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Abstract The consequences of phase transitions in the

early universe are becoming testable in a variety of manners,

from colliders physics to gravitational wave astronomy. In

particular one phase transition we know of, the electroweak

phase transition (EWPT), could potentially be first order in

BSM scenarios and testable in the near future. If confirmed

this could provide a mechanism for baryogenesis, which is

one of the most important outstanding questions in physics.

To reliably make predictions it is necessary to have full con-

trol of the finite temperature scalar potentials. However, as we

show the standard methods used in BSM physics to improve

phase transition calculations, resumming hard thermal loops,

introduces significant errors into the scalar potential. In addi-

tion, the standard methods make it impossible to match the-

ories to an EFT description reliably. In this paper we define

a thermal resummation procedure based on partial dress-

ing (PD) for general BSM calculations of phase transitions

beyond the high-temperature approximation. Additionally,

we introduce the modified optimized partial dressing (OPD)

procedure, which is numerically nearly as efficient as old

incorrect methods, while yielding identical results to the full

PD calculation. This can be easily applied to future BSM

studies of phase transitions in the early universe. As an exam-

ple, we show that in unmixed singlet scalar extensions of

the SM, the (O)PD calculations make new phenomenologi-

cal predictions compared to previous analyses. An important

future application is the study of EFTs at finite temperature.
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1 Introduction

Thermal phase transitions are ubiquitous phenomena in

nature, but in fundamental physics they are difficult to study,

and very few are known. In the SM there are phase transi-

tions associated with QCD and the EW symmetry. The QCD
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phase transition can be studied directly in heavy ion colli-

sions, with rapid progress over the last decade [1]. However,

the EW phase transition (EWPT) is far out of reach of direct

testability. Going beyond the Standard Model (BSM), the

nature of the EW phase transition could change, and there

could be additional phase transitions unrelated to the EWPT

but still screened from us by the CMB. Nevertheless, even

without direct measurements of the EWPT in the near future

these phenomena can be indirectly studied, with profound

consequences for our understanding of the early universe.

The EWPT and other phase transitions can have correlated

signals detectable at current and future colliders, and in the

burgeoning field of gravitational wave astronomy.

Therefore, it is important to have as much control of the

underlying finite-temperature quantum field theory (FTQFT)

calculations as possible, so that potential signals are reliably

understood and predicted. This is the aim of this paper, and we

will introduce new methods in FTQFT to capture the effects

of BSM physics on phase transitions. While our results will

be general, we single out the EWPT for special study given

its possible deep connection to another fundamental question

in particle physics.

One of the most profound mysteries in particle physics is

our mere existence, and that of all baryons in the universe. A

dynamical explanation for our universe containing an excess

of matter over antimatter requires BSM physics. At some

time in the history of the primordial plasma, after reheat-

ing but before Big Bang Nucleosynthesis (T ∼ GeV), a

mechanism of baryogenesis has to create the observed baryon

asymmetry [2,3] of

η =
nB − nB

nγ

∼ 10−9. (1.1)

This requires the three Sakharov conditions [4,5] to be sat-

isfied: baryon number (B) violation, C P violation, and a

sufficiently sharp departure from thermal equilibrium.

Electroweak Baryogenesis [6–13] is a very appealing pos-

sibility, since all involved processes must occur near the

weak scale, making it in principle testable. (See [14–19] for

reviews.) In the SM, high temperature effects stabilize the

Higgs field at the origin, restoring electroweak symmetry

[20,21]. In this high-temperature unbroken phase, the SM in

fact contains a (B + L)-violating process in the form of non-

perturbative sphaleron transitions, which can convert a chiral

asymmetry into a baryon asymmetry. The EWPT from the

unbroken to the broken phase at T ∼ 100 GeV provides,

in principle, a departure from thermal equilibrium. In the

presence of sufficient C P-violation in the plasma, a baryon

excess can be generated.

EWBG cannot function within the SM alone. There is

insufficient C P-violation (see for example [16]), and the

EWPT is not first order for mh � 70 GeV [22,23]. Addi-

tional BSM physics is required to generate a strong phase

transition (PT) and supply additional C P-violating interac-

tions in the plasma.

Many theories have been proposed to fulfill these require-

ments of EWBG, including extensions of the scalar sector

with additional singlets [24–37] (which can be embedded in

supersymmetric models [38–44]), two-Higgs doublet models

[45,46], triplet extensions [47–49], and the well-known light-

stop scenario in the MSSM [50–60] which is now excluded

[61–64]. To determine whether a particular, complete model

can successfully account for the observed baryon asymmetry,

the temperature-dependent Higgs potential and the resulting

nature of the phase transition have to be carefully calculated

to determine the sphaleron energy as well as the bubble nucle-

ation rate and profile. This information serves as an input to

solve a set of plasma transport equations, which determine

the generated baryon asymmetry of the universe (BAU). The

full calculation is very intricate, with many unresolved the-

oretical challenges (see e.g. [55–57,65–79]).

The sectors of a theory which generate the strong phase

transition, and generate baryon number via C P-violating

interactions in the plasma, do not have to be connected

(though they can be). Since one of the most appealing features

of EWBG is its testability, it makes sense to consider these

two conditions and their signatures separately. The ultimate

aim is a model-independent understanding of the collider,

low-energy, and cosmological signatures predicted by all the

various incarnations of EWBG.

We will focus on the strong electroweak phase transition.

If it is first order, there is a critical temperature Tc where the

Higgs potential has two degenerate minima h = 0 and vc,

separated by an energy barrier. As the temperature decreases,

the minimum away from the origin becomes the true vacuum,

the Higgs field tunnels to the broken phase, and bubbles of

true vacuum expand to fill the universe. A necessary condi-

tion for avoiding baryon washout is thatvc is sufficiently large

to suppress sphalerons. Specifically, a BSM theory which

realizes EWBG has to satisfy

vc

Tc

> 0.6 − 1.6. (1.2)

In most cases we will adopt the lower value of 0.6 as our cutoff

[80] to be as inclusive as possible (though it is sometimes

instructive to examine the parameter space that survives the

more standard vc/Tc > 1 criterion.) This is a useful way of

checking whether a given BSM scenario is a viable candidate

for EWBG, as well as determining the correlated signatures

we could measure today.

Computing this ratio seems like a straightforward exer-

cise, and a standard recipe has been adopted in the literature

for computing the EWPT in BSM models (see e.g. [18] for

a review). This involves constructing the one-loop effective

Higgs potential at finite temperature by using a well-known

generalization of the standard Coleman–Weinberg potential;
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possibly including a selection of the most important higher-

loop effects and/or RG-improvements; and resumming an

important set of contributions called hard thermal loops.

We carefully review this calculation in Sect. 2. Our focus is

the resummation of hard thermal loops. The standard proce-

dure, which we call truncated full dressing (TFD), involves a

very simple computation of thermal masses �i ∼ T 2 for par-

ticles i in the plasma, to leading order in the high-temperature

approximation, and inserting them back into the effective

potential [81–83].

Various extensions of this simple recipe, to include higher-

order corrections in temperature or coupling, have been

explored roughly twenty years ago in the context of φ4 the-

ories [84–89]. However, possibly because the consensus on

the (most) correct generalization seemed unclear, and the

involved calculations seemed onerous to perform for every

BSM theory, these improvements have not found wide appli-

cation in the study of the EWPT in general BSM scenarios.

We revisit these issues in a modern light, with a focus

on the study of general BSM effects which can induce a

strong EWPT. A simple and easily implementable extension

of the TFD calculation is urgently required for two reasons:

to correctly determine the phenomenology of EWBG, and to

understand effective field theory (EFT) at finite temperature.

Since the high-temperature expansion of �i is truncated

at the leading term, it is only accurate to O(m/T ). This can

easily be ∼ 40% at T = Tc, and vary with the Higgs field

since its VEV determines particle masses. While this does not

directly translate to a corresponding error on the full effec-

tive potential, an important class of (particularly testable)

EWBG theories generates a strong EWPT via a partial can-

cellation between �i and tree-level parameters. In this case,

accurate determination of the thermal masses, and their h-

dependence, is clearly necessary to have confidence in the

results of the phase transition computation, and hence the

observables correlated with EWBG.

Effective field theories (EFTs) are a powerful tool to

parameterize general new physics effects at zero tempera-

ture as a set of non-renormalizable operators involving SM

fields. To understand the signatures of EWBG in a model-

independent fashion, one would like to extend such an EFT

analysis to finite temperature. Early attempts like [90–93]

suggested that a |H |6 operator could induce a strong EWPT

in correlation with sizable deviations in the cubic Higgs self-

coupling, which could be detected with the next generation

of future lepton [94,95] and 100 TeV [96–98] colliders, or

even the HL-LHC [99–104]. Unfortunately, EFTs at finite

temperature are very poorly understood. For example, the

effects of a particle with a mass of 300 GeV are quite well

described in an EFT framework for collider experiments with√
s = 100 GeV, but it seems doubtful that this is the case

for temperatures of T = 100 GeV, since thermal fluctua-

tions can excite modes somewhat heavier than T . Without

understanding these effects in detail, we cannot know the

EFT’s radius of convergence in field space or temperature,

and hence know whether its predictions regarding the EWPT

can be trusted. The authors of [105] investigated the valid-

ity of finite temperature EFT by comparing it to a singlet

scalar model in the TFD prescription. Since the assumptions

of the high-temperature approximation (T ≫ m) for �i in

TFD are fundamentally incompatible with the assumptions of

an finite-temperature EFT analysis (T ≪ m), careful study

of these decoupling effects during a phase transition, and

EFT matching at finite temperature, requires a more com-

plete treatment of thermal masses.

In this work, we develop a consistent, easily imple-

mentable procedure for the numerical computation and

resummation of thermal masses in general BSM theories,

beyond leading order in temperature and coupling.

We examine two competing approaches which were pro-

posed in the context of φ4 theories: full dressing (FD) [84–

86] and partial dressing (PD) [87]. We verified the claims

of [87] that PD avoids the problem of miscounting dia-

grams beyond one-loop order [88,89], and that it general-

izes beyond O(T 2). We therefore focus on PD. We review

its formal underpinnings in Sect. 3 and outline how to gen-

eralize it to BSM theories, in general without relying on the

high-temperature approximation. Additionally, in Sect. 3.4,

we discuss the comparisons of this method to dimensional

reduction which is often employed to investigate the high T

limit [23,106–110].

Applying the PD procedure beyond the high-temperature

approximation requires numerically solving a type of finite-

temperature gap equation. We outline the implementation of

this calculation in Sect. 4 in the context of a specific BSM

benchmark model. Computing the strength of the EWPT

with PD is extremely numerically intensive, necessitating

the use of a custom-built c++ code. This allows us to study

the importance of resummed finite-temperature effects for

the phase transition, but is impractical for future BSM stud-

ies. We show it is possible to modify PD by extending the

gap equation and implementing certain approximations. This

greatly increases numerical reliability, while reducing CPU

cost by several orders of magnitude. We call this updated

resummation procedure optimized partial dressing (OPD)

and show it is equivalent to PD for BSM studies of the EWPT.

OPD is only slightly more CPU-intensive than the stan-

dard TFD calculation used in most studies of the EWPT to

date, and very easy to implement in Mathematica. We hope

that this calculation, which is explained in Sect. 4 and sum-

marized in the form of an instruction manual in Appendix A,

will be useful in the future study of the EWPT for BSM

theories.

The BSM model we use to develop and evaluate the PD

and OPD resummation schemes is the SM with NS added

singlets transforming under an unbroken O(NS) symmetry
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in our vacuum (or Z2 if NS = 1) and coupling to the SM via a

quartic Higgs portal λH S|H |2S2
i without Higgs mixing. This

benchmark model serves as a useful “worst-case scenario”

for the collider phenomenology of EWBG, since it can pro-

duce a strong EWPT in a variety of ways which are represen-

tative of more complete theories, while generating the min-

imal set of collider signatures consistent with EWBG. The

authors of [111] studied this scenario with NS = 1 using the

TFD calculation, making progress towards a “phenomeno-

logical no-lose theorem for EWBG” by showing that the

future 100 TeV and lepton colliders could probe its EWBG-

compatible parameter space completely. We update and gen-

eralize this phenomenological analysis for NS ≥ 1 in the

PD scheme. As shown in Sect. 5, the “no-lose theorem”

is strengthened, with EWPTs caused by larger numbers of

scalars being easier to detect at colliders.

Phenomenologically, the main lessons of the updated PD

calculation are that the detailed correlations between a strong

EWPT and collider observables can be significantly shifted,

especially in more complete theories of EWBG than our SM

+ NS × S benchmark model. Furthermore, two-step transi-

tions are more prevalent than suggested by earlier TFD cal-

culations. This raises the exciting prospect of discovering the

traces of a strong two-step transition with gravitational wave

observations [112,113]. Finally, unlike (O)PD, the TFD cal-

culation overestimates the reliability of the finite-temperature

EWPT calculation, underlining the importance of tracking

error terms when computing the strength of the PT.

This paper is structured as follows. The standard TFD cal-

culation of the EWPT is pedagogically reviewed in Sect. 2.

Sect. 3 lays the formal groundwork of the PD scheme, while

the implementation of the full calculation and its extension

to the OPD scheme is described in Sect. 4. The differences

in physical predictions between the standard TFD and the

new (O)PD calculation are explored in Sect. 5. We con-

clude in Sect. 6, and provide an instruction manual for easy

implementation of the OPD calculation for the EWPT in

Appendix A.

2 Review: calculating the electroweak phase transition

We now review the standard computation of the finite-

temperature Higgs potential in BSM theories (see e.g. [18]).

