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Abstract. We investigate the thermal emission from magnetic neutron star surfaces in which the cohesive effects of the magnetic
field have produced the condensation of the atmosphere and the external layers. This may happen for sufficiently cool (T ≤
106) atmospheres with moderately intense magnetic fields (about 1013 G for Fe atmospheres). The thermal emission from an
isothermal bare surface of a neutron star shows no remarkable spectral features, but it is significantly depressed at energies
below some threshold energy. However, since the thermal conductivity is very different in the normal and parallel directions to
the magnetic field lines, the presence of the magnetic field is expected to produce a highly anisotropic temperature distribution,
depending on the magnetic field geometry. In this case the observed flux of such an object looks very similar to a BB spectrum,
but depressed by a nearly constant factor at all energies. This results in a systematic underestimation of the area of the emitter
(and therefore its size) by a factor 5–10 (2–3).

Key words. stars: neutron – radiation mechanisms: thermal – X-rays: stars

1. Introduction

Almost a decade after the discovery of the soft X-ray source
RX J185635-3754 (Walter et al. 1996) using the ROSAT-
PSPC, the thermal component associated with the direct emis-
sion from a neutron star’s surface has been detected in more
than 20 X-ray sources. In many cases it is superimposed
on a power-law tail, but seven of these objects are well-
characterized as simple blackbodies with temperatures rang-
ing between 60 and 100 eV. The apparent small emitting sur-
face of RX J185635-3754, inferred from the best blackbody
fit and its parallax (Walter & Lattimer 2002) have led to spec-
ulation about its nature, and whether its apparent smallness
can be considered as evidence that the object is a strange
star: a self-bound object made of up, down and strange quarks
(Pons et al. 2002; Drake et al. 2002), or a standard, misaligned
pulsar. Although this new observational class (isolated compact
stars) is probably the first real opportunity to place stringent
constraints on the equation of state (EOS) of dense matter from
astrophysical measurements (see Lattimer & Prakash 2001, for
a review), one must be cautious before concluding that an
apparently small X-ray source is a quark star, because the
X-ray spectrum is not the only information available. Using
the Hubble Space Telescope, Walter & Matthews (1997) sub-
sequently identified an optical source at 6060 Å and 3000 Å,
with a brightness only about 7 times brighter than an extrapo-
lation of a 62 eV X-ray blackbody into the optical V band. The
observed optical fluxes have been confirmed by subsequent ob-
servations from the 2-m NTT (Neuhaüser et al. 1998) and new
HST measurements (Pons et al. 2002). Remarkably, the other
three isolated compact X-ray sources that have been detected
in the optical band (RX J0720.4-3125, RX J1308.6+2127,

and RX J1605.3+3249) also have a significant optical ex-
cess over the extrapolation of the X-ray blackbody (a factor 5
to 14). None of them have yet been detected as 1.4 GHz ra-
dio sources. Thus, RX J185635-3754 is not an uncommon ob-
ject, for it shares the same general observational properties
of other isolated neutron stars (blackbody spectrum in X-ray,
no evident spectral features, optical excess), except for the
fact that four of them have fairly long periods (8–22 s), while
RX J185635-3754 is not variable, with a reported upper limit
on the pulse amplitude of <1.3% (Burwitz et al. 2003).

Since blackbodies are no more than a simple approxima-
tion of the true emission mechanism, a step forward in under-
standing the thermal emission of neutron stars, consists of com-
puting model atmospheres for low magnetic fields (<1011 G)
and emergent spectra for several compositions, masses and ra-
dius (Romani 1987; Miller 1992; Rajagopal & Romani 1996).
The parameters that determine the shape of the observed spec-
trum are the atmospheric composition, the red-shifted temper-
ature, T∞ = Teff/(1 + z), the redshift z, the interstellar medium
absorption, nH , and the ratio R∞/d, where d is the distance
to the object and R∞ = R(1 + z), R being the radius of the
star. For a Planck spectrum the redshift factors contribute only
to an overall scale factor, so that the redshift does not affect
the models. For realistic atmospheres with spectral features,
however, the redshift is an important parameter because the
identification of spectral lines would determine the M/R ratio
and establish relevant constraints on the EOS of dense mat-
ter. After a detailed investigation of the different parameters
that affect the observed spectra, Pons et al. (2002) concluded
that X-ray data alone do not allow us to establish severe con-
straints, given the large number of degrees of freedom. The
combination of the X-ray spectra with the optical fluxes turned
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out to be much more restrictive, as was suggested earlier by
Pavlov et al. (1996). The broadband spectral energy distribu-
tion (SED) of isothermal heavy element atmospheres can fit the
observed SED, but these models predict detectable absorption
lines and edges. It was hoped that the more sensitive spectro-
graphs on Chandra and XMM-Newton would be able to de-
tect spectral features and help to understand the nature of this
objects, but no lines or absorption edges have been seen in
long exposures (Burwitz et al. 2001; Drake et al. 2002). Only
the presence of broadband departures from a single blackbody
spectrum has recently been suggested (Burwitz et al. 2003).

