqr

i pqr lmnαβ αβ( ) ( ) ( )r q q r=

=

∑ ⋅1
34
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1 2 3
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ppqr
st pqr

i

C e
lp
N

mq
N

nr
N∑ + +( )αβ π


( )q 2

1 2 3

where the bi-orthogonality of the real- and reciprocal-space primitive vectors, Equation (32), 
is used to get qpqr·rlmn = 2π[(lp/N1) + (mq/N2) + (nr/N3)]. The IFCs thus obtained can be used 
to calculate dynamical matrices at wave-vectors not originally contained in the reciprocal-
space grid. This can be done directly wave-vector by wave-vector, or by FFT techniques, by 
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padding a conveniently large table of IFCs with zeroes beyond the range of those calculated 
from Fourier analyzing the original coarse reciprocal-space grid. 

coMPuTEr codES

In order to implement the QHA from first principles, one needs to compute the complete 
phonon dispersion of a crystal for different values of the crystal volume. This can be done 
within DFT by the direct or frozen phonon method, or by the linear response method (Baroni 
et al. 2001; Martin 2004). The former does not require the use of specialized software beside 
that needed to perform standard ground-state DFT calculations, but is computationally 
more demanding. Some software tools that help analyze the output of standard DFT code to 
produce real-space IFC’s and, from these, reciprocal-space dynamical matrices are available 
(Alfé n.d., Parlinski n.d.). As for the linear-response approach, two widely known general-
purpose packages exist, Quantum ESPRESSO (Giannozzi et al. 2009) and ABINIT (Gonze 
et al. 2002). In the following we briefly describe the former, as well as another code, QHA, 
that can be used as a post-processing tool to perform QHA calculations starting from lattice-
dynamical calculations performed with many different methods (semi-empirical as well as 
first-principles, frozen-phonon, as well as DFPT). 

Quantum ESPrESSo

Quantum ESPRESSO (opEn Source Package for Research in Electronic Structure, 
Simulation, and Optimization) is an integrated suite of computer codes for electronic-structure 
calculations and materials modeling, based on DFT, plane waves, pseudopotentials (norm-
conserving and ultrasoft) and all-electron Projector-Augmented-Wave potentials (Giannozzi et 
al. 2009). It is freely available under the terms of the GNU General Public License. Quantum 
ESPRESSO is organized into packages. For the purposes of lattice-dynamical calculations and 
QHA applications, the two most relevant ones are PWscf and PHonon. The former produces 
the self-consistent electronic structure and all related computations (forces, stresses, structural 
optimization, molecular dynamics). The latter solves the DFPT equations and calculates 
dynamical matrices for a single wave-vector or for a uniform grid of wave-vectors; Fourier 
interpolation can be applied to the results to produce IFCs up to a pre-determined range in 
real space. The effects of macroscopic electric field are separately dealt with using the known 
exact results valid in the long-wavelength limit (Born and Huang 1954). Both the electronic 
contribution to the dielectric tensor, ε∞, and the effective charges Z* are calculated by PHonon 
and taken into account in the calculation of interatomic force constants. Once these have been 
calculated, phonon modes at any wave-vector can be recalculated in a quick and economical 
way. Anharmonic force constants can be explicitly calculated using the D3 code contained in 
the PHonon package. The volume dependence of the IFCs needed within the QHA is simply 
obtained numerically by performing several phonon (harmonic) calculations at different 
volumes of the unit cell. 

The QHa code

Once the IFC matrix (or, equivalently, the dynamical matrix over a uniform grid in 
reciprocal space) has been calculated, thermodynamical properties can be easily calculated 
using the QHA code (Isaev n.d.). QHA requires in input just a few data: basic information 
about the system (such as atomic masses, lattice type) and a file containing IFCs, stored in an 
appropriate format. QHA then calculates and several quantities such as the total phonon density 
of states (DOS), atom-projected DOS, the isochoric heat capacity, the Debye temperature, 
zero-point vibration energy, internal energy, entropy, mean square displacements for atoms, 
etc. The DOS is obtained via the tetrahedron method (Lehmann and Taut 1972), while integrals 
over the frequency are calculated using the Simpson’s “3/8 rule.” 
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aPPlIcaTIonS

The first investigations of the thermal properties of materials using ab initio phonons and the 
QHA date back to the early days of DFPT theory, when the thermal expansivity of tetrahedrally 
coordinated semiconductors and insulators was first addressed (Fleszar and Gonze 1990; 
Pavone 1991; Pavone et al. 1993). Many other applications have appeared ever since to metals, 
hydrides, intermetallic compounds, surfaces, and to systems and properties of mineralogical 
and geophysical interest. Brief reviews of these applications can be found in Baroni et al. (2001) 
and Rickman and LeSar (2002); this section contains a more up-to-date review, with a special 
attention paid to those applications that are relevant to the Earth Sciences. 

