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The dynamic treatment of one-dimensional generalized thermoelastic problem of heat

conduction is made for a layered thin plate which is exposed to a uniform thermal shock

taking into account variable thermal conductivity. The basic equations are transformed

by Laplace transform and solved by a direct method. The solution was applied for a plate

of sandwich structure, which is thermally shocked, and is traction-free in the outer sides.

The inverses of Laplace transforms are obtained numerically. The temperature, the stress,

and the displacement distributions are represented graphically.
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1. Introduction

Lord and Shulman [10] obtained the governing equations of generalized thermoelasticity

involving one relaxation time for isotropic homogeneous media, which is called the first

generalization to the coupled theory of elasticity. These equations predict finite speeds

of propagation of heat and displacement distributions, the corresponding equations for

an isotropic case were obtained by Dhaliwal and Sherief [1]. Due to the complexity of

the governing equations and the mathematical difficulties associated with their solution,

several simplifications have been used. For example, some authors [13, 16] use the frame-

work of coupled thermoelasticity where the relaxation time is taken as zero resulting in

a parabolic system of partial differential equations. The solution of this system exhibits

infinite speed of propagation of heat signals contradictory to physical observation. Some

other authors still use further simplifications by ignoring the inertia effects in a coupled

theory [15] or by neglecting the coupling effect.

The second generalization to the coupled theory of elasticity is what is known as

the theory of thermoelasticity with two relaxation times or the theory of temperature-

rate-dependent thermoelasticity. Müller [12], in a review of the thermodynamics of
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thermoelastic solids, proposed an entropy production inequality, with the help of which

he considered restrictions on a class of constitutive equations. A generalization of this

inequality was proposed by Green and Laws [4]. Green and Lindsay obtained an explicit

version of the constitutive equations in [5]. These equations were also obtained indepen-

dently by Şuhubi [14]. This theory contains two constants that act as relaxation times and

modify all the equations of the coupled theory, not only the heat equation. The classical

Fourier’s law of heat conduction is not violated if the medium under consideration has

a center of symmetry. Erbay and Şuhubi [3] studied wave propagation in a cylinder. Ig-

naczak [8, 9] studied a strong discontinuity wave and obtained a decomposition theorem.

It is usual to assume in thermal stress calculations that material properties are in-

dependent of temperature. Significant variations do however occur over the working

temperature range of the “engineering ceramics,” particularly in the coefficient of ther-

mal conductivity, K. Godfrey has reported decreases of up to 45 percent in the thermal

conductivity of various samples of silicon nitride between 1◦ and 400 ◦C. The following

question arises. What are the effects of these variations on the stress and displacement

distributions in metal components? [6].

Modern structural elements are often subjected to temperature changes of such mag-

nitude that their material properties may no longer be regarded as having constant values

even in an approximate sense. The thermal and mechanical properties of materials vary

with temperature, so that the temperature dependent on material properties must be

taken into consideration in the thermal stress analysis of these elements.

This work deals with a plate consisting of layers of unidentical substances, each of

which is homogeneous and isotropic. When this plate, which is initially at rest and having

a uniform temperature, is suddenly heated at the free surfaces, a heat flow occurs in the

plate and change in thermal and the mechanical fields is brought about.

2. The governing equations

Let us consider a perfectly conducting elastic infinite isotropic homogeneous medium

without any heat sources or body forces in the context of the theory of generalized ther-

moelasticity.

The heat equation is in the form

(

Kθ,i

)

,i =

(

1 + τo
∂

∂t

)

[

ρCEθ̇ + γToė
]

, (2.1)

where (T −To)= θ, such that |T −To|/To≪ 1.

In most materials, the dependence of K and CE on θ is a function in some range of the

temperature, that is,

K = K(θ), (2.2)

ρCE =
K

κ
, (2.3)

where K is called the thermal conductivity and κ is the diffusivity (assumed constant).
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Using (2.3) with (2.1), we get

(

Kθ,i

)

,i =

(

1 + τo
∂

∂t

)[

K

κ
θ̇ + γė

]

. (2.4)

We will use the mapping

ϑ=
1

Ko

∫ θ

0
K(θ′)dθ′, (2.5)

where Ko is the thermal conductivity when it depends on the temperature.

Differentiating (2.5) with respect to the coordinates, we get

Koϑ,i = K(θ)θ,i. (2.6)

Differentiating again the above equation with respect to the coordinates, we obtain

Koϑ,ii =
[

(θ)θ,i

]

,i. (2.7)

Differentiating (2.5) with respect to time, we get

Koϑ̇= K(θ)θ̇. (2.8)

Substituting from (2.7) and (2.8) in the heat equation (2.4), we obtain

ϑ,ii =

[

∂

∂t
+ τo

∂2

∂t2

][

ϑ

κ
+
γTo

Ko
e

]

. (2.9)

The equations of motion have the form

ρüi = (λ+µ)u j, ji +µui, j j − γθ,i. (2.10)

By using the relations (2.2) and (2.6), we get

ρüi = (λ+µ)u j, ji +µui, j j −
γKo

K(θ)
θ,i. (2.11)

For linearity, we approximate the thermal conductivity K(θ) ≈ K(To), which is con-

stant depending on the reference temperature To.