We call the leading-order thermal mass resummation [81–83]

TFD, to contrast with the PD procedure which we review and

develop further in Sects. 3 and 4. This will make plain some

important shortcomings of TFD.

As a BSM benchmark, we consider the SM with NS added

real SM-singlet scalar fields Si obeying an O(NS) symme-

try (or Z2 if NS = 1). We are also interested in regions of

parameter space where this symmetry is unbroken in the zero-

temperature vacuum of our universe today (i.e. 〈Si 〉 = 0).

This forbids Higgs-Singlet mixing, which significantly sim-

plifies several formal aspects of thermal mass resummation.

Unmixed singlet extensions also represent a useful “phe-

nomenological nightmare scenario” for EWBG [111] with

minimal experimental signatures. We show in Sect. 5 that

this model can nonetheless be completely probed by the next

generation of colliders.

2.1 Tree-level potential

The tree-level scalar potential is

V0 = −μ2|H |2 + λ|H |4 +
1

2
μ2

S(Si Si )

+
1

4
λS(Si Si )

2 + λH S|H |2(Si Si ). (2.1)

We focus on the real h component of the SM Higgs dou-

blet H = (G+, (h + iG0)/
√

2) which acquires a VEV dur-

ing EWSB. Without loss of generality, we also assume that

any excursion in S-field-space occurs along the S0 direction.

Therefore, the relevant part of the tree-level potential is

V0 = −
1

2
μ2h2 +

1

4
λh4 +

1

2
μ2

S S2
0 +

1

4
λS S4

0 +
1

2
λH Sh2S2

0 .

(2.2)

(Of course, Eq. (2.1) determines the form of the scalar masses

m2
G+(h, S0), m2

Si
(h, S0), . . . which determine the form of

one-loop contributions as outlined below.) Our aim is to

obtain the effective potential Veff(h, S, T ) at one-loop order.

2.2 Coleman Weinberg potential

At zero-temperature, the one-loop effective potential can be

written as

V T =0
eff (h, S) = V0 +

∑

i

V i
CW(m2

i (h, S)) (2.3)

The Coleman-Weinberg potential is the zero-momentum

piece of the zero-temperature effective action, and is a sum of

1PI one-loop diagrams with arbitrary numbers of external h

and S0 fields and particles i = {t, W, Z , h, G±, G0, S0, Sk,

. . .} running in the loop (where k > 0). Note that we are work-

ing in Landau gauge to avoid ghost-compensating terms,

which requires including the Goldstone contributions sep-

arately, in addition to the massive W , Z bosons. (We discuss

issues of gauge invariance in Sect. 2.6.)

The dependence of the i th particle tree-level mass m2
i =

m2
i (h, S) on the VEVs of h and S determines VCW. Summing

over all contributions gives [114]:

V i
CW =

1

2

∫

d4k

(2π)4
log

[

k2
E + m2

i (h, S)
]

(2.4)

where e.g. mh(h, S0) = −μ2 + 3λh2 +λH S S2
0 and kE is the

euclidian momentum of particle i in the loop. We adopt the
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dimensional regularization scheme and MS renormalization

scheme, with the usual ǫ = 2 − D
2

. This makes one-loop

matching more onerous than the on-shell renormalization

scheme, but allows for the potential to be RG-improved more

easily. The result is

V i
CW =

m4
i (h, S)

64π2

(

−ǫ − γE + log 4π + log
m2

i (h, S)

μ2
R

)

(2.5)

(Hereafter we drop the explicit h, S dependence of the masses

for brevity.) μR is the renormalization scale, and variation

of physical observables after matching with different val-

ues of μR is a common way of assessing the uncertainty of

our results due to the finite one-loop perturbative expansion.

Adding counterterms and removing divergences yields the

familiar expression

V i
CW = (−1)F gi

m4
i

64π2

(

log

[

m2
i

μ2
R

]

− ci

)

, (2.6)

where F = 1(0) for fermions (bosons), ci = 3
2
( 5

2
) for

scalars/fermions (vectors), and gi is the number of degrees

of freedom associated with the particle i .

2.3 Finite temperature

Finite-temperature quantum field theory (FTQFT) enables

the computation of observables, like scalar field vacuum

expectation values, in the background of a thermal bath. The

corresponding Greens functions can be computed by com-

pactifying time along the imaginary direction, for details see

e.g. [18]. To get an intuitive idea of finite-temperature effects

on the one-loop effective potential, it is useful to consider

integrals of the form
∫

dk0

2π
f (k0) (2.7)

where k0 is the time-like component of the loop momentum.

This can be evaluated in FTQFT as

∫

dk0

2π
f (k0) → T

∞
∑

n=−∞
f (k0 = iωn), (2.8)

where ωn = 2nπT and (2n + 1)πT are the Matsubara

frequencies for bosons and fermions, respectively. Equa-

tion (2.8) can be written in the instructive form:

∫

dk0

2π
f (k0) →

∫ i∞

−i∞

dz

4π i
[ f (z) + f (−z)]

+ η

∫

C

dz

2π i
n(z) [ f (z) + f (−z)] , (2.9)

where η = ±1 for bosons/fermions and n(z) = (ez/T −
η)−1 are the standard Fermi–Dirac/Bose–Einstein distribu-

tion functions, for a particular choice of contour C . The first

term, which is n(z) independent, is simply the usual zero-

temperature loop integral, while the second term is the new

contribution from thermal loops in the plasma. This makes

effects like thermal decoupling very apparent – if the particle

mass is much larger than the temperature, its contribution to

the second loop integral will vanish as n(z) → 0.

Applying this formalism to the one-loop effective poten-

tial at finite temperature generalizes Eq. (2.3):

V T >0
eff (h, S, T ) = V0 +

∑

i

[

V i
CW(m2

i (h, S))

+V i
th(m

2
i (h, S), T )

]

, (2.10)

where the second term is the usual Coleman–Weinberg

potential, and the third term is the one-loop thermal potential

V i
th(m

2
i (h, S), T ) = (−1)F gi

T 4

2π2
JB/F

(

m2
i (h, S)

T 2

)

(2.11)

with thermal functions

JB/F(y2) =
∫ ∞

0

dx x2 log

[

1 ∓ exp(−
√

x2 + y2)

]

(2.12)

which vanish as T → 0. Note that y2 can be negative. The

thermal functions have very useful closed forms in the high-

temperature limit,

JB(y2) ≈ J
high−T

B (y2) = −
π4

45
+

π2

12
y2 −

π

6
y3

−
1

32
y4 log

(

y2

ab

)

JF (y2) ≈ J
high−T

F (y2) =
7π4

360
−

π2

24
y2

−
1

32
y4 log

(

y2

a f

)

for |y2| ≪ 1, (2.13)

where ab = π2 exp(3/2 − 2γE ) and a f = 16π2 exp(3/2 −
2γE ). This high-T expansion includes more terms, but they

do not significantly increase the radius of convergence. With

the log term included, this approximation for both the poten-

tial and its derivatives is accurate to better than ∼ 10% even

for m ∼ (1 − 3) × T (depending on the function and order

of derivative), but breaks down completely beyond that. The

low-temperature limit (|y2| ≫ 1) also has a useful expansion

in terms of modified Bessel functions of the second kind:

JB(y2) = J̃
(m)
B (y2) = −

m
∑

n=1

1

n2
y2 K2(y n)

JF (y2) = J̃
(m)
F (y2)

= −
m

∑

n=1

(−1)n

n2
y2 K2(y n) for |y2| ≫ 1. (2.14)
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(a) (b) (c) (d)

Fig. 1 Various scalar mass contributions in φ4 theory: a one-loop

mass correction, which is quadratically divergent at zero temperature,

b higher-loop daisy contributions which are leading order in T and N at

high temperature, c the two-loop “lollipop” contribution which is sub-

leading in T and N to the two-loop daisy, d the three-loop superdaisy

contribution, which is subleading in T but of equal order in N to the

three-loop daisy

This expansion can be truncated at a few terms, m = 2 or 3,

and yield very good accuracy, but convergence for smaller

|y2| is improved by including more terms.

For negative m2
i , the effective potential (both zero- and

finite-temperature) includes imaginary contributions, which

were discussed in [92]. These are related to decay widths of

modes expanded around unstable regions of field space, and

do not affect the computation of the phase transition. There-

fore, we always analyze only the real part of the effective

potential.

2.4 Resummation of the thermal mass: truncated full

dressing (TFD)

The effective potential defined in Eq. (2.10) can be evalu-

ated at different temperatures to find vc and Tc. The high-

temperature expansion of JB already reveals how one partic-

ular BSM effect could induce a strong EWPT. If a light boson

is added to the plasma with m2
i ∼ h2, then the −y3 term in

JB will generate a negative cubic term −h3 in the effec-

tive potential, which can generate an energy barrier between

two degenerate vacua. However, the calculation of the effec-

tive finite-temperature potential is still incomplete. There is a

very well-known problem which must be addressed in order

to obtain a trustworthy calculation [81–83].

This can be anticipated from the fact that a symmetry,

which is broken at zero temperature, is restored at high-

temperature. Thermal loop effects overpower a temperature-

independent tree-level potential. This signals a breakdown

of fixed-order perturbation theory, which arises because in

FTQFT a massive scalar theory has not one but two scales:

μ and T . Large ratios of T/μ have to be resummed.

To begin discussing thermal mass resummation, let us first

consider not our BSM benchmark model but a much simpler

φ4 theory with quartic coupling λ and N scalar fields which

obey a global O(N ) symmetry:

V0 = −
1

2
μ2φiφi +

1

4
λ(φiφi )

2. (2.15)

(In fact, if we were to ignore fermions and gauge bosons,

and set λ = λH S = λS , our BSM benchmark model would

reduce to this case with N = NS + 4.)

In FTQFT, the leading order high temperature behavior for

diagrams with external scalar lines is directly related to the

0-temperature superficial degree of divergence d. Diagrams

which have d > 0 have a T d high temperature behavior. For

d ≤ 0, there is a linear T dependence. Appropriate factors of

the coupling λ, N and the tree level mass parameter μ can be

added from vertex counting and dimensional grounds. There-

fore, the one-loop scalar mass correction shown in Fig. 1a

scales as ∼ NλT 2 to leading order in temperature, which is

the “hard thermal loop”. The phase transition occurs around

the temperature where this thermal mass cancels the tree-

level mass at the origin:

μ2 ∼ NλT 2 ⇒ α ≡ Nλ
T 2

μ2
∼ 1. (2.16)

At n-loop order, the leading contribution in temperature to

the thermal mass is given by daisy diagrams shown in Fig. 1b:

δm2
n-loop daisy ∼ N n λnT 2n−1

μ2n−3
, n ≥ 2 (2.17)

The ratio of the n to the n + 1 loop daisy contribution scales

as

δm2
n

δm2
n−1

∼ α (2.18)

which is not parametrically small during the phase transition,

causing the perturbative expansion to break down. This can

also be understood as an IR divergent contribution (in the

high T limit) to the zero mode propagator.

To make the expansion more reliable, it is necessary to

resum the thermal mass by replacing the tree-level m2
tree(φ)

in Eq. (2.10) by m2(φ) = m2
tree(φ) + �(φ, T ), where in the

standard method, � is taken to be the leading contribution

in temperature to the one-loop thermal mass. For scalars this

can be obtained by differentiating Vth with respect to φ:

� ∼ λT 2 + · · · (2.19)

The ellipses represent subleading contributions in both the

high-temperature expansion and coupling order, which are

neglected.

This substitution automatically includes daisy contribu-

tions to all orders in the effective potential. The largest con-
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tributions which are not included are the two-loop “lollipop”

diagrams shown in Fig. 1c, scaling as λ2T 2 N , and the three-

loop superdaisy shown in Fig. 1d) scaling as λ3T 4 N 3/μ2.

Reliability of the perturbative expansion with the above ther-

mal mass substitution requires

λ ≪ 1, β ≡
λT N

μ
≪ 1. (2.20)

These are obtained by requiring the ratio of the one-loop

thermal mass to the sunset and the ratio of the two-loop daisy

to the three-loop daisy to be small.

To illustrate how this resummation procedure is imple-

mented in most BSM calculations, let us again turn to our

SM + NS × S benchmark model. The “dressed” effective

potential is given by

V dressed
eff (h, S, T ) = V0 +

∑

i

[

V i
CW(m2

i (h, S) + �i )

+V i
th(m

2
i (h, S) + �i , T )

]

, (2.21)

where

�h(0) = �G(0)

= T 2

(

3

16
g2 +

1

16
g′2 +

1

4
λ2

t +
1

2
λ +

NS

12
λH S

)

�S(0) = T 2

(

1

3
λH S +

NS + 2

12
λS

)

�L
G B(0) =

11

6
T 2 diag(g2, g2, g2, g′2) (2.22)

and �L
G B is added only to the longitudinal gauge boson

masses squared in the gauge basis, which are then diago-

nalized. Gauge symmetry suppresses thermal contributions

to the transverse mode [85]. Note that while fermions receive

thermal mass, there are no zero modes ωn = (2n + 1)πT ,

and as a result no IR divergences appear in the fermion prop-

agator.

As we explain in Sect. 3, substituting m2
tree + � directly

into the effective potential is called full dressing (FD). Since

the thermal mass � is explicitly evaluated only to leading

order in the high-temperature expansion, we refer to this

resummation procedure as truncated full dressing (TFD).

TFD is the standard approach for BSM calculations of the

EW phase transition.