Semiconductors and insulators

One of the most unusual features of tetrahedrally coordinated elemental and binary semi-
conductors is that they display a negative thermal expansion coefficient (TEC) at very low 
temperature. This finding prompted the first applications of the QHA to semiconductors, using 
first a semi-empirical approach (Biernacki and Scheffler 1989), and first-principles techniques 
in the following (Fleszar and Gonze 1990; Pavone 1991; Pavone et al. 1993; Hamdi et al. 
1993; Debernardi and Cardona 1996; Gaal-Nagy et al. 1999; Rignanese et al. 1996; Xie et al. 
1999a; Eckman et al. 2000; Mounet and Marzari 2005; Zimmermann et al. 2008). The detailed 
insight provided by the latter allowed one to trace back this behavior to the negative Grüneisen 
parameter in the lowest acoustic phonon branch and to its flatness that enhances its weight in 
the vibrational density of states at low frequency. This behavior is not observed in diamond at 
ambient conditions—which in fact does not display any negative TEC (Pavone et al. 1993; Xie 
et al. 1999a)—whereas at pressures larger than −700 GPa the softening of the acoustic Grü-
neisen parameters determines a negative TEC. The TEC of diamond calculated by Pavone et al. 
(1993) starts deviating from experimental points at T = 600 K which was explained in terms of 
enhanced anharmonic effects at higher temperature. However, a recent calculation done with a 
different XC energy functional (GGA, rather than LDA) (Mounet and Marzari 2005) displayed 
a fairly good agreement with experiments up to T = 1200 K, and with results of Monte-Carlo 
simulations (Herrero and Ramírez 2000) up to T = 3000 K. Graphite shows negative in-plane 
TEC over a broad temperature range, up to 600K, and the calculated TEC for graphene is nega-
tive up to 2000 K (Mounet and Marzari 2005). This is due to a negative Grüneisen parameter 
of the out-of-plane lattice vibrations along the ΓM and ΓK directions (the so called ZA modes, 
which plays an important role in the thermal properties of layered materials, due to the high 
phonon DOS displayed at low frequency because of a vanishing sound velocity (Lifshitz 1952; 
Zabel 2001). Such an unusual thermal contraction for carbon fullerenes and nanotubes was 
confirmed by molecular dynamics simulations in Kwon et al. (2004). The heat capacity of 
carbon nanotubes was calculated in Zimmermann et al. (2008). The out-of-plane TEC calcu-
lated for graphite (Mounet and Marzari 2005) is in poor agreement with experiment. This is 
not unexpected because inter-layer binding is mostly due to dispersion forces which are poorly 
described by the (semi-) local XC functionals currently used in DFT calculations. 

One of the early achievements of DFT that greatly contributed to its establishment in the 
condensed-matter and materials-science communities was the prediction of the relative stabil-
ity of different crystal structures as a function of the applied pressure (Gaal-Nagy et al. 1999; 
Eckman et al. 2000; Correa et al. 2006; Liu et al. 1999; Isaev et al. 2007; Mikhaylushkin et al. 
2007; Dubrovinsky et al. 2007). Thanks to the QHA, vibrational effects can be easily included 
in the evaluation of the crystal free energy, thus allowing for the exploration of the phase dia-
gram of crystalline solids at finite temperature. In Gaal-Nagy et al. (1999) and Eckman et al. 
(2000), for instance, the P-T phase diagram for Si and Ge was studied in correspondence to the 
diamond → β-Sn transition. Noticeable changes in the EOS of ZnSe at finite temperature were 
shown in Hamdi et al. (1993). The phase boundary between cubic and hexagonal BN has been 
studied in Kern et al. (1999) using the QHA with an empirical correction to account for the lead-
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ing (explicit) anharmonic effects. Other applications of the QHA in this area include the low-
temperature portion of the P-T phase diagram for the diamond → BC8 phase transition (Correa 
et al. 2006) and the sequence of rhombohedral (223 K) → orthorhombic (378 K) → tetragonal 
(778 K) → cubic phase transitions in BaTiO3 (Zhang et al. 2006) at ambient pressure. 