The puzzle, then, is as follows: single temperature models
based on heavy element atmospheres explain the broadband
spectrum and the lack of variability of the X-ray spectrum,
but they are in contradiction with the absence of spectral fea-
tures. Single blackbody models, besides being unrealistic, can-
not account for the systematic optical excess that is observed
in 4 sources. An anisotropic surface temperature distribution
(the simplest case would be two blackbody components) can
reconcile X-ray and optical observations, because the quantity
(R∞/D)2 must be interpreted as the solid angle subtended by
the star’s surface area which is visible at some distance D. Thus
the true value of R∞ will generally be larger if the assump-
tion that the temperature is uniform on the surface is relaxed.
However, this is barely consistent with the lack of pulsation of
RX J185635-3754, unless its magnetic and rotation axes are
oriented in a very particular way.

Nevertheless, there is an important ingredient missing in
the above discussion, the likely existence of strong magnetic
fields. The strong (1012−13 G) magnetic fields of pulsars suggest
that most, if not all, neutron stars should have similarly strong
fields. However, detailed atmosphere models with strong mag-
netic fields are only available for hydrogen (Zavlin et al. 1995),
because reliable opacities and EOS have not yet been de-
veloped for heavier elements and because of the complexity
of modeling magnetic atmospheres with arbitrary magnetic
field structures. For heavy-element dominated atmospheres,
only approximate treatments of magnetic Fe atmospheres ex-
ist (Rajagopal et al. 1997), and the results show that the spectra
are globally much closer to a blackbody than for light element
atmospheres. There is a case to be made that RX J185635-3754
is magnetized. The deep VLT image of the target released by
van Kerkwijk & Kulkarni (2000) shows what looks like a clas-
sic bow-shock nebula. The presence of a bow-shock suggests
that this is a magnetized neutron star with a relativistic wind,
as seen in the pulsars PSR 1957+20 (Kulkarni & Hester 1988)
and PSR 2224+65 (Cordes et al. 1993).

An alternative possibility that explains naturally the ab-
sence of spectral features is the emission from a solid surface.
This was a common idea 20–30 years ago (Brinkmann 1980,
B80 in the following) until the existence of a thin gaseous
atmosphere was appreciated and model atmospheres became
more popular. However, at sufficiently low temperatures,
highly magnetized neutron stars may undergo a phase transi-
tion that turns the gaseous atmosphere into a solid (Lai 2001).
The critical temperature below which the atmosphere conden-
sates depends on the composition and the magnetic field. For
example, for typical magnetic field strengths of 1013 G, a Fe

atmosphere will condensate for T < 0.1 keV while a H atmo-
sphere needs temperatures lower than 0.03 keV to undergo the
phase transition to the metallic state (Lai 2001). Notice that ef-
fective temperatures of the observed isolated neutron stars fall
in this temperature range, therefore they should plausibly be
in the solid state if the dominant element in the atmosphere
is Fe. In such a metallic neutron star surface made of nuclei
with atomic number Z and atomic weight A, the pressure van-
ishes at a finite density

ρs ≈ 560 AZ−3/5B6/5
12 g cm−3 (1)

where B12 is the magnetic field in units of 1012 G.
This idea has been recently revisited by Turolla et al.

(2004), who found that the emitted spectrum is strongly de-
pressed at low energies, thus making more difficult the recon-
ciliation between observational data and the condensed surface
model. However, in this last work the emissivity is calculated
neglecting one of the transmission modes in some cases. This
simplification is inaccurate and can modify the emitted spec-
trum, as we will discuss in the text. Besides, the sole pres-
ence of a strong magnetic field, necessary to condensate the
atmosphere, results naturally in an anisotropic surface temper-
ature (Geppert et al. 2004), which must be calculated consis-
tently with the magnetic field structure. In this paper our aim
is to study the thermal emission from solid surfaces of neutron
stars and its implications on the observational properties of iso-
lated compact objects.

The paper is organized as follows: Sect. 2 is devoted to dis-
cussing the calculation of the emissivity starting from the de-
scription of the dielectric tensor for the condensed neutron star
surface. In Sect. 3 we show results, including integrated spec-
tra for different strengths and geometries of the magnetic field.
Final remarks and a summary of the main conclusions are dis-
cussed in Sect. 4.