If V i
th is expanded using the high-Temperature approxima-

tion of Eq. (2.13), the field dependent terms in logs cancel

between V i
CW and V i

th. The y2 term gives an overall contribu-

tion proportional to T 2�i , which is field-independent when

using only the leading-order contribution to �i in tempera-

ture. This just leaves the y3 term, which can be captured by

adding V i
ring:

V dressed
eff (h, S, T ) = V0 +

∑

i

[

V i
CW(m2

i (h, S))

+V i
th(m2

i (h, S), T ) + V i
ring(m2

i (h, S), T )
]

,

(2.23)

where

V i
ring(m

2
i (h, S), T ) = −

gi T

12π

(

[

m2
i (h, S) + �i

]3/2

−
[

m2
i (h, S)

]3/2
)

. (2.24)

Adding V i
ring amounts to resumming the IR-divergent contri-

butions to the Matsubara zero mode propagator. It is tanta-

mount to performing the m2
i → m2

i + �i replacement in the

full effective potential, under the assumption that only the

thermal mass of the zero mode matters, which is equivalent

to making a high-temperature approximation.

This is the version of the finite-temperature effective

potential used in most BSM calculations. In some cases,

Eq. (2.23) is used but with the full finite-temperature V i
th

instead of the high-T expansion. This is more accurate when

mi is comparable to the temperature, but in that case the

assumptions that justify using Vring are explicitly violated,

and Eq. (2.21) is the more consistent choice. In practice, there

is not much numerical difference between these two recipes.

As we discuss in Sect. 2.6, all of these TFD calculations have

problems arising from using only the leading-order contri-

bution of �i in temperature.

2.5 Types of electroweak phase transitions

It is well-known that in the SM for mh � 70 GeV, the

EWPT is not first-order [22,23]. To make the PT first order,

new physics effects have to be added to the SM to gen-

erate an energy barrier between two degenerate vacua at

T = Tc. These BSM scenarios can be broadly classified

into a few classes (see also [97,115]) based on the origin

of the barrier between the two degenerate vacua. These are

phase transitions driven by thermal effects, tree-level renor-

malizable effects, loop effects at zero-temperature and non-

renormalizable operators. Note that our simple BSM bench-

mark model realizes the first three of these mechanisms. Rig-

orous study of the fourth mechanism will require the updated

thermal resummation procedure we present in this paper.

PT driven by BSM thermal effects

It is possible that BSM bosonic degrees of freedom are

present in the plasma. If they have the right mass and cou-

pling to the SM Higgs, they can generate an energy barrier to

make the PT strongly first order. Schematically, this can be

understood as follows. If the boson(s) have tree-level mass

m2
i = μ2

S +λH Sh2, the effective potential of Eq. (2.23) con-

tains a term of the form
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−
T

12π

[

μ2
S + λH Sh2 + �S

]3/2
(2.25)

If this term is dominated by the h-dependent piece at T =
Tc, the resulting ∼ −(λH S)

3
2 h3T negative cubic term can

generate an energy barrier between two degenerate minima

and catalyze a strong first order PT.

In order for this cubic term to be manifest, it is required

that μ2
S + �S ≪ λH Sv2

c . In the SM the W and Z bosons

generate a cubic term, but their contribution is too small to

make the SM EWPT first order. This can be enhanced in BSM

scenarios by a partial cancellation between the new boson’s

thermal mass and a negative bare mass at T = Tc.

This scenario was long regarded as one of the most promis-

ing avenues for EWBG, because light stops in supersymme-

try could serve as these new bosonic degrees of freedom

(DOF) [50–60]. Higgs coupling measurements have since

excluded that possibility for the MSSM [61,62] and general

models with colored scalars [63,64]. Other scenarios, includ-

ing the SM + NS × S benchmark model we explore here, can

easily realize this possibility [63,64].

The mass of these light BSM bosonic DOF cannot sig-

nificantly exceed Tc ∼ O(100 GeV) to ensure their thermal

contributions are unsuppressed. This makes such EWBG sce-

narios prime candidates for discovery at the LHC, and possi-

bly future colliders. It is therefore of paramount importance

to robustly correlate the predicted collider signatures with the

regions of parameter space which allow for a strong phase

transition.

This mechanism relies on a partial cancellation between

a zero-temperature mass and a thermal mass. However, in

the standard calculation, the thermal mass is computed only

to leading order in the high-T expansion. This is troubling,

since (a) even within the high-T expansion, subleading terms

in the expansion can change the thermal mass by O(40%)

or more [116], and (b) the thermal mass should decrease for

nonzero Higgs expectation values, since the bosons become

heavier as h → vc and partially decouple from the plasma.

This can affect the electroweak phase transition, and the cor-

responding predictions for collider observables from a strong

EWPT. Addressing this issue will be one of the major goals

of our work.

PT driven by tree-level renormalizable effects

It is possible to add new scalars to the SM Higgs potential,

see e.g. [24,34,37,117]. In that case, the tree-level struc-

ture of the vacuum can be modified. For example, it is pos-

sible for the universe to first transition to a nonzero VEV

of an additional singlet, only to transition to another vac-

uum with a nonzero Higgs VEV at a lower temperature. It

is also possible for the Higgs to mix with new DOF (i.e.

both the Higgs and the new DOF acquire VEVs in our vac-

uum). In that case, the tree-level potential can have a bar-

rier between the origin and the EWSB minimum, result-

ing in a strong one-step phase transition at finite tempera-

ture.

These tree-driven one- or two-step PTs can easily be

very strongly first order, but can also cause runaway bub-

bles, which are incompatible with sufficient BAU generation

[118]. On the other hand, the strong nature of these PTs might

make them discoverable by future gravitational wave obser-

vations [113]. It is therefore important to understand which

regions of parameter space are associated with these types of

phase transitions.

An intriguing version of the two-step EWBG scenario is

possible when a triplet scalar is added to the SM [47–49]. In

that case, the baryon asymmetry can be created in the first

transition to the triplet-VEV-phase, and preserved in the sec-

ond transition to the doublet-VEV phase which the universe

inhabits at zero temperature.

PT driven by loop effects at zero temperature

New degrees of freedom with sizable couplings to the Higgs

can generate non-analytical contributions to VCW at zero tem-

perature which “lift” the local h = v minimum to a higher

potential relative to the origin, compared to the SM. With this

shallower potential well, SM Z and W boson thermal con-

tributions can be strong enough to generate a cubic potential

term at finite temperature, resulting in a strong PT. This was

recently discussed in the context of future collider signa-

tures by [111], and we will generalize their phenomenologi-

cal results in this paper.

PT driven by non-renormalizable operators

The previous two phase transition classes are primarily asso-

ciated with the zero-temperature effects of BSM degrees

of freedom on the Higgs potential. If these states are suf-

ficiently heavy, it might be reasonable to parametrize some

of their effect in an EFT framework by adding a set or non-

renormalizable operators to the SM Higgs potential. This was

used to correlate Higgs self-coupling deviations with a strong

EWPT [90–92].

While EFT analyses are useful for analyzing broad classes

of new physics effects, their construction and validity at finite

temperature is not well-understood.1 At zero-temperature

experiments, like mono-energetic collisions with energy E ,

the effects of perturbatively coupled particle with mass m

can be well described by an EFT if m/E > 1. This is

not the case in a plasma, where the heavy state can be

directly excited even if m/T is larger than unity, generat-

ing sizable thermal loop contributions. Furthermore, EFTs

are problematic when studying phase transitions, since the

spectrum which is integrated out changes between the two

1 The authors of [119] studied the agreement between a singlet exten-

sion of the SM and the corresponding EFT, but since TFD was used

decoupling effects could not be correctly modeled.
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vacua. Finally, the agreement between a full theory includ-

ing heavy states and an EFT description cannot presently

be studied reliably. This is because in the TFD thermal

mass resummation procedure, the effects of new particles

in the full theory on light scalar thermal masses never decou-

ples since � ∼ T 2 is independent of contributing par-

ticle masses. The non-decoupling of high mass DOFs in

the full theory calculation is clearly unphysical, prevent-

ing us from understanding the EFT’s radius of conver-

gence in field space and temperature. This provides another

strong motivation for treating thermal masses more care-

fully.

2.6 Problems with the standard one-loop TFD calculation

of the phase transition

There are a few ways in which the standard calculation with

TFD thermal mass resummation, as outlined above, is incom-

plete and can be extended.

1. Resumming Goldstones: At zero temperature, SM Gold-

stone contributions must be resummed to eliminate

the unphysical divergence in the derivatives of VCW

when their masses at tree-level are zero [120,121]. The

numerical effects of the Goldstone contributions, once

resummed, are small, so we can deal with this by not

including Goldstones in the loop calculations of certain

couplings. In the MS scheme this is not a (numerical)

problem as long as the tree-level Higgs VEV is some-

what shifted from the loop-level Higgs VEV.

2. Gauge dependence: Since the potential is derived from

the gauge-dependent 1PI effective action, vc is not a

gauge-independent quantity. In the standard Landau-

gauge-fixed calculation, we compute vc/Tc as a proxy for

the sphaleron energy in the broken phase (which is gauge

independent), and the requirement that vc/Tc > 0.6 is

understood to be an approximate minimal necessary con-

dition for EWBG to be plausible.

A fully gauge-independent calculation of Tc and the

sphaleron energy would make the calculation more reli-

able. This problem was considered by the authors of

[80] in the high-temperature approximation. The gauge

dependent potential without any thermal mass resumma-

tion is

V T >0
eff (h, S, T ; ξ) = V0 +

∑

i

[

V i
CW(m2

i (h, S; ξ))

+V i
th(m

2
i (h, S; ξ), T )

]

, (2.26)

where ξ is the gauge parameter. Consider the gauge

dependence of the third term V i
th:

V i
th =

T 4

2π2

⎡

⎣

∑

scalar,i

JB

(

m2
i
(h, S; ξ)

T 2

)

+ 3
∑

gauge,a

JB

(

m2
a(h)

T 2

)

−
∑

gauge,a

JB

(

ξm2
a(h)

T 2

)

⎤

⎦ ,

(2.27)

where m2
i (h; ξ) = m2

i (h) + ξm2
a , and we have dropped

fermion contributions which do not contain any gauge

dependence. In the high-temperature expansion and for

small ξ , the ξ -dependent contribution of DOF i charged

under the gauge symmetry is

V i
th[ξ ] =

T

2π2
(m3

i (h; ξ) − ξm3
a(h))

+
m4

i (h; ξ) − ξm4
a(h)

64π2
log

μ2
R

T 2
. (2.28)

Note that the O(T 2) term, and hence the dominant con-

tribution to the thermal mass, is gauge-independent. This

means that Tc only has a small gauge dependence, con-

firmed by [80] for small values of ξ . Furthermore, for

singlet extensions the new contributions to the poten-

tial which drive the strong phase transition are by def-

inition gauge-independent. Therefore we do not deal

with the issue of gauge dependence here and proceed

with the standard Landau gauge-fixed calculation. Cer-

tainly, further work is needed to construct a fully gauge-

independent general calculation of the strength of the

electroweak phase transition, and to understand how sen-

sitive the results of a gauge-fixed calculation are to the

choice of gauge parameter.

3. RG-improvement: the convergence of the one-loop effec-

tive potential can be improved by using running couplings

with 2-loop RGEs. This is independent of other improve-

ments to the calculation and is most important when the

theory contains sizable mass hierarchies. We will not dis-

cuss it further here.

4. Higher-loop corrections: it is possible to evaluate higher-

loop contributions to the zero- and finite-temperature

effective potential, such as the 2-loop lollipop that is not

included via thermal mass resummation. Alternatively,

estimates of these contributions can be used to determine

whether the one-loop expansion is reliable. In our BSM

calculations we will carefully do the latter, using high-T

approximations for the relevant diagrams.

5. Consistent thermal mass resummation: In the standard

Truncated Full Dressing calculation outlined above, the

effective finite-temperature Higgs potential is computed

by inserting the truncated thermal masses �i ∼ T 2 into

the one-loop potential as shown in Eq. (2.21). This is also

called “resumming hard thermal loops”, since it amounts
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to resumming only the contribution to the Matsubara zero

mode propagator. This is indeed correct, if those contri-

butions dominate the sum of diagrams, which is the case

in the extreme limit of the high-temperature approxima-

tion.

Early calculations that used this approximation [81–

83,122] were interested mainly in the restoration of elec-

troweak symmetry at high temperature. Determining Tc

with reasonable accuracy only requires considering the

origin of the Higgs potential where the top and gauge

boson masses are entirely dominated by thermal effects.

In this case, the truncated high-T expansion for �i is jus-

tified, though there are significant deviations which arise

from subleading terms in the high-temperature expansion

even at the origin.

However, when studying the strong first-order phase tran-

sition and computing vc, we have to deal with finite

excursions in field space which by definition are com-

parable to the temperature. For h ∼ T , masses which

depend on the Higgs VEV due to a Higgs coupling strong

enough to influence the PT cease to be small at tree-level

compared to thermal effects, and should start decoupling

smoothly from the plasma. The resulting h-dependence

of �i (h, T ) is therefore important. This is especially the

case when the strong phase transition is driven by light

bosons in the plasma, and therefore reliant on the par-

tial cancellation between a zero-temperature mass and a

thermal mass correction. Obtaining correct collider pre-

dictions of a strong EWPT requires going beyond the

TFD scheme.

As mentioned previously, the high-T thermal mass

resummation is also incompatible with any EFT frame-

work of computing the electroweak phase transition,

since in this approximation the contribution of heavy

degrees of freedom to thermal masses does not decouple.

This confounds efforts to find a consistent EFT descrip-

tion of theories at finite temperature. Since EFTs are such

a powerful tool for understanding generic new physics

effects at zero temperature, rigorously generalizing their

use to finite temperature is highly motivated.