Simple metals

The QHA has been widely used to investigate the thermal properties of BCC (Quong 
and Liu 1997; Liu et al. 1999; Debernardi et al. 2001), FCC (Debernardi et al. 2001; Li and 
Tse 2000; Grabowski et al. 2009; Xie et al. 2000; Narasimhan and de Gironcoli 2002; Xie et 
al. 1999b; Tsuchiya 2003; Sun et al. 2008), and HCP (Ismail et al. 2001; Althoff et al. 1993) 
metals. These works generally report a good agreement with experiments as concerns the 
calculated lattice volume, bulk modulus, TEC, Grüneisen parameter, and high-pressure/high-
temperature phase diagram. Some discrepancies in the temperature dependence of CP and 
TEC might be connected to the neglect of explicit anharmonic effects at high temperatures, as 
well as due to overestimated cell volumes when using GGA XC functionals. In Grabowski et 
al. (2009) it was stressed that implicit quasi-harmonic effects dominate the thermal properties, 
being almost two orders of magnitude larger than explicit anharmonic ones, irrespective of the 
XC functional adopted. 

The QHA has also been an important ingredient in the calculation of the melting curve 
of some metals, such as Al (Vocadlo and Alfé 2002), Si (Alfé and Gillan 2002), and Ta 
(Gülseren and Cohen 2002; Taioli et al. 2007), performed via thermodynamic integration. The 
vibrational contribution to the low-temperature free energy of the crystal phase was shown to 
be important for lighter elements (such as Al), whereas it is negligible for heavier ones, such 
as Ta. The P-T phase diagram for HCP-BCC Mg has been obtained in Althoff et al. (1993), 
where it was shown that a proper account of lattice vibrations improves the prediction of the 
transition pressure at room temperature. Interestingly, in Xie et al. (1999b) it was noticed that 
in the QHA equation of state (EOS) of Ag there exists a critical temperature beyond which no 
volume would correspond to a vanishing pressure—thus signaling a thermodynamic instability 
of the system—and that this temperature is actually rather close to the experimental melting 
temperature of Ag. Narasimhan and de Gironcoli (2002) studied the influence of different 
(LDA and GGA) functionals on the thermal properties of Cu. The contribution of lattice 
vibrations to the phase stability of Li and Sn has been studied in Liu et al. (1999), Pavone et al. 
(1998), and Pavone (2001): a proper account of vibrational effects considerably improves the 
predictions of the low-temperature structural properties of a light element such as Li, which 
is strongly affected by zero-point vibrations (Liu et al. 1999). The large vibrational entropy 
associated with low-frequency modes stabilizes the BCC structure of Li (Liu et al. 1999) and 
β-Sn (Pavone et al. 1998; Pavone 2001) just above room temperature. 

Hydrides 

One of the best illustrations of the ability of the QHA to account for the effects of lattice 
vibrations on the relative stability of different crystalline phases is provided by iron and 
palladium hydrides, FeH and PdH. FeH was synthesized by different experimental groups 
(Antonov et al. 1980; Badding et al. 1992; Hirao et al. 2004) and its crystalline structure was 
found to be a double hexagonal hexagonal structure (DHCP), contrary to the results of ab initio 
calculations (Elsasser et al. 1998) that, neglecting vibrational effects, would rather predict a 
simple HCP structure. The puzzle remained unsolved until free-energy calculations for FCC, 
HCP, and DHCP FeH (Isaev et al. 2007) showed that the hydrogen vibrational contribution 
to the free energy actually favors the DHCP structure. This is a consequence of the linear 
ordering of H atoms in HCP FeH, which shifts to higher frequencies the mostly H-like optical 
band of the system, with respect to the FCC and DHCP phases. The corresponding increase in 
the zero-point energy makes the DHCP structure—which is the next most favored, neglecting 
lattice vibrations—the stablest structure at low pressure. The quantum nature of hydrogen 
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vibrations and its influence on the phase stability of hydrides was also clearly demonstrated in 
Caputo and Alavi (2003 and Hu et al. (2007). First-principles pseudopotential calculations for 
PdH have shown that tetrahedrally coordinated H (B3-type PdH) is energetically favored with 
respect to octahedrally coordinated H (B1-type PdH), at variance with experimental findings 
(Rowe et al. 1972, Nelin 1971). The quantum-mechanical behavior of hydrogen vibrations 
dramatically affects on the stability of PdH phases at low temperature, favoring the octahedral 
coordination of hydrogen atoms in PdH (Caputo and Alavi 2003). As another example, the 
QHA does not predict any α→β (monoclinic to orthorhombic) phase transition in Na2BeH4 (Hu 
et al. 2007), contrary to the conclusions that were reached from static total-energy calculations. 
Overall, the structural parameters of most alkaline hydrides calculated using the QHA turned 
out to be substantially improved by a proper account of zero-point vibrations, both using LDA 
and GGA XC functionals (more so in the latter case) (Roma et al. 1996; Barrera et al. 2005; 
Lebègue et al. 2003; Zhang et al. 2007). 