2. Equations and input microphysics

2.1. Dielectric tensor

The emission properties (reflectivity, emissivity) of a neutron
star surface in a condensed state are obtained from the dielec-
tric tensor, and were first studied in detail in B80. In the pres-
ence of the strong magnetic fields expected to exist at the sur-
face of a neutron star, the dielectric tensor changes significantly
with respect to the non-magnetic case, leading to birefringence
and other associated phenomena. In order to calculate the di-
electric tensor in the presence of magnetic fields and to take
into account dissipative processes, it is better to obtain first the
conductivity tensor σi j, and then to calculate the dielectric ten-
sor εi j according to the equation

εi j = δi j + i
4π
ω
σi j. (2)

In this expression, ω is the angular frequency of the electro-
magnetic wave propagating in the medium.

For a magnetized plasma, electrical conductivities for the
static case (ω = 0) have been calculated by some authors
(Hernquist 1984; Potekhin 1999) with and without taking into
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account the quantizing effect of the magnetic field. The general
expression for the conductivity tensor can be written as follows

σi j =

∫
e2 NB

ε/c2
τi j

(
−∂ f0
∂ε

)
dε, (3)

where ε is the electron energy, f0 the Fermi-Dirac distribution,
NB is given by the expression (see Potekhin 1999, for details)

NB =
meωB

2(π�)2

nmax∑
n=0

gn

√
(ε/c)2 − (mec)2 − 2me�ωBn, (4)

and the functions τi j play the role of effective relaxation times.
For a non-quantizing magnetic field, these effective relaxation
times can be expressed in terms of a relaxation time, τ0, which
is the inverse of the collisional frequency νD (D after damping)
However, in the quantizing case, collisional frequencies in the
longitudinal νD

‖ and perpendicular νD⊥ direction to the magnetic
field are no longer equal. For a quantizing magnetic field, the
components of the τi j tensor are

τzz = τ‖; τxx =
τ⊥

1 + (ωBτ⊥)2
; τyx =

ωBτ
2⊥

1 + (ωBτ⊥)2
(5)

with τ‖ and τ⊥ being the inverse of the effective collisional fre-
quencies, νD

‖ and νD⊥ , respectively, and ωB =
eB
mec being the elec-

tron cyclotron frequency.
In the dynamic case (ω � 0), the conductivity tensor can be

obtained by the transformation

τ−1
⊥ → τ−1

⊥ − iω (6)

τ−1
‖ → τ−1

‖ − iω (7)

and the dielectric tensor, for degenerate non-relativistic elec-
trons, reads

εi j = δi j + i
4π
ω
σi j =


S −iD 0
iD S 0
0 0 P

 , (8)

where we have defined the following complex quantities

(
R
L

)
= 1 − ω

2
p

ω2

ω

ω ∓ ωB + iνD⊥
; (9)

P = 1 − ω2
p

ω2 + iωνD
‖

; (10)

S =
1
2

(R + L); (11)

D =
1
2

(R − L). (12)

Here, ωp = (4πe2ne/me)1/2 is the electron plasma frequency
and, using the density at zero pressure given by Eq. (1), the
electron particle density ne can be calculated as follows

ne = 1.24 × 1027 Z2/5
26 B6/5

12 cm−3. (13)

2.2. The dispersion relation

Consider an electromagnetic wave propagating in a medium
described by a dielectric tensor εαβ. The dispersion relation is
easily obtained by introducing the Maxwell tensor

Λi j = kik j − k2δi j +
ω2

c2
εi j, (14)

where ki are the Cartesian components of the wave vector.
Since, in terms of the Maxwell or dispersion tensor, the electric
field of the wave satisfies the equation

Λi jE j = 0, (15)

the condition to have a non-trivial solution leads to the disper-
sion equation

| Λi j |= 0. (16)

In the same Cartesian frame as used in B80, where the magnetic
field B is in the x−z plane and forms an angle αwith the z-axis,
which is normal to the surface, the dielectric tensor, obtained
by a rotation transformation from Eq. (8), adopts the form

εi j =


S cos2 α + P sin2 α −iD cosα sinα cosα(P − S )

iD cosα S −iD sinα
sinα cosα(P − S ) iD sinα P cos2 α + S sin2 α

 . (17)

For our purposes it is convenient to write the dispersion rela-
tion for the transmitted wave in terms of the incident one. We
consider an incident wave with wave vector

ki = ki(− sin i cos β, sin i sin β,− cos i), (18)

where i is the angle of incidence and β the azimuth. Since the
wave is propagating in vacuum and we are neglecting vacuum
polarization, the dispersion relation gives ki = ω/c. The re-
flected and transmitted waves have wave-vectors

kr = ki(− sin i cos β, sin i sin β, cos i)

kt = kt(− sin θm cos β, sin θm sin β,− cos θm); m = 1, 2, (19)

where the subscript m refers to the ordinary and extraordinary
modes and θm is the angle of refraction, which is a complex
number. Introducing the complex refractive index for the trans-
mitted wave n = kc/ω, and using the Snell law, sin θm =
sin i/nm, the dispersion relation leads to a quartic equation for
the refractive index n,

n4(P + v sin2 α) + n2(gv − 2PS + u sin2 α) + PRL + gu =

sin i sin(2α) cosβ(n2 − sin2 i)1/2(u + n2v) (20)

where v = S − P, u = PS − RL, and g = sin2 i
[
1−

sin2 α(1 + cos2 β)
]
. This quartic equation can be solved analyt-

ically, after squaring, and the refractive indexes for both ordi-
nary and extraordinary modes can be obtained after analyzing
which are the two physical roots that satisfy the original Eq.
(20).