We will concentrate on ameliorating the problems asso-

ciated with TFD thermal mass resummation. Some of the

necessary components exist in the literature. It is understood

that a full finite-temperature determination of the thermal

mass can give significantly different answers from the high-

T expansion for the thermal mass [116]. This was partially

explored, to subleading order in the high-T -expansion, for

φ4 theories [84–89], but never in a full BSM calculation,

without high-temperature approximations.

We will perform a consistent (to superdaisy order) finite-

temperature thermal mass computation by numerically solv-

ing the associated gap equation and resumming its contribu-

tions in such a way as to avoid miscounting important higher-

loop contributions. Since we are interested in the effect of

adding new BSM scalars to the SM in order to generate a

strong EWPT, we will be performing this procedure in the

scalar sector only. We now explain this in the next section.

3 Formal aspects of finite-temperature mass

resummation

As outlined above, in a large class of BSM models a

strong EWPT is generated due to new weak-scale bosonic

states with large couplings to the Higgs. A near-cancellation

between the new boson’s zero-temperature mass and thermal

mass can generate a cubic term in the Higgs potential, which

generates the required energy barrier between two degenerate

minima h = 0, vc at T = Tc. To more accurately study the

phase transition (and correlated experimental predictions) in

this class of theories, we would like to be able to compute

the thermal masses �i of scalars i beyond the hard ther-

mal loop approximation used in TFD. In other words, rather

than resumming only the lowest-order thermal mass in the

high-temperature expansion, �i ∼ T 2, we aim to compute

and resum the full field- and temperature-dependent thermal

mass δmi (h, T ), with individual contributions to δmi accu-

rately vanishing as degrees of freedom decouple from the

plasma. We also aim to formulate this computation in such a

way that it can be easily adapted for other BSM calculations,

and the study of Effective Field Theories at finite Tempera-

ture.

A straightforward generalization of the TFD calculation

might be formulated as follows. The finite-temperature scalar

thermal masses can be obtained by solving a one-loop gap

equation of the form

δm2
i =

∑

j

∂2
i

(

V
j

CW + V
j

th

)

, (3.1)

where ∂i represents the derivative with respect to the scalar i .

The hard thermal loop result δm2
i ∼ T 2 is the solution at lead-

ing order in large T/m. To obtain the finite-temperature ther-

mal mass, we can simply keep additional orders of the high-

T expansion, or indeed use the full finite-temperature ther-

mal potential of Eqs. (2.11, 2.12) in the above gap equation.

In the latter case, the equation must be solved numerically.

Once a solution for δm2
i (h, T ) is obtained, we can obtain the

improved one-loop potential by substituting m2
i → m2

i +δm2
i

in VCW + Vth as in Eq. (2.21).

Solving this gap equation, and substituting the resulting

mass correction into the effective potential itself, is called

full dressing [84–86]. This procedure is physically intuitive,

but it is not consistent. Two-loop daisy diagrams, which can

be important at T = Tc, are miscounted [88,89].
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An alternative construction involves substituting m2
i →

m2
i +δm2

i in the first derivative of the effective potential. This

tadpole resummation, called partial dressing, was outlined

for φ4 theories in [87]. The authors claim that PD correctly

counts daisy and superdaisy diagrams to higher order than

FD.

There appears to be some confusion in the literature as to

whether FD or PD is correct [84–89], but we have repeated

the calculations of [87], and confirm their conclusions. Partial

dressing (a) consistently resums the most dominant contri-

butions in the high-temperature limit, where resummation

is important for the convergence of the perturbative finite-

temperature potential, (b) works to higher order in the high-

temperature expansion, including the important log term,

to correctly model decoupling of modes from the plasma,

and (c) is easily adaptable to general BSM calculations. We

review the important features of PD below and then outline

how to generalize this procedure to numerically solve for the

thermal mass at finite temperature.

3.1 Tadpole resummation in φ4 theories

To explore the correct resummation procedure we first study

a φ4 theory with N real scalars obeying an O(N ) symmetry.

This can then be generalized to the BSM theories of interest

for EWBG. The tree-level potential is

V0 = −
1

2
μ2φiφi +

1

4
λ(φiφi )

2. (3.2)

Without loss of generality, assume that all excursions in field

space are along the φ0 direction.

Resummation of the thermal mass is required when high-

temperature effects cause the fixed-order perturbation expan-

sion to break down. We are therefore justified in using the

high-T expansion to study the details of the thermal mass

resummation procedure and ensure diagrams are not mis-

counted. Conversely, when T ∼ m, there is no mismatch

of scales to produce large ratios that have to be resummed.

In this limit, the thermal mass will be less important, but

should decouple accurately, and the resummed calculation

should approach the fixed-order calculation. We now review

how the PD procedure outlined in [87] achieves both of these

objectives.

3.1.1 Partial dressing results for N = 1

We start by summarizing the main result of [87], which stud-

ied the N = 1 φ4 theory in the high-temperature expan-

sion. The first derivative of the one-loop effective potential

V1 = VCW + Vth, see Eqs. (2.6), (2.11) and (2.13), without

any thermal mass resummation, is

∂V1

∂φ
= V ′

1 = (6λφ)

[

T 2

24
−

T m

8π
−

m2L

32π2

]

(3.3)

where L = ln
μ2

R

T 2 − 3.9076 and the log-term arises from a

cancellation between the zero- and finite-temperature poten-

tial. The tree-level scalar mass is m2 = −μ2 + λ
2
φ2. Dif-

ferentiating this once again will yield the one-loop thermal

mass shown in Fig. 2, as well as an electron-self-energy-

type diagram for φ �= 0 that descends from loop correc-

tions to the quartic coupling. During the phase transition,

α ≡ NλT 2/m2 ≈ 1, requiring daisies to be resummed. This

is evident in Fig. 2 from the fact that subsequent terms in

each family of diagrams (Daisy, Super-Daisy, Lollipop and

Sunset) is related to the previous one by a factor of α.

The second derivative of the one-loop potential defines a

gap equation, which symbolically can be represented as

where double-lines represent improved propagators with the

resummed mass M , while single-lines are un-improved prop-

agators with the tree-level mass m. Algebraically, this gap

equation is obtained by substituting M2 into the second

derivative of the one-loop effective potential:

M2 = m2 + V ′′
1

∣

∣

m2→M2

⇒ M2 = m2 +
λT 2

4
−

3λT M

4π

−
3λM2L

16π2
− ζ

[

9λ2φ2T

4π M
+

9λ2φ2

8π2

]

(3.4)

where we have inserted a factor ζ = 1 for reasons which

will be made clear below. The PD procedure involves resum-

ming these mass corrections by substituting m2 → M2 in

the first derivative of the potential Eq. (3.3) rather than the

potential itself. The potential is then obtained by integrating

with respect to φ:

V
pd

1 ≡
∫

dφ V ′
1

∣

∣

m2→M2(ζ=1)
. (3.5)

By expanding the above in large T , one can show that V
pd

1

correctly includes all daisy and super-daisy contributions

shown (in the form of mass contributions) in Fig. 2, to both

leading, sub-leading and log-order in temperature.

This partial dressing procedure does make one counting

mistake, which is that all the sunset diagrams in Fig. 2, start-

ing at 2-loop order and nonzero for φ �= 0, are included

with an overall multiplicative pre-factor of 3/2. This can be
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Fig. 2 Complete set of 1- and 2- loop contributions to the scalar mass,

as well as the most important higher loop contributions, in φ4 the-

ory. The scaling of each diagram in the high-temperature approxima-

tion is indicated, omitting symmetry- and loop-factors. Diagrams to the

right of the vertical double-lines only contribute away from the origin

when 〈φ〉 = φ0 > 0. We do not show contributions which trivially

descend from e.g. loop-corrected quartic couplings. Lollipop diagrams

(in orange) are not automatically included in the resummed one-loop

potential

fixed by changing ζ in the gap equation (3.4) from 1 to 2/3,

resulting in the one-loop effective potential

V
pd2/3

1 ≡
∫

dφ V ′
1

∣

∣

m2→M2(ζ=2/3)
(3.6)

Finally, non-daisy type diagrams, most importantly the

two-loop lollipop in Fig. 2 and its daisy-dressed descendants,

are by definition not included in this one-loop resummed

potential. However, in the high-temperature limit they can

be easily included by adding the explicit expression for the

lollipoop loop tadpole (one external φ line, hence the name),

V ′
2 ⊃ V ′

ℓ = (6λφ)
λT 2

32π2

[

log
m2

T μR

+ 1.65

]

(3.7)

with the same m2 → M2(ζ = 2/3) substitution:

V
pd2/3+ℓ

1 ≡
∫

dφ
[

V ′
1 + V ′

ℓ

]

m2→M2(ζ=2/3)
(3.8)

(ζ = 1 can also be used, in which case 2-loop sunsets are

not corrected.) This effective potential includes all daisy,

superdaisy, sunset and lollipop contributions correctly, and

is therefore correct to three-loop superdaisy order.

3.1.2 Comparing resummation schemes

We have verified that the above results generalize to O(N )

φ4 theories, with N > 1. As mentioned above, at tempera-

tures near the phase transition the parameter α ≡ NλT 2/m2

is ≈ 1, necessitating resummation. To compare different

resummation approaches, let us first define which parame-

ters are required to be small for the improved perturbative

expansion to converge. Zero-temperature perturbation the-

ory requires

Nλ ≪ 1 (3.9)

(where the above equation, and other inequalities of its type,

typically contain loop- and symmetry-factors which we usu-

ally suppress). Satisfying Eq. (3.9) means that during the

phase transition, in regions of field space where α ≈ 1, the

high-temperature expansion (whether in T/m or T/M) is

usually valid. In order for the series of high-temperature con-

tributions to converge, the parameter β must also be small:

β ≡ Nλ
T

m
= α

√
Nλ ≪ 1. (3.10)

An easy way to see this is to examine Fig. 2. Let us call the

mass contribution of the one-loop ∼ T 2 diagram δm1, and the

total contributions of the daisy, super-daisy, lollipop and suset
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family of diagrams δm2
D, δm2

SD, δm2
L L , δm2

SS respectively.

After resummation in α, we obtain2

δm2
1 ∼ λN T 2 δm2

D ∼ λ2 N 2 T 3

m
δm2

SD ∼ λ3 N 3 T 4

m2

δm2
L L ∼ λ2T 2 N δm2

SS ∼ λ3φ2
0 N T 2

m2

Making use of α ≈ 1, these contributions arrange themselves

in order of size:

δm2
D

δm2
1

∼
δm2

SD

δm2
D

∼ α
m

T
= β (3.11)

δm2
L L

δm2
D

∼
1

N

m

T
=

1

α

1

N
β (3.12)

δm2
SS

m2
D

∼
α

N 2

φ2
0

T 2

m

T
=

φ2
0

T 2

1

N 2
β (3.13)

Clearly β is the relevant expansion parameter which has to be

small for the series to converge. Furthermore, in terms of β,

both the lollipop and sunset diagrams are of the same order as

the superdaisy family, but with additional suppression factors

of 1/N .3 (In our regime of interest, φ0 is usually not much

larger than T , so the sunsets are subdominant or at most

comparable to the lollipop and superdaisy.)

We can now carefully compare different resummation

approaches. The partial dressing procedure, with the lollipop

correction and the additional sunset contribution, is accurate

to O(β2). Since tree- and loop-contributions are of simi-

lar size near the phase transition we compare all sub-leading

contributions to the unimproved one-loop thermal mass δm2
1.

Relative to δm2
1, the size of neglected zero-temperature con-

tributions and non-daisy contributions at three-loop order are

(Nλ)2 and β3 ∼ (Nλ)3/2, (3.14)

respectively.

The alternative full dressing procedure [84–86] involves

solving the same gap equation as for partial dressing, but

substituting m2 → M2 in the potential V1 instead of its first

derivative. This essentially dresses up both the propagator

and the cubic coupling in the potential.4

The authors of [87] demonstrate that FD miscounts daisies

and super-daisies (starting at the 2-loop level), does not

2 Note that in the individual diagrams of Fig. 2, the un-improved tree-

level mass m is used in the propagator. The entire e.g. lollipop series can

be obtained by evaluating the leading diagram with the daisy-improved

mass M .

3 Due to the different symmetry factors of the lowest-order superdaisy

and lollipop diagrams, the corresponding N -suppression is not numer-

ically significant for N � 10.

4 This inspires the name we use for the standard thermal mass resum-

mation as reviewed in Sect. 2.4. Since it involves computing the mass

correction to leading order in high temperature � ∼ T 2 and substitut-

ing m2 +� into the effective potential, we call it truncated full dressing,

even though at O(T 2) there is no actual difference between FD and PD.

include sunset contributions, and includes lollipop contri-

butions but with a wrong prefactor and without the log-

dependence of Eq. (3.7), which arises from neglecting inter-

nal loop momenta (as expected in a resummation procedure

which does not explicitly calculate multi-loop diagrams). We

have confirmed their results. Therefore, ignoring the incor-

rect accounting of the lollipop which vanishes at the origin,

the error terms of a PD calculation are

(Nλ)2 and β ∼ (Nλ)1/2, (3.15)

The standard BSM calculation is even worse, since TFD only

uses the leading-order thermal mass, leading to possible error

terms

(Nλ)2, β ∼ (Nλ)1/2 and
m

T
. (3.16)

The advantages of partial dressing, compared to the trun-

cated (or un-truncated) full dressing procedure, are clear,

especially for phase transitions driven by BSM thermal

effects, where the m/T error in Eq. (3.16) can be signifi-

cant.

3.2 A general resummation procedure for BSM theories

We now discuss how to adapt partial dressing for efficient

calculation of the phase transition in general BSM theories.