Intermetallics 

The QHA has been also successfully applied to the thermal properties of intermetallics 
and alloys. For example, the Grüneisen parameters, isothermal bulk modulus, TEC, and 
constant-pressure specific heat for Al3Li have been calculated in Li and Tse (2000). The TEC 
temperature dependence of the technologically important superalloys B2 NiAl and L12 Ni3Al, 
as well as L12 Ir3Nb, have been studied in (Wang et al. 2004; Arroyave et al. 2005; Lozovoi 
and Mishin 2003; Gornostyrev et al. 2007). This is a very significant achievement of QHA, as 
it makes it possible very accurate temperature-dependent calculations of the misfit between 
lattice parameters of low-temperature FCC/BCC alloy and high-temperature L12/B2 phases, 
which plays a considerable role in the shape formation of precipitates. It has been found that 
zero-point vibrations do not affect the type of structural defects in B2 NiAl, nor do they change 
qualitatively the statistics of thermal defects in B2 NiAl (Lozovoi and Mishin 2003). Ozolins 
et al. (1998) and Persson et al. (1999) have studied the influence of vibrational energies on the 
phase stability in Cu-Au and Re-W alloys, using a combination of the QHA and of the cluster-
variation method. It turns out that lattice vibrations considerably enhance to the stability of 
CuAu intermetallic compounds and Cu-Au alloys with respect to phase separation (Ozolins 
et al. 1998), as well as to the relative stability of the ordered vs. disordered phases at high 
temperature (Persson et al. 1999). 

Surfaces

Ab initio calculations for surfaces coupled with the QHA have been done for the past 
10 years. For example, an anomalous surface thermal expansion, the so called surface pre-
melting, has been studied for a few metallic surfaces, such as Al(001) (Hansen et al. 1999), 
Al(111) (Narasimhan and Scheffler 1997), Ag(111) (Xie et al. 1999c; Narasimhan and Scheffler 
1997; Al-Rawi et al. 2001), Rh(001), Rh(110) (Xie and Scheffler 1998), Mg( )1010  (Ismail et 
al. 2001), Be( )1010  (Lazzeri and de Gironcoli 2002) and Be(0001) (Pohl et al. 1998). Hansen 
et al. (1999) noticed that the QHA is fairly accurate up to the Debye temperature, above which 
explicit anharmonic effects, not accounted for in this approximation, become important. While 
no peculiar effects for the surface inter-layer spacing were found for Al(111) (Narasimhan and 
Scheffler 1997), for Ag and Rh surfaces it was found that the outermost interlayer distance, d12, 
is reduced at room temperature, with respect to its bulk value, whereas it is expanded at high 
temperatures (Narasimhan and Scheffler 1997; Xie and Scheffler 1998; Xie et al.1999c; Al-
Rawi et al. 2001). The expansion of d12 in the Ag and Rh surfaces, as well as in Be (0001) (Pohl 
et al. 1998), is related to the softening of some in-plane vibrational modes with a corresponding 
enhancement of their contribution to the surface free energy. Free energy calculations for Be
( )1010  (Lazzeri and de Gironcoli 2002) and Mg( )1010  (Ismail et al. 2001) successfully account 
for the experimentally observed oscillatory behavior of the interatomic distances. The large 
contraction of d12 in Be( )1010   was explained in terms of a strong anharmonicity in the second 
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layer in comparison with the surface layer (see also Marzari et al. 1999). For Be(0001) 
no oscillatory behavior in inter-layer spacings was observed in Pohl et al. (1998), but an 
anomalously large surface thermal expansion does occur. 