In Fig. 1 we show the real and imaginary parts of the two
modes as a function of the photon energy and for two different
magnetic fields B = 5×1012 G (solid lines) and B = 5×1013 G
(dashes). The corresponding electron plasma frequencies are
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Fig. 1. Refractive indexes without (left) and with (right) damping effects. The real parts are shown in the top panels and the imaginary parts are
shown at the bottom. Two different values of the magnetic field are depicted, 5× 1012 G (solid lines) and 5× 1013 G (dashed lines). The photon
incidence angle has been taken to 43◦ to compare with Fig. 6 of Turolla et al. (2004).

3.6 keV and 14.3 keV, respectively. We have taken a magnetic
field normal to the emitting surface and an incidence angle of
43◦. The left panels correspond to the case without damping
(νD
‖ = ν

D⊥ = 0) while the right panels show the equivalent
results including effects of collisional damping (these colli-
sional damping frequencies were calculated by using the pub-
lic code developed by Potekhin1). The resonance at the plasma
frequency ωp is clearly visible, as well as a second, narrow
resonance at ωB (≈58 keV for B = 5 × 1012 G). More inter-
estingly, we can observe a region at low energy in which one
of the modes takes a large imaginary part, which will result in
significant absorption. The energy at which this happens can
be estimated as follows. For simplicity, let us assume normal
incidence and a magnetic field normal to the surface, and let us
consider the case without damping. In this limit the dispersion
relation is

Pn4 − 2PS n2 + PRL = 0,

and the roots are simply n2 = L and n2 = R , i.e.,

n2 = 1 − ω2
p

ω(ω ± ωB)
· (21)

Therefore, for energies ω < ωB
2

[
−1 +

√
1 + 4(ωp/ωB)2

]
the

second mode acquires an increasingly larger imaginary part.
It turns out that for B > 1012 G we are always in the case
ωp 
 ωB, and the above condition becomes approximately
ω < ω2

p/ωB. In brief, we can expect two main features in the
spectrum, a resonant absorption near the plasma and cyclotron

1 www.ioffe.rssi.ru/astro/conduct/condmag.html

frequencies, and lower emission (compared to the BB) below a
certain threshold energy ≈ ω2

p/ωB. In Turolla et al. (2004), the
modes with imaginary part larger than a certain value (0.01)
were neglected, this is indicated in the figure by the horizontal
dashed line. In some cases, this may result in lower emissivity
at low frequencies, and we prefer not to neglect them.

2.3. Reflectivity and emissivity

Knowing the complex refractive indices of the two modes, and
solving Eq. (15), the ratio between the electric field compo-
nents, (E′x, E′y, E′x), of the transmitted wave can be obtained:

E
′
m,x

E′m,z
≡ am =

(
D2 sin2 α + S sin2 i − n2

m sin2 i cos2 β

+ (P cos2 α + S sin2 α)
(
n2

m − S − sin2 i sin2 β
))

×
( [

sin i cos β
√

n2
m − sin2 i + sinα cosα(P − S )

]
(S − n2

m)

+ iD sin i sin β

(
cosα

√
n2

m − sin2 i + sinα sin i cos β

)

+ sinα cosα
[
(P − S ) sin2 i sin2 β + D2

] )−1
(22)

and

E
′
m,y

E′m,z
≡ bm =

[
am(sin2 i cos β sin β − iD cosα)

+ sin β sin i
√

n2
m − sin2 i + iD sinα

]

×
(
sin2 β sin2 i − n2

m + S
)−1
. (23)
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These relative amplitudes coincide, after some minor algebraic
manipulation, with those in B80. In Turolla et al. (2004), a dif-
ferent linear combination of the three equations arising from
Eq. (15) was used, but both results can be shown to be equiva-
lent when the refraction index is a solution of Eq. (20).

