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In principle, the electric potential field, ¢, should be obtained by solving Gauss's
law. However, since electroneutrality is a valid approximation throughout the electrolyte
up to the thin depletion boundary, and ion-ion electrostatic interactions are screened out
by counter ions because the Debye length under present conditions (%o =0-277my jg
smaller than the average interionic separation (Rij=12™M) Gauss’s equation
approximately reduces to Laplace’s equation. Since temperature profile is also
described by Laplace’s equation, we define a generic parameter U as follows:

U= [¢y).T(xy)] (SE1)

where x and ¥ are coordinates parallel and normal to the cathode. Hence we have:
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with the following boundary conditions:
Ux,0)=[V_T_] (SE3)
UxL)=[V,T,] (SE4)

because the high electrical and thermal conductivities of Li° ensure that the surface of

t VoT-1 at all times. To

cathodic electrodeposits is equipotential and isothermal a
ensure a smooth surface, the equipotential surface extends slightly beyond the bonding
radius of Li® at (13 7+).

Udendrite = Ucathode (SE5)
We solved (SE2) using a finite difference method in a (280 x 280) grid defined by
equation (SE6) [1]:

U..=

i (Ui+1,j+Ui—1,j+Ui,j+1+Ui,j—1)

SN

(SE6)

Periodic boundary conditions (PBC) were assumed in the X direction. i.e., every Li*
exiting the domain from right/left boundaries enters from the opposite side. The electric

field was obtained numerically as:

F o= Pit1) ¢i-1,ji Pij+1-Pij-1,
L 2Ax 27y / (SE7)

We further considered that the overpotential for Li* reduction is so small that Li* should
be reduced with unit probability once it reaches the cathode within13 7+ at the applied

potentials.



The temperature distribution can be also obtained from E2. Since the conductivity of the

polymethyl-methacrylate separators is significantly lower than the metal collectors (

ALicu > ApMma ), we assume that the heat within the cell flows along the y-coordinate normal to

the electrodes. So we have:

oT  9°T
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Y (SE8)
Also since the time scale of temperature relaxation is much faster than ion transport, we will
assume a quasi-steady state distribution throughout, that is, temperature profiles are time

independent, hence:

0°T
— =0
dy (SE9)
The imposed boundary conditions are:
T(0)=T_
[T(L) =T, (SE10)

Therefore, we obtain a linear temperature distribution between anode and cathode, which is
independent of the solvent thermal conductivity:
T,-T._
TQy)=——F—x+T._

L (SE11)
Figure 1 shows the distributions of normalized temperature, IT| , defined by

SE12:
T -T

T =
T_-T

(SE12)

as a function of normalized height ¥/L over convex and concave regions of Li°
electrodeposits. The concave/convex morphology has been imitated by a sinusoidal
function during one period and the higher curvatures have been approximated with

higher sin powers.
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Figure S1 - Normalized temperature distribution over convex and concave regions as function
of normalized cell height (y/L) and width (x/H). Inset: IT| normal gradients to the electrodes over
convex (blue traces) and concave (red traces) regions as function of increasing positive and
negative curvatures K, respectively.
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