We will limit ourselves to phase transitions along the Higgs

direction, briefly discussing other cases in the next subsec-

tion.

Since partial dressing avoids miscounting of the most

important thermal contributions at all orders in the high-

T expansion, including the log-term, it can be explicitly

applied to the finite-temperature regime. In regions where

α ≈ 1, the high-temperature expansion is valid, and resum-

mation will be properly implemented. This smoothly inter-

polates to the regime where masses are comparable to tem-

perature, eliminating the separation of scales and making the

fixed-order calculation reliable again, with finite-temperature

effects decoupling correctly as the mass is increased. There-

fore, for a given set of mass corrections δm2
i for gauge bosons

and scalars i , we define our effective potential along the h-

direction by substituting the mass corrections into the first

derivative of the loop potential:

V
pd
eff (h, T ) = V0 +

∑

i

∫

dh

[

∂V i
CW

∂h

(

m2
i (h) + δm2

i (h, T )
)

+
∂V i

th

∂h

(

m2
i (h) + δm2

i (h, T ), T
)

]

, (3.17)

Note that Vth is not (necessarily) expanded in high- or low-

temperature.

Next, how do we obtain the mass corrections δm2
i ? We

will concentrate on cases, like our SM + NS × S bench-

mark model, in which the dominant effect of new physics

123



787 Page 14 of 29 Eur. Phys. J. C (2018) 78 :787

on the phase transition comes from an expanded scalar sec-

tor. Therefore, we will retain use of the O(T 2) gauge boson

thermal masses of Eq. (2.22), and set

δm2
G B(h) = �G B(0) (3.18)

For the scalar mass corrections we numerically solve a set of

coupled gap equations at each different value of h and T :

δm2
φ j

(h, T ) =
∑

i

[

∂2V i
CW

∂φ2
j

(

m2
i (h) + δm2

i (h, T )
)

+
∂2V i

th

∂φ2
j

(

m2
i (h) + δm2

i (h, T ), T
)

]

(3.19)

where φ j = h, G0, S0. Since we only consider excursions

along the h direction, there are no mixed mass terms, and

mass corrections for all singlets and Goldstones respectively

are equal.5

Note that while we only numerically solve for the mass

corrections of the scalars, these mass corrections will include

contributions due to gauge bosons and fermions, which

decouple correctly away from the high-temperature limit.

We will address some subtleties related to finding consistent

numerical solutions to these gap equations, and the effect of

derivatives of δm2
φ j

, in the next section.

In defining the effective potential Eq. (3.17), we are essen-

tially using only the one-loop potential as in Eq. (3.5). This

represents a great simplification, since calculation of the two-

loop lollipop in full generality and at finite temperature [82]

may be very onerous in a general BSM theory. Furthermore,

implementing the factor-of-2/3 “fix” to correctly count sunset

contributions may be nontrivial at finite-temperature. Fortu-

nately, we can show that omitting both of these contributions

is justified for our cases of interest.

First, the lollipop is suppressed relative to the dominant

one-loop resummed potential by factors of N (where N is

related to NS but also the number of Goldstones in the SM)

and β < 1. Even so, it represents our dominant neglected

contribution. To explicitly check that it is small, it is sufficient

to evaluate the dominant lollipop contributions to the h and

S0 thermal masses in the high-temperature limit. Adapting

the loop integral in the high-T limit from [83], this gives

δm2
h,L L(T ) =

T 2

16π2

[

6λ2

(

log
m2

h

T μR

+ 1.65

)

+NSλ2
H S

(

log
(mh + 2mS)

2

9T μR

+ 1.65

)

]

5 We can also evaluate the potential along the S0 axis, in which case the

mass corrections for S0 and Sk with k ≥ 1 have to be treated separately.

Note that Eq. (3.19) is also a function of the gauge boson masses and

thermal masses, which are set by Eq. (3.18), as well as the fermion

masses.

δm2
S,L L(T ) =

T 2

16π2

[

(NS + 2)λ2
S

(

log
m2

S

T μR

+ 1.65

)

+4λ2
H S

(

log
(mS + 2mh)2

9T μR

+ 1.65

)

]

(3.20)

These diagrams are evaluated with improved propagators. In

order for the calculation to be reliable, the ratios of lollipop

to resummed one-loop mass corrections must satisfy

r k
L L ≡

1

δm2
k(h = 0, Tc)

×δm2
k,L L(Tc) |

mh→
√

m2
h+δm2

h ,mS→
√

m2
S+δm2

S

� 0.1,

(3.21)

for k = h, S when the high-T approximation is valid at the

origin. (As explained in Sect. 2.3, in all operations involving

the effective potential or its derivatives, we always only use

the real part.)

Second, the sunset contribution is suppressed relative to

the dominant one-loop-resummed potential by factors of

h/T , N 2 and β < 1. More importantly, we expect the

most important improvement of our partial dressing com-

putation, compared to the standard truncated full dressing

computation, to be the correct inclusion of finite-temperature

effects, and the associated decoupling of heavy modes from

the plasma away from the origin in field space. This decou-

pling will dominantly be due to the increased mass of the sin-

glets as h evolves away from the origin, rather than from the

two-loop sunset contributions. Since the former is correctly

captured by using finite-temperature gap equations and effec-

tive potential, the effect of sunsets should be small compared

to the lollipop.

Third, we should also ensure that the equivalent of β3

in our theory is sufficiently small at T = Tc. This is very

straightforward using Eq. (3.11), where δm1 is the unim-

proved Higgs or Singlet one-loop thermal mass (using m2

in propagators), and δm2
D is well approximated by the dif-

ference between the improved (using M2) and un-improved

thermal mass. Explicitly, we define two parameters:

βk ≡
|δm2

k(0, Tc) − δm2
k(0, Tc)

∣

∣

δm2
i →0

|

δm2
k(0, Tc)

∣

∣

δm2
i →0

(3.22)

for k = h, S. β3
h and β3

S then give the size of the error terms

from the most important neglected three-loop diagrams and

should be less than ∼ 0.1.

Finally, two-loop zero-temperature corrections are small

if Nλ ≪ 4π , which simply restricts the weakly coupled

parameter space we can explore. Our PD computation of the

phase transition strength vc/Tc is then robust when all r
h,S
L L

and β3
h,S are small.
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3.3 Future directions

There are several conceptually straightforward ways to

extend the procedure outlined in Sect. 3.2:

1. Even though it cannot be done by simple construction

and manipulation of the one-loop effective potential, it

would be straightforward to construct the gap equations

for the gauge bosons [85] and solve them together with

the gap equations for the scalars.

2. With a general finite-temperature expression for the 2-

loop lollipop shown in Fig. 2, we could evaluate its deriva-

tive, substitute m2 → m2 + δm2 and by adding it to

Eq. (3.17) [but not Eq. (3.19)] correctly include all lol-

lipop contributions, as in Eq. (3.8)

3. In regimes where the gap equation Eq. (3.19) can be

approximated by a high-temperature expansion, one

could implement the 2/3 factor fix of Eq. (3.4) to cor-

rectly count sunset graphs at 2- and higher loop order.

It is unclear how to implement this fix in the full finite-

temperature gap equation, but as we discuss when we

introduce optimized partial dressing (OPD) in Sect. 4.2.3,

the high-temperature expansion of the gap equation (but

not the potential) is sufficient in most BSM calculations.

4. We have applied partial dressing without explicitly

checking that fermion and gauge boson effects are cor-

rectly accounted for at 2- and higher-loop order. We leave

this investigation to future work, but since the dominant

BSM effects on the Higgs potential in our models of inter-

est come from the scalar sector, we expect our procedure

to be valid.

Note that we explicitly check in our calculation whether the

above-mentioned extensions (2) and (3) are numerically sig-

nificant.

There is also a more involved question, which is how

to extend partial dressing for field excursions along several

field directions at once, when those field directions cannot be

related by a symmetry. The partial dressing procedure unam-

biguously defines the potential along any one field direc-

tion, as long as all other fields are at the origin. In an exam-

ple with two fields, let us denote as V
pdi

eff (φ1, φ2) the effec-

tive resummed one-loop potential obtained by integrating

∂Veff/∂φi . It is straightforward to show that V
pd1

eff (φ1, φ2) �=
V

pd2

eff (φ1, φ2), with the difference being of super-daisy order

O(β2). This may not be numerically significant in a given

case, but it would be of interest to extend the partial dressing

procedure to consistently define

V
pd
eff (φ1, φ2). (3.23)

Since the above can be evaluated unambigiously diagram-

matically, and since the partial dressing procedure was vali-

dated in [87] by comparing this to the substitution of M2 into

the first derivative of the potential, there presumably exists

a way of generalizing this substitution procedure to obtain a

general potential as a function of multiple fields. This is of

particular relevance to BSM models where the Higgs mixes

with BSM scalars [24,34,37], which constitute an impor-

tant class of models that can give a strong electroweak phase

transition.

3.4 Comparison with dimensional reduction

While the majority of the BSM community uses the meth-

ods of perturbative resummation, there are a number of

demonstrably incorrect methods, e.g. the V i
r ing(m

2
i (h, S), T )

potential, which we have addressed thus far. However, there

is another school of thought more associated with non-

perturbative methods that typically employs dimensional

reduction to address finite-T field theories. This method was

first proposed in [106] as way to isolate the high-T behavior.

This is quite natural in examining the high-T limit of the the-

ory when the radius of the thermal circle is very small and

one can reformulate the theory as a three-dimensional effec-

tive theory with T as the expansion parameter. (Depending

on the theory in question there can be multiple T -dependent

scales involving different coupling constants or factors of π .)

The resulting 3D theory was implemented on the lattice in

[107] where a number of possible benefits were explored. In

particular, for finite T gauge theories, the value of the non-

perturbative magnetic mass term can imply a reduced radius

of convergence for perturbation theory, necessitating the use

of lattice methods. By using an effective 3D description,

depending on the theory in question, non-perturbative and

perturbative physics can be separated and a simpler 3D lattice

simulation can be used rather than a 4D version [107,108].

Dimensional reduction applied to finite-T has also been

championed for its potential universality of the 3D effective

theory [23,109]. This emphasis arises because at high T and

near the SM EW transition the relevant modes reduce to a

solely super-renormalizable 3D EFT of scalars and gauge

field modes. However, the hoped-for universality breaks

down when investigating phenomena like P-violation where

higher dimension operators are needed to accurately describe

the physics [110]. Additionally, it is important to remember

that in any EFT a matching calculation must be done, and

the desired accuracy depends in principle on both the match-

ing and the number of higher-dimensional operators that are

included [110]. More generally, in BSM physics there can be

many additional fields with masses that arise from sources

other than EWSB while also coupling to the Higgs. There-

fore to accurately model a phase transition one may have

to keep track of these additional fields. From the EFT per-

spective their contributions must either be included directly

as soft modes, or there might be a small radius of conver-
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gence of the EFT with many higher dimensional operators

needed. In either of these cases the EFT description imme-

diately becomes a less universal prediction, and more lattice

studies would have to be carried out for each of these theo-

ries. Otherwise, the effects predicted from the thermal EFTs

are no more accurate than the 4D theory they are perturba-

tively matched to in the first place. Additionally, on top of

the original perturbative calculation required for matching,

there could be multiple layers of EFTs needed to correctly

describe the physics at high T if there are multiple scales

involved.

While dimensional reduction is a very useful tool for

finite-T QFT, especially for physics driven by gauge the-

ories, it is not always the most efficient tool for BSM theo-

ries. In the BSM context, the lack of universality or multiple

EFTs required combined with the necessity of matching with

resummation shows that there is a great deal of utility in the

perturbative resummation techniques we discuss here. This

is especially true in the context of new scalar fields with

m ∼ TEW which is one of the most intriguing phenomeno-

logical possibilities that can be studied in current or future

collider experiments. Additionally, as we show in later sec-

tions, the fast numeric techniques we propose demonstrate

the efficiency of using this method for BSM physics and

renders this approach at least as useful as dimensional reduc-

tion until lattice methods become more numerically efficient.

While ultimately dimensional reduction and lattice methods

would be ideal if widely available and carefully matched to

each individual BSM theory, our methods provide a very use-

ful way to explore the most promising BSM directions for

future theoretical and experimental exploration, in particular

for new scalar sectors beyond the Higgs.

4 Computing the strength of the phase transition

We now apply the procedure outlined in Sect. 3.2 the SM

+ NS × S BSM benchmark model with unbroken O(NS)

symmetry in the T = 0 ground state.

4.1 Zero-temperature calculation

The tree-level scalar potential is given by Eqs. (2.2) and (2.3).

All field excursions in the region of parameter space we study

(no Higgs-Singlet mixing in the ground state) can be consid-

ered without loss of generality to be in either the h or S0

direction.

For each choice of NS , there are three Lagrangian BSM

parameters, μS, λH S and λS . We match these to three phys-

ical input parameters which are computed at one-loop level

in the MS scheme (in addition to matching the SM Higgs

potential parameters λ,μ to mh and v):

(a) The mass of the singlet in our vacuum

m2
S = m2

S(v) =
∂2V T =0

eff

∂S2
0

∣

∣

∣

∣

∣

h=v

= μ2
S + λH Sv

2 + · · ·

(4.1)

(b) The singlet-Higgs cubic coupling

λ
loop
hSS = λ

loop
hSS(v) =

1

2

∂3V T =0
eff

∂S2
0∂h

∣

∣

∣

∣

∣

h=v

= λH Sv + · · ·

(4.2)

(c) The singlet quartic coupling

λ
loop
S = λ

loop
S (v) =

1

6

∂4V T =0
eff

∂S4
0

∣

∣

∣

∣

∣

h=v

= λS + · · · (4.3)

The renormalization scale μR is set to mS(v). In all calcu-

lations, we vary this scale choice up and down by a factor

of 2 in order to estimate the uncertainty due to higher-order

zero-temperature corrections. For a given set of input param-

eters, we compute whether the singlet is stable at the origin

when h = 0, and if not, the location of the local minimum

(h, S0) = (0, w). When the singlet is unstable at the origin,

we impose the vacuum stability condition

V T =0
eff (v, 0) < V T =0

eff (0, w) (4.4)

to ensure the EWSB vacuum is the preferred one for our

universe.