The boundary conditions at the surface of separation of
both media, (vacuum and the magnetized plasma) imply that
the tangential component of the magnetic and electric field and
the normal component of the magnetic and the electric dis-
placement must be continuous. This results in the following
equation



E⊥

E⊥

E‖

E‖


=



B1 B2 −1 0
n1 cos θ1B1

cos i
n2 cos θ2B2

cos i 1 0
A1

cos i
A2

cos i 0 1
C1
sin i

C2
sin i 0 −1


·



E
′
1z

E
′
2z

E
′′
⊥

E
′′
‖


(24)

where E, E′ and E′′ are, respectively, the electric field of the
incident, transmitted and reflected wave, and the subscripts ‖,
⊥ refer to components parallel or perpendicular to the inci-
dence plane. Above, we have defined Am = bm sin β − am cos β,
Bm = bm cos β + am sin β, and Cm = ε31am + ε32bm + ε33. This
system of equations can be solved for the electric field of the
reflected wave in terms of the incident one. Details and explicit
expressions are given in the Appendix.

The reflectivity can be now obtained by assuming that the
incident wave is the incoherent sum of two linearly polarized
waves parallel and perpendicular to the incidence plane. From
Eq. (A.1) and taking E⊥ = 1, E‖ = 0, the two complex compo-
nents of the reflected field (E

′′
‖ and E

′′
⊥) can be calculated, and

the reflectivity is simply

ρ⊥ = |E′′‖ |2 + |E
′′
⊥|2. (25)

Analogously, for the case of polarization in the incidence plane,
one takes E⊥ = 0, E‖ = 1, and after obtaining E

′′
‖ and E

′′
⊥ the

reflectivity is given by

ρ‖ = |E′′‖ |2 + |E
′′
⊥|2. (26)

To obtain the reflectivity of the unpolarized incident, ρν, wave
we just take the average

ρν =
1
2

(ρ⊥ + ρ‖). (27)

Finally, the reflectivity is related to the emitted specific inten-
sity Iν by Kirchhoff’s law

Iν = (1 − ρν)Bν, (28)

where Bν is the Planck intensity

Bν =
2hν3/c2

exp(hν/kT ) − 1
· (29)

In Fig. 2 we illustrate how the normalized emissivity, i.e., emit-
ted intensity normalized to the BB value, αν ≡ Iν/Bν = 1 − ρν,
varies with the angle of incidence for a fixed magnetic field
of B = 1012 G normal to the surface. The temperature is
T = 106 K. The emissivity is strongly reduced compared to

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100

α ν

E (keV)

i=0o

i=30o

i=45o

i=60o

i=70o
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the blackbody case for energies lower than 0.2–0.5 keV, de-
pending on the incident angle. A reduction for energies close
to that corresponding to the plasma frequency (indicated by the
vertical line) is also evident in all cases. Notice how for inci-
dent angles close to π/2 the emission is strongly suppressed in
a wide range of energies.

Let us now comment on the variation of the emissivity
with other relevant parameters. In Fig. 3 we show the normal-
ized emissivity, integrated over all possible incident angles, as
a function of the photon energy. We have taken T = 106 K
and B = 1012 G and we show results for different magnetic
field orientations (α is the angle between the magnetic field
and a vector normal to the surface). At energies greater than
the electron plasma frequency (about 1 keV in this case) the
emitted flux approaches the BB value (αν = 1), but the spec-
trum is significantly depressed at low energies. As explained
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Fig. 4. Same as Fig. 3 but for B = 1013 G.

above, this is due to the fact that the refractive index has a large
imaginary part. A resonance, which produces a reduction of
the emissivity, is also visible at energies close to the electron
plasma frequency. Notice that the resonant energy is not ex-
actly the plasma frequency but depends on the angle between
the magnetic field and the surface. This can be understood con-
sidering that the refractive index of one of the modes becomes
infinity when the coefficient of n4 in the dispersion relation
vanishes. Again, neglecting damping for simplicity, we have
P + (S − P) sin2 α = 0, which leads to

ω4 − (ω2
B + ω

2
p)ω2 + ω2

pω
2
B cos2 α = 0. (30)

The solution of this biquartic equation is

ω2
± =
ω2

B + ω
2
p

2

1 ±
1 −

4ω2
pω

2
B cos2 α

(ω2
B + ω

2
p)2


1/2 · (31)

For magnetic fields perpendicular to the surface α = 0, we have
ω2
+ = ω

2
B and ω2− = ω2

p, but for magnetic fields parallel to the
emitting surface one findsω2

+ = ω
2
B+ω

2
p andω2− = 0. Therefore,

as we approach α = π/2, the resonance corresponding to the
plasma frequency in the α = 0 case is shifted to lower and
lower energies.

The same but for B = 1013 G is shown in Fig. 4.
Qualitatively we obtain the same behaviour, but the plasma fre-
quency is larger and the resonant energy is shifted consistently
to higher values. Notice that the frequency below which the
spectrum is depressed depends weakly on the magnetic field
ω2

p/ωB ∝ B1/5, and for standard values of the magnetic field
falls in the range 0.1–0.2 keV. In this energy range the effect of
interstellar medium absorption can make it difficult to distin-
guish between the two effects.