Earth materials

The extreme temperature and pressure conditions occurring in the Earth interior make 
many geophysically relevant materials properties and processes difficult, if not impossible, to 
observe in the laboratory. Because of this, computer simulation is often a premier, if not unique, 
source of information in the Earth sciences. By increasing the pressure, the melting temperature 
also increases, so that the temperature range over which a material behaves as a harmonic solid 
is correspondingly expanded, thus making the QHA a very useful tool to investigate materials 
properties at Earth-science conditions. 

Iron, the fourth most abundant element on Earth and the main constituent of the Earth 
core, plays an outstanding role in human life and civilization. In Körmann et al. (2008), Sha 
and Cohen (2006a,b) the thermodynamics and thermoelastic properties of BCC Fe have been 
treated by means of the QHA and finite-temperature DFT. The temperature dependence of the 
calculated constant-pressure heat capacity deviates from experiment at room temperature, but 
a proper inclusion of magnetic effects dramatically improves the agreement up to the Curie 
temperature (Körmann et al. 2008). The calculated Debye temperature and low-temperature 
isochoric heat capacity CV are in good agreement with available experimental data. The 
magnitude and temperature dependence of the calculated C12, C44 elastic constants (Sha and 
Cohen 2006a) are consistent with experiment (Leese and Lord 1968; Dever 1972; Isaak and 
Masuda 1995) in the temperature range from 0 K to 1200 K at ambient pressure, while C11 
is overestimated (Sha and Cohen 2006a), likely because of an underestimated equilibrium 
volume. The ambient-pressure shear and compressional sound velocities are consistent with 
available ultrasonic measurements. The c/a ratio of ε-Fe has been studied in (Sha and Cohen 
2006c) up to temperatures of 6000 K and pressures of 400 GPa by using the QHA, resulting 
in good agreement with previous calculations (Gannarelli et al. 2003) and X-ray diffraction 
experiment (Ma et al. 2004). A combination of experiments and calculations performed within 
the QHA was used to show that the FCC and HCP phases of nonmagnetic Fe (Mikhaylushkin 
et al. 2007) can co-exist at very high temperatures and pressures (−6600 K and 400 GPa), due 
to quite small free-energy differences. 

B1-type MgO and CaO, MgSiO3 perovskite, the aragonite and calcite phases of CaCO3, 
the various polymorphs of aluminum silicate, Al2SiO5, silica, SiO2 and alumina, Al2O3 are very 
important constituents of the Earth’s crust and lower mantle. Besides, it is believed that the 
Earth’s D′′ layer is mostly composed of post-perovskite MgSiO3, while γ-spinel Mg2SiO4 is the 
dominant mineral for the lower part of Earth’s transition zone. Note that Mg-based minerals do 
contain some amount of Fe substituting Mg. The high-pressure crystalline structure and stability 
of these phases are discussed in Oganov (2004 and Oganov et al. (2005). Lattice dynamics and 
related thermal and elastic properties of B1 MgO have been studied by Strachan et al. (1999), 
Drummond and Ackland (2002), Oganov et al. (2003), Oganov and Dorogokupets (2003), 
Karki et al. (1999, 2000), Wu et al. (2008), and Wu and Wentzcovitch (2009). Wentzcovich 
and co-workers have introduced a semi-empirical ansatz that allows for an account of explicit 
anharmonic contributions to the QHA estimate of various quantities, such as the TEC and CP 
(Wu et al. 2008; Wu and Wentzcovitch 2009), resulting in a much improved agreement with 
experiments. The temperature and pressure dependence of elastic constants of B1 MgO (Isaak 
et al. 1990; Karki et al. 1999, 2000) calculated within QHA show very good agreement with 
experimental data (Isaak et al. 1989). Besides, pressure dependence of ab initio compressional 
and shear sound velocities is in consistent with seismic observations for the Earth’s lower mantle 
(Karki et al. 1999). In contrast with these successes, the calculated thermal properties of the 
B1 and B2 phases of CaO (Karki and Wentzcovitch 2003) are inconsistent with experimental 
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data, and this is most likely due to the too small lattice parameter predicted by the LDA, as later 
investigations based on a GGA XC functional seem to indicate (Zhang and lai Kuo 2009). 