The collider phenomenology of the NS = 1 case,

with TFD resummation and in the on-shell renormalization

scheme, was studied previously in [111]. The following three

collider observables are of interest to probe this scenario:6

• A measurement of the triple-Higgs coupling with 5%

precision at 1σ , which is more pessimistic than recent

estimates of the achievable precision [97].

• A search in the VBF jets + MET channel for direct singlet

pair production via h∗ → SS.

• A measurement of the Zh production cross section devia-

tion from the SM with a 1σ precision of 0.3% at a TLEP-

like lepton collider.

Together, it was found that these measurements provide cov-

erage of the entire parameter space where a strong phase

transition is possible.

We analyze the same model as the authors of [111], gen-

eralized to NS ≥ 1, while comparing standard truncated full

6 We assume 3 ab−1 of luminosity at 100 TeV throughout.
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dressing to our new partial dressing procedure. We therefore

compute the same observables:

(a) The Higgs cubic coupling

λ
loop
hhh =λ

loop
hhh (v)=

1

6

∂3V T =0
eff

∂h3

∣

∣

∣

∣

∣

h=v

=
m2

h

2v
+ · · · (4.5)

To obtain the fractional deviation, we compare this to

the value of λ
loop
hhh computed without the S contribution,

rematched to the SM parameters with the same choice of

renormalization scale as the calculation with the singlet.

(b) Singlet pair production cross section at 100 TeV collid-

ers: obtained in MadGraph 5 [123] by using λ
loop
hSS as the

singlet-Higgs tree-level coupling, scaled up by a factor

of NS .

(c) The fractional Zh cross section shift at lepton colliders

can be computed using the results in [124,125]:

δσZh =
NS

2

|λH S|2v2

4π2m2
h

[

1 + F(τφ)
]

(4.6)

with the replacement λH Sv → λ
loop
hSS . The loop function

F(τ ), with τφ = m2
h/4m2

S , is given by

F(τ ) =
1

4
√

τ(τ − 1)
log

(

1 − 2τ − 2
√

(τ (τ − 1))

1 − 2τ + 2
√

(τ (τ − 1))

)

.

(4.7)

Note that we estimate changes in cross-sections from

the changes in potential couplings. This ignores finite-

momentum contributions of new particles in loops to the

cross section, but for mS � mh , this is a good approxima-

tion.

Note that for these zero-temperature calculations, we do

not resum mass corrections in the partial dressing scheme.

The procedures of Sect. 3.2 can easily be applied to the

zero-temperature potential as well, but we have extensively

checked that they only have insignificant effects on the

matched parameters and corresponding observables. This is

expected, since mass resummation at finite temperature is

required due to IR-divergent effects which are absent at zero

temperature.7

4.2 Finite-temperature calculation

We are interested in finding regions of parameter space where

the phase transition is strongly one-step (vc/Tc > 0.6) or

two-step.

7 Note, however, that in the finite-temperature calculation, the zero-

temperature potential gives important contributions beyond T 2 order.

For each set of input parameters we match the potential,

compute zero-temperature observables, and then compute the

finite-temperature potential at different temperatures until we

find T = Tc where the local minimum at the origin and a local

minimum at v = vc are degenerate. The finite-temperature

potential is given by Eq. (3.17), where the mass corrections

(or thermal masses) δm2
i are computed differently depending

on the resummation scheme. If the singlet is unstable at the

origin at T = 0, we also compute the minimum temperature

TS where thermal effects stabilize the singlet. If TS > Tc,

the transition is two-step and we do not analyze it further.

In order for our calculation to be reliable, r
h,S
L L and βh,S as

defined in Eqs. (3.21) and (3.22), have to be small.

We compare the three different schemes: truncated full

dressing (TFD), partial dressing (PD) and optimized partial

dressing (OPD). Some of the numerical calculations are per-

formed in Mathematica, and some in a custom-built c++

framework. For numerical evaluation, c++ is operation-by-

operation ∼ 1000 × faster than Mathematica, but the latter

is much more versatile and often preferred for exploring dif-

ferent BSM scenarios. Whenever evaluating the full thermal

potential Vth or its derivatives without approximations, we

use pre-computed lookup tables.

The TFD calculation, which is the standard method for

BSM calculations used in [111] and many other analyses, is

simple enough that vc/Tc can be found for a given parameter

point using about ∼ O(1 minute) of CPU time in Math-

ematica. On the other hand, the complete implementation

of PD is so numerically intensive that only the c++ code

can be realistically used, and evaluation times for a single

parameter point range from 10 seconds to many minutes,

indicating that PD is of order 104 times more numerically

intensive than TFD. Fortunately, a series of carefully chosen

approximations allows partial dressing to be implemented

in Mathematica, with only O(10%) higher CPU cost than

TFD, but identical results as PD. This is the OPD scheme,

and we hope its ease of implementation and evaluation will

be useful for future BSM analyses. We now briefly summa-

rize and contrast the salient features of each resummation

implementation.

4.2.1 Truncated full dressing (TFD)

This is just the standard thermal mass resummation, using

δm2
i = �i ∝ T 2, see Eq. (2.22). This thermal mass is sub-

stituted into the first derivative of the potential, since there are

no differences between full and partial dressing when sub-

stituting only the T 2 piece of the thermal mass. The thermal

potential derivative V ′
th is evaluated numerically without any

approximations.

The dominant errors in the perturbative expansion arise

from neglecting the two-loop lollipop, and miscounting the

two-loop daisy. We define the corresponding error term
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�TFD ≡ max
(

rh
L L , r S

L L , βh, βS

)

(4.8)

to perform the perfunctory check that the calculation is reli-

able. However, is important to note that �TFD will greatly

underestimate the error of the TFD calculation, since it does

not include the O(m/T ) errors in the truncated thermal

mass.8 It is precisely this error that will be explored by com-

paring the TFD calculation to (O)PD calculation.

4.2.2 Partial dressing (PD)

This implements the scheme outlined in Sect. 3.2 verbatim.

For each temperature T of interest, the algebraic gap equation

Eq. (3.19) is constructed by substituting m2
i → m2

i + δm2
i

into the second derivative of the full finite-temperature ther-

mal potential V ′′
th and V ′′

CW. Solutions {δm2
i (h)} are obtained

numerically for each value of h. The resulting solutions

δm2
i (h, T ) are substituted into the first derivative of the full

effective potential Eq. (3.17), again without any approxima-

tions. The dominant errors arise from neglected lollipops and

three-loop diagrams, and can be estimated with the error term

�PD ≡ max
(

rh
L L , r S

L L , β3
h , β3

S

)

(4.9)

In practice, considerable complications arise when att-

empting to solve the gap equation Eq. (3.19). We find the best

possible solution (whether an exact solution exists or not) by

minimizing |Re(LHS) − Re(RHS)| with respect to different

choices of {δm2
i }. A unique solution to the gap equations can

always be found at the origin of field space (h, S) = (0, 0).

However, sometimes no exact solution {δm2
i } can be found.

This occurs for values of h where some scalars become tachy-

onic, which is for example the case across the energy barrier.

In that case, we use the closest approximate solution, or dis-

card the solution and interpolate across these pathological

values of h. Both methods give very similar results, and in

plots we use the former. The approximate solution usually

still satisfies the gap equation at the ∼ 1 to 10 % level, which

on the face of it appears sufficient for a one-loop exact quan-

tity.

Far more troubling is that for all other non-zero h-values,

there exists not one but many numerical solutions to the alge-

braic gap equation. Apart from the computational intensity

of PD, this is one of the confusing aspects which prompted us

to develop OPD.9 Physically, one would expect the solution

of the gap equation to correspond to the limit of an iteration,

8 In particular, the m/T errors are expected to dominate the β-size

errors, since the differences between full and partial dressing, which

are order β, only show up at subleading order in T .

9 We have checked that our choice of solving a set of coupled gap

equations for the scalar thermal masses, while using the analytical

approximations for the gauge boson thermal masses Eq. (2.22), is not

responsible for either the absence or abundance of gap equation solu-

tions at different values of h.

whereby propagators in diagrams contributing to the effec-

tive potential are recursively dressed with additional one-loop

bubbles until their second derivative with respect to the field is

consistent with the mass used in the propagators. Therefore,

one way we attempt to “find” our way towards the physically

relevant gap equation solution is by iteration, where the n+1

step is given by

δm2
φ j

(h, T )n+1 =
∑

i

[

∂2V i
CW

∂φ2
j

(

m2
i (h) + δm2

i (h, T )n

)

+
∂2V i

th

∂φ2
j

(

m2
i (h) + δm2

i (h, T )n, T
)

]

(4.10)

for fixed h, T . The iteration starts at δm2
φ j

= 0 and contin-

ues until the result converges. However, this series does not

always converge, instead oscillating between two or more

values. This is always the case when there is no exact solu-

tion to the gap equation, but can also occur when there are

one or more solutions. We numerically circumvent this issue

by requiring the solution δm2
i (h, T ) to be a set of smooth

functions. Therefore, once solutions δm2
i (h, T ) are obtained

for a grid of h-values and fixed T , we use smoothing to elim-

inate numerical artifacts (or the jumps due to imperfect or

multiple solutions), and interpolate across regions without

solutions to obtain a smooth set of functions describing the

thermal masses.

4.2.3 Optimized partial dressing (OPD)

As we will discuss in Sect. 4.3, the results obtained via PD

seem physically reasonable. However, it has two major dis-

advantages. First, its computational complexity and intensity

would likely hamper adoption for other BSM calculations.

Second, some of the numerical tricks used to obtain reason-

able solutions to the gap equation are slightly unsatisfying.

We are therefore motivated to develop the more streamlined

OPD resummation scheme that is numerically efficient and

does not suffer from either the absence of gap equation solu-

tions for some ranges of h values, nor the preponderance of

solutions for all other nonzero h values. Encouragingly, the

physical results of this OPD procedure are practically iden-

tical to PD.

The first important observation, which is very well-known,

is that the high-temperature approximation for the thermal

potential, Eq. (2.13), has the expected error terms of order

(m/T )n+1 if truncated at order (m/T )n (for n ≤ 2), but is

accurate for masses as large as m ∼ (1−3)×T if the log terms

are included. This applies both to Vth and its derivatives.

Given that the low-temperature approximation Eq. (2.14)

can easily be expanded to high enough order to be accurate

for m ∼ T , this implies that a piece-wise approximation
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for the thermal functions JB,F can be used in Eq. (3.17) to

evaluate the effective potential, as well as its derivatives:

J
piece−wise
B (y2) =

{

J
high−T

B (y2) for y2 ≤ 1.22

J̃
(3)
B (y2) for y2 > 1.22

J
piece−wise
F (y2) =

{

J
high−T

F (y2) for y2 ≤ 1.29

J̃
(2)
F (y2) for y2 > 1.29.

(4.11)

This gives percent-level or better accuracy for JB and its first

two derivatives and JF and its first derivative, for all positive

y2. For negative y2 (corresponding to tachyonic masses) the

accuracy is ∼ 10% for m2 = −10T 2, but such negative

m2 are rarely encountered after thermal mass corrections are

added. Evaluation of this piece-wise approximate form of

JB,F is very fast in Mathematica.

This definition of the thermal effective potential Vth also

allows the algebraic gap equation Eq. (3.19) to be defined

entirely analytically (as opposed to numerically), even if the

ultimate solutions have to be found numerically. This repre-

sents a huge simplification and allows Mathematica to find

solutions much easier than for the full Vth defined via lookup-

tables. In its full piece-wise defined form, the thermal func-

tions of Eq. (4.11) still allow for the study of e.g. decoupling

effects as particles become heavy, which will be important

in the future study of EFTs at finite temperature.

However, for the study of strong phase transitions induced

by BSM thermal effects, we can make another important

simplification. Thermal mass resummation is only needed to

obtain accurate results when m � T . Therefore, we are jus-

tified in constructing the gap equation Eq. (3.19) using only

the high-temperature approximation for the thermal poten-

tial (and the usual VCW). The resulting solutions for the

mass corrections {δm2
i (h, T )} are practically identical to the

solutions obtained with the full finite-temperature potential,

except for some modest deviations in regions where m � T .

Even so, the resulting effective potential obtained by inte-

grating Eq. (3.17) is practically identical in those regions as

well, since thermal effects of the corresponding degrees of

freedom are no longer important. Using only J
high−T

B,F in the

gap equation makes finding solutions so fast that the asso-

ciated computational cost becomes a subdominant part of

the total CPU time required for finding vc/Tc, making this

OPD method only O(10%) slower than the standard TFD

method (even when the TFD method uses the same piece-

wise defined thermal functions in the effective potential).

Alternative formulation of the gap equations

The absence of solutions to the algebraic gap equation

Eq. (3.19) encountered in PD indicate an overconstrained

system, meaning there might be missing variables we should

also solve for. Furthermore, the numerical tricks utilized in

the PD implementation to obtain δm2
i (h, T ) solutions for a

given T were justified by appealing to the required continu-

ity of the solution (interpolation, smoothing) and the physical

interpretation of the gap equation (selecting the correct solu-

tion by guiding the numerical root-finding procedure with

iteration).