2.4. The effect of motion of ions

When we were finishing this paper, our attention was drawn to
a very recent preprint (van Adelsberg et al. 2004) with similar
results to ours. In this work, the authors included terms related
to the motion of ions in the dielectric tensor, which result in
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Fig. 5. Same as Fig. 4 but including the effect of the motion of ions.
The vertical line corresponds to the ion cyclotron energy.

smaller reflectivity (larger emissivity) at frequencies below
the ion cyclotron frequency (ωBi =

ZeB
mic

). The way in which
the effect of ions is included is a crude simplification: as if
they were free ions although they are in a lattice. It is quite
doubtful that this approximation can actually represent reality,
but it gives some interesting results that are an indication
that more work is needed along that line. In short, free ions
can be introduced in the calculations just by modifying the
components of the dielectric tensor (8) in the following way
(Ginzburg 1970; van Adelsberg et al. 2004):(

R
L

)
= 1 − ω2

p + ω
2
pi

(ω ∓ ωB)(ω ± ωBi) + iωνD⊥A∓
; (32)

P = 1 − ω
2
p + ω

2
pi

ω2 + iωνD
‖
, (33)

where ωpi = (4πZ2e2ni/mi)1/2 is the ion plasma frequency and

A∓ = 1 ∓ ωBi

ω
(1 − Z−1) +

me

mi
· (34)

In Fig. 5 we show the normalized emissivity integrated over
all incident angles, for T = 106 K and B = 1013 G, including
the effect of ions. The vertical line indicates the energy corre-
sponding to the ion cyclotron frequency.

In order to understand the effect of ions we follow the same
argument after Eq. (21). Neglecting damping for simplicity,
and considering that the ion plasma frequency is much smaller
than the electron plasma frequency (ωpi 
 ωp), the dispersion
relation is simply

n2 =

(
L
R

)
= 1 − ω2

p

(ω ± ωB)(ω ∓ ωBi)
· (35)

When ω > ωBi there is not much difference with respect to the
case in which ions are not included. But when ω < ωBi , the
new term in the denominator changes sign and the refractive
index of the mode that acquired a large imaginary part when
the ion contribution was not included becomes

n2 = 1 +
ω2

p

ωBωBi

, (36)

and the mode is no longer damped.
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3. Spectral energy distribution

The total spectral emission of the star, the specific luminosity,
is obtained by integrating the specific intensity over the solid
angle pointing outward and over the surface of the star,

Lν = R2
∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ 2π

0
dφ′ (37)

∫ π/2

0
dθ′ Iν(θ, φ, θ′, φ′) cos θ′ sin θ′

where θ and φ are the polar and azimuthal angles of a given
point at the surface and θ′ and φ′ the polar and azimuthal angles
of the direction defining the solid angle element.

The presence of the magnetic field, however, makes the
emission anisotropic, and the observed specific flux Fν is differ-
ent from the integrated emitted flux obtained from the specific
luminosity, i.e. Lν/4πd2 for a star at a distance d. To calculate
the observed specific flux we have to integrate only over the
observed hemisphere (OH). Denoting by R the radius of the
star,

Fν =
R2

d2

∫
OH

Iν(θ, φ, θ′, φ′) cos θ′ sin θ dθ dφ (38)

where the angles θ′ and φ′ specify the angular direction from
the surface element towards the observer. Note that in this pa-
per we are neglecting general relativistic effects. For example,
light bending increases the area of the observed hemisphere,
depending on the compactness (M/R) of the neutron star, as
discussed in Page (1995) or Psaltis et al. (2000).

In order to get a more accurate feeling of what a realistic
emission would be, in the following we will consider that the
magnetic field has a dipolar geometry, this is

B(R, θ) =
Bp

2
(1 + 3 cos2 θ)1/2 (39)

with Bp being the intensity of the magnetic field at the pole.
The integrated spectrum as a function of the energy is

shown in Fig. 6 for different intensities of the dipolar mag-
netic field and a temperature of T = 106 K. For reference,
the BB spectrum is also depicted (solid line). The broadband
spectrum is essentially featureless and the flux is systematically
lower than the BB flux for the same temperature; this effect is
more significant at lower energies. Notice that this flux must
be understood as an average over the whole emitting surface,
which is radiating anisotropically. The real observed flux de-
pends on the particular location of the observer, as defined by
Eq. (38). In Fig. 7 we show the flux observed from three dif-
ferent directions, forming an angle of 0◦, 45◦, and 90◦, with
the polar axis, respectively. Near the maximum the differences
between observers can be at most a factor 2, but the observer
location becomes less relevant as we move towards either the
low and high energy part of the spectrum.