The thermal properties of MgSiO3 and Mg2SiO4 and the phase transition boundary in these 
minerals (perovskite → post-perovskite MgSiO3 and spinel → post-spinel Mg2SiO4) have been 
extensively studied (Oganov and Ono 2004; Oganov and Price 2005;Ono and Oganov 2005; 
Wentzcovitch et al. 2006; Yu et al. 2007, 2008; Wu et al. 2008; Wu and Wentzcovitch 2009) due 
to their great importance for the Earth’s D′′ layer and lower mantle, respectively. Improved EOS 
of B1 MgO (Wu et al. 2008), obtained by means of renormalized phonons and QHA, has been 
used as a new pressure calibration to re-evaluate the high pressure – high temperature phase 
boundary in MgSiO3 and Mg2SiO4 minerals using experimental data from (Fei et al. 2004; 
Hirose et al. 2006; Speziale et al. 2001). 

Alumina, Al2O3, plays an important role in high-pressure experiments: for example, it 
serves as a window material for shock-wave experiments. Cr-doped alumina, ruby, is used as 
a pressure calibration material in diamond-anvil-cell experiments. Besides, it is a component 
of solid solutions with MgSiO3 polymorphs that have significantly different thermal properties 
from pure MgSiO3 minerals. Corundum (α-Al2O3) is the most stable phase of alumina at ambient 
conditions, preceded by the θ phase at lower temperature. The energy difference between the 
θ and α phases of alumina is rather small, and this raised a question as to whether α-Al2O3 is 
stabilized by phonons. Zero-point vibrations stabilize the corundum phase at low temperatures 
(Lodziana and Parlinski 2003), whereas free-energy calculations show that the α phase cannot 
be stabilized by phonons only at room temperature. QHA calculations revealed that at high 
pressures alumina transforms to CaIrO3- (Oganov and Ono 2005) and U2S3-type (Umemoto and 
Wentzcovitch 2008) polymorphs. 

The P-T phase diagram for Al2SiO5 polymorphs (andalusite, sillimanite, and kyanite) 
(Winkler et al. 1991) and the thermal properties of CaCO3 polymorphs (calcite and aragonite) 
(Catti et al. 1993; Pavese et al. 1996) have been studied within the QHA using model inter-
atomic potentials. The effect of zero-point vibrations on the equilibrium volume in the calcite 
phase was found to be quite important and actually larger than the thermal expansion at 
relatively high temperature (Catti et al. 1993). These calculations (Pavese et al. 1996) were 
not able to account for the experimentally observed (Rao et al. 1968) negative in-plane TEC in 
calcite. The heat capacity and entropy calculated for the aragonite phase substantially deviate 
from experiment. All these problems can be possibly traced back to the poor transferability of 
model inter-atomic potentials. 

The thermal properties of the α-quartz and stishovite phases of SiO2 have been studied in 
Lee and Gonze (1995). The heat capacities of both phases were found to be in good agreement 
with experimental data (Lord and Morrow 1957; Holm et al. 1967), with the stishovite phase 
having a lower capacity below 480 K. Interestingly, zero-point vibration energy of the stishovite 
phase affects on thermodynamical properties stronger than in the α-quartz phase (Lee and Gonze 
1995). The P-T phase diagram of SiO2 has been examined in Oganov et al. (2005) and Oganov 
and Price (2005), with emphasis on the stishovite → CaCl2 → α-PbO2 → pyrite structural 
changes, resulting in a sequence of transitions that do not correspond to any observed seismic 
discontinuities within the Earth. Further investigations at ultrahigh temperature and pressure 
show that SiO2 exhibits a pyrite → cotunnite phase transition at conditions that are appropriate 
for the core of gas giants and terrestrial exoplanets (Umemoto et al. 2006). 

concluSIonS

The QHA is a powerful conceptual and practical tool that complements molecular dynamics 
in the prediction of the thermal properties of materials not too close to the melting line. In 
the specific case of the Earth Sciences, the QHA can provide information on the behavior 
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of geophysically relevant materials at those geophysically relevant pressure and temperature 
conditions that are not (easily) achieved in the laboratory. Large-scale calculations using the 
QHA for geophysical research will require the deployment of a large number of repeated 
structure and lattice-dynamical calculations, as well as the analysis of the massive data 
generated. We believe that this will require the use of dedicated infrastructures that combine 
some of the features of massively parallel machines with those of a distributed network of 
computing nodes, in the spirit of the grid computing paradigm. The Quantum ESPRESSO 
distribution of computer codes is geared for exploitation on massively parallel machines up to 
several thousands of closely coupled processors and is being equipped with specific tools to 
distribute lattice-dynamical calculation over the grid (Di Meo et al. n.d.). 
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