All of these considerations point towards a slightly mod-

ified form of the gap equation which appears more consis-

tent with the partial dressing procedure. Recall that the gap

equation for both the full and partial dressing procedures,

Eq. (3.4), was originally defined by substituting m2 → M2

in V ′′ of the φ4 theory:

M2 = m2 + V ′′
1

∣

∣

m2→M2 . (4.12)

This yields the gap equation used in the PD procedure

Eq. (3.19), which is an algebraic equation that is solved for

{δm2
i }, a priori separately for each (h, T ). Alternatively, one

could define the gap equation by taking the effective potential

of partial dressing V
′pd
1 = V ′

1

∣

∣

m2→M2 and differentiating it

once more with respect to the field:

M2 = m2 +
[

V ′
1

∣

∣

m2→M2

]′
. (4.13)

In the context of our BSM benchmark model, the correspond-

ing gap equations are

δm2
φ j

(h, T ) =
∑

i

∂

∂φ j

[

∂V i
CW

∂φ j

(

m2
i (h) + δm2

i (h, T )
)

+
∂V i

th

∂φ j

(

m2
i (h) + δm2

i (h, T ), T
)

]

. (4.14)

At each point in (h, T ) space, these gap equations are alge-

braic relations of {δm2
i } as well as the derivatives at that

point { ∂δm2
i

∂φ j
}. The gap equations are now partial differential

equations: The additional variables (the derivatives of δm2
i )

guarantee that solutions exist at every point,10 while the con-

tinuity condition of the PDEs

δm2
i (h + �h, T ) = δm2

i (h, T ) + �h
δm2

i

∂h
(h, T ) + O(�h2)

(4.15)

restricts the number of numerical solutions, selecting the

unique physical solution. This eliminates both numerical

problems of the original PD procedure.

In practice, constructing Eq. (4.14) is very challenging in

the full finite-temperature formulation of Vth, since it involves

second derivatives of the thermal functions which are very

computationally costly to evaluate. However, in the high-

10 Symmetry under φi → −φi implies that
∂δm2

i

∂φ j
= 0 when φ j =

0. Since we only consider excursions along the h-direction, only the

derivatives with respect to h are ever nonzero. At the origin both kinds

of gap equations are the same, but at that point the algebraic gap equation

always has a unique solution anyway.
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temperature approximation11 Eq. (4.14) becomes a very sim-

ple analytical set of equations that Mathematica can easily

solve numerically for {δm2
i } after eliminating the derivatives

{ ∂δm2
i

∂h
} via the continuity condition Eq. (4.15), making the

solution at (h + �h, T ) dependent on the solution obtained

at (h, T ). The resulting (h, T )-dependent mass corrections

δm2
i (h, T ) are well-behaved, defined everywhere, and unique

almost everywhere.12

In summary, the OPD method uses the piece-wise defined

thermal functions Eq. (4.11) in the effective potential

Eq. (3.17), and the high-temperature approximation in the

gap equations Eq. (4.14). The gap equations are PDEs instead

of simple algebraic relations, which leads to solutions for the

mass corrections which are continuous and well-defined for

all (h, T ) in the regions of interest.

Using gap equation Eq. (4.13) instead of Eq. (4.12)

amounts to treating resummation identically in the effec-

tive potential and the gap equation derived from that poten-

tial. While this seems reasonable, the important question is

whether this particular algebraic procedure of constructing a

gap equation by manipulating the one-loop potential expres-

sions, and inserting the resulting mass solution back into the

potential, is equivalent (up to some order) to the diagram-

matic procedure of computing various higher-order contribu-

tions to the effective potential. As we reviewed in Sect. 3, the

authors of [87] showed that using the original gap equation

Eq. (4.12), this equivalence was accurate up to differences of

O(β3), the neglected two-loop lollipop, and the miscounted

two-loop sunset, see Fig. 2. We have checked that using the

new gap equation Eq. (4.13) is equivalent to the same order,

the only difference being the precise nature of how the two-

loop sunset is miscounted. This means that the 2/3 correction

factor in Eq. (3.8) is modified at subleading (i.e. 3-loop sun-

set) order.

In Sect. 3.2 we argued that the sunset error is subdominant

to the O(β3) and lollipop errors, which we check explic-

itly are small. We therefore expect the numerical difference

between δm2
i (h, T ) solutions obtained in the OPD and PD

scheme to be even smaller, and as we show below, this is

indeed the case. That being said, since the gap equation in

the OPD scheme is explicitly written in the high-temperature

approximation, inserting the 2/3 correction factor would be

very straightforward.

Finally, one might also worry that the piece-wise defined

thermal potential, or the high-temperature approximate gap

equation, would be of insufficient accuracy in regions where

large cancellations are important, or where masses are very

11 One could also use the piece-wise definition of the thermal functions

Eq. (4.11), but obtaining a solution takes O(10) times longer. This can

still be useful for studying decoupling effects and matching to EFTs.

12 In some regions there are multiple near-degenerate solutions, but the

ambiguity is not physically significant.

tachyonic and the piecewise approximation is not very

accurate. However, thermal resummation prevents masses

squared inserted in the thermal potential from being too neg-

ative, and in regions where the transition between the high-

and low-temperature approximation occurs, the exact solu-

tion to the gap equation becomes less numerically relevant

since the calculation reduces to a fixed-order one.

4.3 Comparing resummation schemes

Here we illustrate the differences between the three resum-

mation schemes for an example point in the parameter space

of the SM + NS × S model. The differences, in particular

of the evaluated thermal mass corrections at T = Tc, will

inform our discussion of the different physical predictions

generated by the new (O)PD vs the standard TFD scheme in

the next section. It will also demonstrate that PD and OPD

are nearly equivalent.

We focus on regions of parameter space where both TFD

and (O)PD produce a sizable first-order one-step phase tran-

sition. This allows us to show the resulting Higgs potentials at

T = Tc side-by-side, but by necessity restricts our attention

to regions of parameter space where all calculation schemes

give similar physical predictions. Even so, the differences are

very clear in detail and allow us to understand the regions of

parameter space where the physical differences are more sig-

nificant.

Figure 3 shows the effective Higgs potential and mass cor-

rections for the parameter point (NS , mS , λ
loop
hSS/v, λ

loop
S ) =

(3, 300 GeV, 1.52, 0.5). Immediately we see that PD and

OPD give nearly identical functional forms of the mass cor-

rections δm2
h,G,S(h, Tc) once OPD solutions are interpolated.

As a result, the effective potential and obtained values of vc

and Tc are also nearly identical. We have checked that this

holds true across the parameter space. Therefore, the numer-

ically extremely efficient OPD method can be used in place

of the numerically costly PD calculation.13

The mass corrections obtained with (O)PD behave in a

physically reasonable manner, being maximal near the ori-

gin and generally decreasing as h increases and the vari-

ous degrees of freedom acquire more mass, reducing their

participation in the thermal plasma. The physical Higgs and

Goldstone mass corrections behave differently away from the

origin. Compared to the constant TFD prediction, the (O)PD

thermal masses are smaller by O(40%) or more. This is typ-

13 For one-step transitions with very large couplings, where the zero-

temperature singlet mass is small near the origin, but significantly larger

than the Higgs mass at h = v, there are minor O(10%) differences

between OPD and PD due to the assumed high-T approximation in

the gap equation. However, these differences do not significantly affect

the physically important boundaries between different phases of the

theory, where the PT is strongly first order, with one-step, or two-step

transitions.
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Fig. 3 Effective Higgs Potential (left) and mass corrections δm2
i

(right) for the physical Higgs (h), Goldstones (G), and singlets (S) at

T = Tc as a function of h. Evaluated in TFD, PD and OPD resummation

schemes for NS = 3 and (mS, λ
loop
hSS/v, λ

loop
S ) = (300 GeV, 1.52, 0.5).

In the right plot, δm2
h = δm2

G in the TFD scheme. The dots correspond to

δm2
i in the PD scheme, with gaps indicating regions of the h-axis where

no exact solution to the gap equation can be found, and the δm2
i (h, T )

functions used to evaluate the potential are obtained by linearly interpo-

lating between the obtained δm2
i solutions as a function of h. This gives

nearly the same V (h, Tc) as OPD. Note that the approximate equality

of the three (O)PD mass corrections at the origin is a numerical coin-

cidence for this parameter point. Furthermore, the differences in vc, Tc

between TFD and (O)PD are modest here, but for other choices they

can be much more pronounced. This is very important when Tc ∼ TS

and the predicted nature of the transition can change from one-step to

two-step, as we discuss in Sect. 5

ical across the whole parameter space, and explains the most

important physical difference between the two schemes. The

reduced thermal masses in TFD result in higher temperatures

TS where the singlet is stabilized at the origin (if it is unstable

at zero temperature). As we show in Sect. 5, this results in

larger regions of parameter space where a two-step transition

occurs.

5 Physical consequences

From a formal point of view, development of the (O)PD ther-

mal resummation scheme is most important in the careful

study of thermal decoupling effects, especially when spectra

change with field excursions. This is necessary for rigor-

ously understanding Effective Field Theories at finite tem-

perature. We are currently pursuing this line of investigation,

and will present the results in a future publication. Addi-

tionally, compared to TFD calculations, the new (O)PD for-

malism makes quantitatively different predictions about the

regions of parameter space where a one- or two-step phase

transition of sufficient strength for EWBG can occur. This in

turn affects the predictions of the EWPT (or other phase tran-

sitions in the early universe) for cosmological observations

and collider experiments which need to be known reliably

for planning such experiments. In more realistic extensions

of the SM scalar sector, where the individual masses and

couplings are not free parameters as in the SM + NS × S

benchmark model, this could also affect whether a strong

phase transition is possible at all.

One way to understand the different predictions of the

TFD and (O)PD is to take a slice of parameter space with

constant physical singlet mass mS and singlet quartic λ
loop
S

in our EWSB vacuum. The strength of the phase transi-

tion, vc/Tc, is shown along with several other important

observables and parameters in Fig. 4 for NS = 6 and

(mS, λ
loop
S ) = (150 GeV, 1.0).

We first explain the qualitative features of Fig. 4 which

are common to both calculations. For very small Higgs por-

tal coupling λH S ≈ λ
loop
hSS/v, the singlet sector has no effect

on the EWPT, making it weakly first order or second order

as in the SM. The singlet mass, which is m2
S = μ2

S + λH Sv
2

at tree-level, is given entirely by the parameter μ2
S . As λH S

is increased, μ2
S decreases and eventually becomes negative

to keep mS fixed. At some point this allows a partial can-

cellation between μ2
S and δm2

S along the lines of Eq. (2.25)

to occur, resulting in a one-step first order phase transition

starting around λ
loop
hSS/v ≈ 0.55 in Fig. 4a. This cancellation

is only partial, as shown by the plot of total finite-temperature

singlet mass at the origin (i). Note from (c) and (d) that TS , the

minimum temperature at which thermal effects stabilize the

singlet at the origin, is lower than Tc, as required for the sin-

glet to be stable when the Higgs undergoes its one-step phase

transition. Increasing the Higgs portal coupling drastically

increases vc and hence the strength of the phase transition,

see (a) and (b), since it enhances the negative “cubic term” of

Eq. (2.25) (from the tree-level Higgs dependence of the sin-

glet mass) while also increasing the singlet thermal mass and

therefore enhancing the cancellation of μ2
S and δm2

S , see (i).

For δm2
h,S ∼ λH ST 2, both Tc and TS can be schematically
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(a)

(b)

(c)

(d)

(e) (i)

(j)

(k)

(l)

(f)

(g)

(h)

Fig. 4 Comparison of one-step phase transition in the new PD (blue)

vs the standard TFD (red) calculation, for NS = 6 and (mS, λ
loop
S ) =

(150 GeV, 1.0). The renormalization scale is set to μR = mS (solid

lines). Dashed (dotted) lines correspond to mu R = 2mS (mS/2) to

demonstrate the effect of scale variation. To the left of the curves, the

PT is one-step and weakly first order or second order. To the right of the

curves, TS > Tc and the transition is two-step for λhSS(v)loop < λmax
hSS .

This upper bound is set by the condition that EWSB vacuum is pre-

ferred and depends on NS, mS, λ
loop
S , μR but not the choice of thermal

resummation scheme

understood as the solution to the equations μ2 = λH ST 2

and −μ2
S = λH ST 2 (neglecting numerical prefactors). This

explains why Tc decreases with increasing Higgs portal cou-

pling, but is insufficient to understand why TS increases, since

both μ2
S and δm2

S depend linearly on λH S at leading order in

temperature for fixed physical singlet mass mS . Solving for

TS with the full high-temperature expansion of the thermal

potential reproduces the behavior shown in (d). As the Higgs
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portal coupling is further increased, TS becomes larger than

Tc, which occurs around λ
loop
hSS/v ≈ 0.6 in Fig. 4. This means

the phase transition is now two-step: as the universe cools

it falls first into the (h, S) = (0, w) vacuum before transi-

tioning to the (v, 0) vacuum. Increasing λH S decreases the

potential difference V T =0
eff (v, 0)−V T =0

eff (0, w), which delays

the second transition, and by lowering Tc enhances vc/Tc.

Two-step phase transitions can therefore be very strong, since

they can rely on supercooling the universe. Finally, as λH S is

increased further still the (h, S) = (0, w) vacuum becomes

preferred to our vacuum at zero temperature, and the model

is not compatible with our universe.

With this understanding, we can now interpret the differ-

ences between the standard TFD and the new (O)PD calcu-

lation in detail:

• (O)PD and TFD predict different parameter regions

where the one-step phase transition is strongly first order.