At this point, the two main features of the “metallic sur-
face” model seem to be: first, an almost featureless spectrum,
and second, an overall flux smaller than that of a BB at the
same temperature, especially at low energies. However, as we
mentioned in the introduction, there is an important point to

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001  0.01  0.1  1

F
ν 

(a
rb

itr
ar

y 
un

its
)

E (keV)

BB
B=1012G
B=5 1012G
B=1013G
B=5 1013G

Fig. 6. Integrated emitted flux, Lν/4πD2, (in arbitrary units) for a uni-
form temperature of T = 106K. The magnetic field geometry has been
taken to be a dipolar distribution and several values of the magnetic
field strength are compared: Bp = 1012, 5 × 1012, 1013, and 5 × 1013 G
(values at the magnetic pole).

consider. The fact that the condensed surface is strongly mag-
netized makes the thermal conductivity very different in the di-
rections perpendicular and parallel to the magnetic field lines.
Similar effects have been pointed out to be relevant in the
envelope (Greenstein & Hartke 1983; Page 1995) or in the
crust, where a very recent study (Geppert et al. 2004), finds
that the anisotropy in the temperature distribution depends very
strongly on the particular geometry of the internal magnetic
field, resulting in variations of temperature of up to a factor 5.
In a separate work (Pérez-Azorín et al. 2005), we will report
results from a detailed study of the temperature distribution
obtained from 2D diffusion calculations for different magnetic
field geometries. For the purpose of understanding qualitatively
the effects on the observed spectrum, in this paper we will limit
our analysis to the case in which the temperature distribution
has the following angular dependence

T = Tp

[
cos2 θB + χ sin2 θB

]1/4
, (40)

where θB is the angle between the field and the normal to the
surface, χ is the ratio between the thermal conductivities nor-
mal and parallel to the magnetic field, and Tp is the polar tem-
perature (where θB = 0). The origin of this distribution has
been discussed in previous works on neutron star envelopes
(Greenstein & Hartke 1983; Page 1995). Note that for a dipolar
magnetic field χ is a function of the polar angle because the
magnetic field strength varies with the latitude.

In Fig. 8 we show the same three cases as in Fig. 7 but for
the anisotropic temperature distribution given by Eq. (40) with
Tp = 106 K. The optical band of the spectrum is not very much
altered, but the high energy tail is significantly depressed. This
effect, combined with the low energy depression caused by the
high reflectivity of the metallic surface at low energies, results
in a broadband spectrum that mimics the BB spectrum but with
an overall reduced flux by nearly a factor of 10. This means
that, for a fixed distance to the source, the observed flux from
such a particular neutron star surface will look like a Planckian
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Fig. 7. Observed flux, Fν , (in arbitrary units) for a uniform temperature
of T = 106 K and three different observation angles. The magnetic
field geometry has been taken to be a dipolar distribution with Bp =

5 × 1013 G.

spectrum, but the apparent area of the source (and therefore
the radius) would be underestimated by a large factor. To make
this point more explicit, in Fig. 9 we plot the observed flux
(dashes) from a model with Bp = 5 × 1013, Tp = 106 and
θo = 90◦, as seen after taking into account interstellar medium
absorption with nH = 1.4 × 1020 cm−2, compared with a uni-
form temperature, blackbody model that fits the X-ray part of
the spectrum (solid line). The parameters of the BB model are:
T = 106 K, nH = 1.3 × 1020 cm−2, and a relative normaliza-
tion factor (∝(R∞/d)2) of 1/5. Consequently, the apparent es-
timated value of the R∞/d is 2.3 times lower than that of the
“real” model, despite the X-ray spectrum being very similar.

For comparison, we have also included the effects of ions in
Fig. 9 (dotted line). Notice that the optical flux of this model is
a factor 3 larger than the BB fit prediction, similarly to what
has been observed in isolated neutron stars. Nevertheless, it
must be stressed that this is just a crude approximation, with
no pretension of being the real answer to the observed optical
excess, but it serves to illustrate how important it is to under-
stand details about the magnetic field structure, the properties
of the solid lattice, and the temperature distribution, before one
is able to make robust estimates of the neutron star properties
(e.g. radius).