This arises due to three effects: in (O)PD, vc is larger, Tc

is smaller, and TS is larger than in TFD. The first and

second effect make the PT stronger at a given parame-

ter point, but the second and third effect lead to a lower

Higgs portal coupling at which the switch from one-step

to two-step PT occurs.

The third effect can be traced back to the smaller ther-

mal mass corrections obtained in (O)PD, while the first

two effects are also connected to the h-dependence of the

mass correction (see Fig. 3).

As a result, the region of parameter space in which (O)PD

predicts a strong first order one-step PT with vc/Tc > 0.6

is much smaller than in TFD, and shifted to smaller Higgs

portal couplings. By the same token, the region of param-

eter space where the PT is two-step (to the right of the

curves in Fig. 4) is larger in (O)PD.

• The finite temperature singlet mass at the origin and at vc,

shown in Fig. 4(i) and (j), shows that the high-temperature

approximation is fairly reliable in its untruncated form

(since m/T � 1), but the truncated high-T approxima-

tion assumed in the TFD thermal mass calculation makes

errors of m/T ∼ 30 to 70% depending on h, which is

consistent with Fig. 3(right).

• The Higgs portal dependent curves of (b) vc and (k)

potential barrier height of the (O)PD calculation are very

similar to TFD curves that are shifted to lower couplings.

The same holds for vc/Tc, which is controlled by the

rapidly-varying vc. Therefore, we expect the ratio Tn/Tc

of the nucleation temperature, when the bubbles of true

vacuum actually form, to the critical temperature to be

similar in the two calculation.

• The absolute value of the critical temperature Tc for a

given strength of phase transition vc/Tc is ∼ 10% lower

than predicted by the TFD calculation. If a one-step tran-

sition could be strong enough to be detected by gravita-

tional wave observations, this would effect the frequency

spectrum of the stochastic gravitational wave signal.

• In the example of Fig. 4, the overall error term (l)

�T F D,P D is dominated by the singlet lollipop ratio (f)

r S
L L . The error term is much larger in the new (O)PD cal-

culation than the standard TFD. Since the latter underes-

timates the error, we expect �PD to give a much better

representation of the calculation’s reliability, which is

breaking down near the switch from one-step to two-step

phase transitions (larger λ
loop
hSS/v).

For other slices of parameter space, the β-errors can dom-

inate, in which case the (O)PD calculation can be much

more reliable, since the first neglected contributions are

O(β3).

It is now straightforward to interpret Fig. 5, which shows

the regions of the λ
loop
hSS − λ

loop
S coupling plane that give a

strong one- or two-step first order EWPT in the TFD and

(O)PD calculations for NS = 3 and mS = 250 GeV. In the

left plot, a strong one-step transition is defined with the max-

imally permissive criterion vc/Tc > 0.6. In the right plot, the

criterion is slightly tightened, to the usual vc/Tc > 1.0. In

the more correct (O)PD calculation, the region allowing for a

strong one-step transition (between blue lines) is smaller than

in TFD (red lines), while the region with a strong two-step

transition (between the blue/red lines and the green line) is

larger in (O)PD. This is especially pronounced when vc/Tc

is required to be larger than 1, in which case there is almost

no overlap between the two region with a strong one-step

phase transition.

For the specific SM + NS × S benchmark model, the

collider phenomenology depends almost exclusively on the

Higgs portal coupling and the singlet mass. Figure 6 shows

the parameter regions where, for some choices of the Singlet

quartic λS , the one- or two-step EWPT can be strong enough

for EWBG. This generalizes the results of [111] to NS ≥ 1

and makes clear that future colliders will be able to probe the

entire parameter space of this representative class of models

for arbitrary number of singlets.

In this particular benchmark model, the singlet quartic

and the Higgs portal coupling are free parameters, and the

lack of mixing with the Higgs makes the physical effects of

the singlet quartic very hard to observe at colliders. There-

fore, the old TFD and more correct (O)PD calculations give

very similar predictions for the collider phenomenology of

EWBG. However, as discussed above, the situation would

be very different in more complete theories, especially if a

full calculation of the baryon asymmetry reveals that vc/Tc

has to be larger than 0.6. Furthermore, even in the SM +

NS × S benchmark model, there is an important difference:

the minimum singlet mass required for a strong one-step PT

is higher in (O)PD than in TFD. This means that for light sin-

glet masses, the only possibility for EWBG is via a two-step
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Fig. 5 SM + NS × S parameter space with a strong EWPT for NS = 3

and mS = 250 GeV. Region between solid red (blue) lines: regions

with strong one-step PT satisfying vc/Tc > 0.6 for the standard TFD

(new PD) calculation on the left, and vc/Tc > 1.0 on the right. To the

left of these lines, the PT is weakly first order or second order. Between

the red (blue) lines and the green line, the PT is two-step in TFD (PD)

calculation. To the right of the green line, the EWSB vacuum is not

preferred at zero temperature (this does not depend on the thermal mass

resummation scheme). Varying μR between 0.5 and 2 mS gives the vari-

ation indicated by the red/blue/green shading. To the right of the red

(blue) dashed lines, �TFD (�PD) > 0.1 for μR = mS . To the left of the

black dotted line, the singlet is stable at the origin at zero temperature

for μR = 1

transition. As discussed in [118], these transitions can form

runaway bubbles of true vacuum, which do not permit suc-

cessful baryon number generation, and further study could

reveal very strong additional constraints on the parameter

space actually compatible with complete EWBG. Further-

more, the stochastic gravitational wave background gener-

ated by a strong two-step transition, but not a moderately

strong one-step transition, could be detected by gravitational

wave observatories [113]. The (O)PD calculation reveals this

exciting possibility to be more likely for light singlet masses

than previously assumed.

6 Conclusions

In this paper we developed the partial dressing and optimized

partial dressing schemes for computation and resummation

of thermal masses beyond the high-temperature approxima-

tion in general BSM scenarios. This allows for the strength of

Phase Transitions to be determined to much greater accuracy

than the standard Truncated Full Dressing scheme, which

only resums hard thermal loops by inserting �i ∼ T 2 into

the effective potential.

Our phenomenological analysis of the EWPT in the SM

+ NS × S benchmark model generalizes the results of [111],

and shows that EWBG in singlet extensions without Higgs

mixing is guaranteed to be discovered at future 100 TeV and

lepton colliders. Given that more general models with Higgs

mixing generate additional signatures which are expected

to be detectable at a future 100 TeV collider [117], the out-

look for a general phenomenological no-lose theorem is opti-

mistic, though more work is needed to make this conclusion

completely robust.

The (O)PD calculation shows two-step phase transitions

are more prevalent than previously assumed from TFD cal-

culations. This is encouraging, as strong two-step transi-

tions can generate observable gravity wave signals [113].

They are also more constrained, since runaway bubbles are

incompatible with baryon number generation [118]. Fur-

ther analysis is needed to determine whether this translates

to additional constraints on the SM + NS × S benchmark

model.

The OPD scheme represents a simple extension on the

standard TFD calculation, takes only slightly more CPU

time to solve for the strength of the phase transition, and

is easy to implement in Mathematica. We supply a con-

densed instruction manual in Appendix A. We hope that

the OPD calculation will be useful in the future study of

other BSM scenarios. This is particularly motivated, since for

more complete theories with additional correlations amongst
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Fig. 6 Phenomenological parameter space of the SM + NS ×S bench-

mark model of EWBG, for NS = 1, 3, 6, computed in the TFD or PD

thermal resummation scheme. The physical singlet mass in our EWSB

vacuum is on the horizontal axis, the higgs-singlet cubic coupling is

on the vertical axis. This determines most collider observables. The

Higgs cubic coupling deviation Eq. (4.5) is bigger than 10% in the blue

shaded region, to which a 100 TeV collider with 30 ab−1 has more

than 2σ sensitivity [97]. For the same luminosity, a direct VBF + MET

search for invisible singlet pair production can exclude the green shaded

region [111]. In the purple shaded region, a TLEP-like lepton collider

can probe the Zh cross section deviation, see Eq. (4.6), at the 2σ level.

Below the blue line, the singlet is stable at the origin. Above the orange

or red solid lines, a one-step or two-step phase transition strong enough

for EWBG can occur (μR = mS). In this projected-down parameter

space, the effect of scale variation is minor
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the low-energy parameters than in our benchmark model,

the OPD calculation makes significantly different predic-

tions for the EWBG-viable parameter space, and hence the

associated collider and cosmological observables. In some

cases, scenarios which were thought to be viable may now

be excluded.

Developing the (O)PD thermal resummation scheme is a

necessary ingredient for the careful study of EFTs at higher

temperature, which in turn would represent a great leap in

our model-independent understanding of EWBG. We are

currently conducting such an analysis, and will present the

results in a future publication.
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Appendix A: Instruction manual for optimized partial

dressing calculation of phase transition

Here we summarize the detailed procedure for obtaining the

effective finite-temperature potential V
pd
eff (h, T ) as a function

of h for a given temperature T in the optimized partial dress-

ing (OPD) scheme. This will be familiar to anyone studying

the EWPT in BSM theories, and implementing the OPD cal-

culation in Mathematica is very similar to the familiar TFD

calculation, and only ∼ O(10%) more CPU intensive. We

explain this procedure in the context of the SM + NS × S

benchmark model, but it generalizes easily to other theories

with one-step phase transitions. At every point, only use the

real parts of various potential contributions or their deriva-

tives. Note that we do not perform this resummation for zero

temperature matching and other calculations, since the effect

is small.

For a given temperature, we first have to find the ther-

mal mass corrections δm2
i (h, T ). For gauge bosons, use the

standard δm2
i = �i ∼ T 2, see e.g. Eq. (2.22) for the SM

contributions. For scalars we have to solve a set of coupled

gap equations:

δm2
φ j

(h, T ) =
∑

i

∂

∂φ j

[

∂V i
CW

∂φ j

(

m2
i (h) + δm2

i (h, T )
)

+
∂V i

th

∂φ j

(

m2
i (h) + δm2

i (h, T ), T
)

]

. (A.1)

See Eqs. (2.6) and (2.11) for definitions of the Coleman–

Weinberg and finite-temperature potential. For the latter, use

the high-temperature expansion to log-order in the gap equa-

tion, see Eq. (2.13). Note that this makes the RHS a set of

fully analytical expressions that can be easily manipulated in

Mathematica.

In our specific benchmark model, there are three gap equa-

tions: for j = h, G0, S0. Since we are interested in excur-

sions along the h-axis, all Goldstone thermal masses are the

same but different from the physical Higgs mass, and all

scalar thermal masses are the same.14 Note that the sum i

also runs over all particles, including fermions and gauge

bosons.

We numerically solve this set of gap equations by essen-

tially treating it as a set of partial differential equations.

Specifically, set up a coarse grid15 along the Higgs axis

h = {0, 10, 20, . . . , 250}. The RHS of the gap equation is a

function of thermal masses and their derivatives. Expanding

the mass correction around h = ha :

δm2
j (h, T ) ≈ δm2

j (a) + (h − ha)
∂δm2

j (a)

∂h
(A.2)

and substituting this form of δm2
h,G0,S

(as well as the h-

independent gauge boson thermal masses) into the RHS

yields three gap equations that depend on six parameters: the

value of the scalar thermal masses δm2
h(a)

, δm2
G0(a)

, δm2
S(a)

and their first derivatives ∂δm2
h(a)

/∂h, ∂δm2
G0(a)

/∂h, ∂δ

m2
S(a)

/∂h.

At the origin, the derivatives are zero, and solving for just

the three thermal masses yields a numerically unique set of

solutions. Then we work our way away from the origin. The

solution at h = ha can be obtained by first eliminating either

the derivatives or the actual thermal masses from the gap

equation using the continuity condition

δm2
j (a−1) ≈ δm2

j (a) + (ha−1 − ha)
∂δm2

j (a)

∂h
(A.3)

given the known solution at h = ha−1. We found in practice

that eliminating the δm2
j (a)

and solving for the three deriva-

tives ∂δm2
j (a)

/∂h was more reliable. If the solution fails the

14 If we solved for excursions along the S0 direction, we would have

to treat S0 and Sk>0 differently but could treat all Higgs degrees of

freedom the same.

15 To avoid singularities the origin can be defined to be a very small

positive displacement instead of identically zero.
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resolution of the grid may have to be increased, but we found

a coarse grid with 10 GeV spacing to be sufficient.16

Once a grid of solutions is obtained, the continuous func-

tions δm2
j (h, T ) are defined by linear interpolation. The ther-

mal potential is then defined by

V
pd
eff (h, T ) = V0 +

∑

i

∫

dh

[

∂V i
CW

∂h

(

m2
i (h) + δm2

i (h, T )
)

+
∂V i

th

∂h

(

m2
i (h) + δm2

i (h, T ), T
)

]

, (A.4)

where i runs over all scalars, gauge bosons and fermions

(with zero thermal mass for the latter). Importantly, in this

effective potential, use the piece-wise defined thermal func-

tions

J
piece−wise
B (y2) =

{

J
high−T

B (y2) for y2 ≤ 1.22

J̃
(3)
B (y2) for y2 > 1.22

J
piece−wise
F (y2) =

{

J
high−T

F (y2) for y2 ≤ 1.29

J̃
(2)
F (y2) for y2 > 1.29.

(A.5)

See Eqs. (2.13) and (2.14) for the definition of the approxi-

mate thermal functions. The integrand can then be defined as

an analytical function in Mathematica, which can be evalu-

ated on a grid of Higgs values h = {0, 5, 10, . . . , 250 GeV}
and interpolated to efficiently perform the integral at arbitrary

values of h < 250 GeV.
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