4. Final remarks

In this paper we have revisited the bare neutron star sur-
face model first studied in detail in B80, which in the
last years is becoming popular again and attracting the
attention of other groups (Lai 2001; Turolla et al. 2004;
van Adelsberg et al. 2004). Our results for constant tempera-
ture magnetized surfaces confirm qualitatively those reported
earlier by other authors, with small quantitative differences due
to the fact that in previous works (Turolla et al. 2004) some ap-
proximations (neglecting one mode) were made, which made
the results dependent on the cutoff value of the imaginary
part of the refraction index. In general, models with uniform
temperature show a broadband spectrum that is very close to
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Fig. 8. Observed flux, Fν, (in arbitrary units) for an anisotropic tem-
perature distribution described in Eq. (40) with Tp = 106 K and three
different observation angles. The magnetic field geometry has been
taken to be a dipole with Bp = 5×1013 G. The corresponding Planckian
spectrum for T = 106 K is also shown for comparison.
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Fig. 9. Observed flux, Fν , (in arbitrary units) for the anisotropic tem-
perature distribution described in Eq. (40) with Tp = 106 K and
θo = 90◦, as it would be seen after taking into account interstellar
medium absorption with nH = 1.4 × 1020 cm−2. We show results with
(dots) and without (dashes) including the effect of ions. A uniform
temperature, blackbody fit of the X-ray part of the spectrum is also
depicted with solid lines (T = 106 K, nH = 1.3 × 1020 cm−2) but cor-
rected by a factor 1/5, that is, the apparent estimated value of the R∞/d
is 2.23 times lower than that of the “real” model.

Planckian at energies aboveω2
p/ωB, and significantly depressed

(up to a factor 10) in the optical band. The spectrum is almost
featureless, with only some small bumps at energies where the
interstellar medium absorption makes it difficult to distinguis
and fine tune between different parameters. However, in our
opinion, there is a key point that is barely addressed in previous
works and needs more attention: in the crust and the condensed
outer layer the assumption of a homogeneous temperature dis-
tribution is inconsistent because magnetic fields of the order of
or larger than 1013 G imply some degree of anisotropy in the
thermal conductivity. The analogous effect in the inner crust
has recently been studied (Geppert et al. 2004), finding large
variations of temperature when the magnetic field is confined
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to the crust. Notice that, if in the inner regions we have super-
conducting protons, as seems to be the case, this situation is
very likely. A detailed analysis of the realistic, self-consistent
emission from bare neutron star surfaces requires, therefore,
multidimensional transport calculations with the presence of
magnetic fields, and using appropriate boundary conditions
(accordingly with the calculated αν). Such calculations, as well
as fits to real data, are in progress (Pérez-Azorín et al. 2005)
and will be reported elsewhere. In the mean time, one can guess
what sort of changes to expect by looking at the emitted spec-
trum produced by an ad-hoc temperature distribution, as we
discussed in this paper. This example was very illustrative of
one fact: the observed flux of such an object is very close to
a BB spectrum, but we might be underestimating the area of
the emitter (and therefore its size) by a large factor. In addition,
depending on the strength of the magnetic field, and including
the effects of ions, we could even obtain an optical flux larger
(relative to the BB case) than that in the X-ray band, which is
commonly found in all isolated neutron stars with an optical
counterpart.

As stated before, general relativistic effects have not been
included in this work. A first correction is simply to redshift
all energies and temperatures. This is of crucial importance if
spectral features are present, but only translates into an overall
scale factor if we consider a BB or a featureless spectrum. A
second effect might be more relevant. Light bending increases
the observed emitting area, smearing out partially the differ-
ences between different observers, depending on how compact
the object is. In order to make precise parameter estimates at
least these two major corrections should be included. In sum-
mary, there is much physics to be understood and analyzed in
the near future before drawing robust conclusions on the nature
of isolated compact objects (neutron stars vs. strange stars), and
measuring with precision their radii and masses.
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Appendix A: Reflected wave amplitudes

The system of Eq. (24) can be solved for the electric field of
the reflected wave in terms of the incident one. The result reads
as follows:

E
′′
⊥ = D−1 {[B1(1 − w1) (A2 sin i +C2 cos i)

− B2(1 − w2) (A1 sin i +C1 cos i)] E⊥
+ 2B1B2(w1 − w2) sin i cos i E‖

}
E
′′
‖ = D−1 {2(A1C2 − A2C1) E⊥

+ [B1(1 + w1) (A2 sin i −C2 cos i)

− B2(1 + w2) (A1 sin i −C1 cos i)] E‖
}

(A.1)

where

wm =

√
n2

m − sin2 i

cos i
, (A.2)

D = B1(1 + w1) (A2 sin i +C2 cos i)

− B2(1 + w2) (A1 sin i +C1 cos i) . (A.3)

From these equations the original expressions in B80 can be
recovered by using the relation

Cm = sin2 i + Am wm sin i cos i. (A.4)

We have found a typo in the first line of Eq. (19) in B80, where
the lastA2 should be a B2. Notice that Turolla et al. (2004) ex-
pressed the amplitudes of the reflected waves in a different way.
The reason for this apparent difference is the same that led to
different expressions for the coefficient am defined by Eq. (22):
they used a different linear combination of the three equations
arising from Eq. (15). We have checked numerically that both
formulations are equivalent when nm is a root of Eq. (20).
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