Hence, we have

ρüi = (λ+µ)u j, ji +µui, j j −
γKo

K
(

To

)ϑ,i. (2.12)

The constitutive equations take the form

σi j = 2µei j +
(

λekk − γθ
)

δi j . (2.13)

By using the relation (2.2) and the same approximation that we have used above, we

get

σi j = 2µei j +

(

λekk −
γKo

K
(

To

)ϑ

)

δi j , (2.14)
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where λ, µ are Lames constants, ρ is the density, CE is the specific heat at constant strain, t

is the time, T is the temperature, To is the reference temperature, σi j are the components

of stress tensor, ei j are the components of strain tensor, ui are the components of dis-

placement vector, Fi is the body, Q is the heat source, q is the heat flux, τo is the relaxation

time, and i= 1,2,3 are the indices to the dimensions.

3. Formulation of the problem

The coordinate system is so chosen that the x-axis is taken perpendicularly to the layer,

and the y- and z-axes in parallel. We are dealing with one-dimensional generalized ther-

moelasticity with one relaxation time.

We consider that the displacement components for one-dimensional medium have the

forms

ux = u(x, t), uy = uz = 0. (3.1)

The strain components are

e = exx =
∂u

∂x
. (3.2)

The heat equation is

∂2ϑ

∂x2
=

[

∂

∂τ
+ τo

∂2

∂τ2

][

ϑ

κ
+
γTo

Ko
e

]

. (3.3)

The equation of motion is

ρü= (λ+ 2µ)
∂2u

∂x2
−

γKo

K
(

To

)

∂ϑ

∂x
. (3.4)

The constitutive relation takes the form

σ = (λ+ 2µ)
∂u

∂x
−

γKo

K
(

To

)ϑ. (3.5)

For simplicity, we use the following nondimensional variables [2]:

x′ =

(

λ+ 2µ

ρ

)1/2 x

κ
, u′ =

(

λ+ 2µ

ρ

)1/2 u

κ
, t′ =

(

λ+ 2µ

ρ

)

t

κ
, τ′o =

(

λ+ 2µ

ρ

)

τo
κ

,

σ ′ =
σ

λ+ 2µ
, ϑ′ =

(3λ+ 2µ)αTKo

(λ+ 2µ)K
(

To

)ϑ, q′ =
κ

KoTo

(

ρ

λ+ 2µ

)1/2

q.

(3.6)
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After dropping the primes for convenience, we obtain the following system of partial

differential equations:

D2σ = ë, (3.7)

σ = (e− θ), (3.8)

D2θ =

(

∂

∂t
+ τo

∂2

∂t2

)

[θ + εe], (3.9)

where D = ∂/∂x and ε = (3λ+ 2µ)2α2
TToκ/(λ+ 2µ)K(To).

Taking Laplace transform as

f̄ (s)=

∫∞

0
f (t)e−stdt, (3.10)

then (3.8), (3.9), and (3.11) will take the forms

D2σ̄ = s2ē, (3.11)
[

D2−
(

s+ τos
2
)]

θ̄ = εh2ē, (3.12)

σ̄ = (ē− θ̄). (3.13)

By eliminating ē, we get

[

D2− s2
]

σ̄ = s2θ̄, (3.14)
[

D2− (ε+ 1)
(

s+ τos
2
)]

θ̄ = ε
(

s+ τos
2
)

σ̄ . (3.15)

By eliminating σ̄ , we obtain

(

D4−LD2 +M
)

ϑ̄= 0, (3.16)

where the above equation is satisfied for the stress

(

D4−LD2 +M
)

σ̄ = 0, (3.17)

where

L= s2 +
(

s+ τos
2
)

(ε+ 1) + ε
(

s+ τos
2
)

s2, M = s2
(

s+ τos
2
)

(1 + ε). (3.18)

4. Application

We consider a layered plate of sandwich structure as shown in Figure 4.1, where layers III

and I are made from the same metal and the layer II is a different metal. Layer II is put in

the middle of the plate, and its thickness is half of that of the plate. We consider that the

two outer sides of the sandwich are thermally shocked and traction-free, which means

that the boundary conditions will be homogeneous with respect to the dimension.

(1) Region I (−2ℓ ≤ x ≤−ℓ). The solution of (3.14) and (3.15) takes the form

ϑ̄I = A1

(

k2
1 − s2

)

cosh
(

k1x
)

+A2

(

k2
2 − s2

)

cosh
(

k2x
)

, (4.1)

σ̄ I = A1s
2 cosh

(

k1x
)

+A2s
2 cosh

(

k2x
)

, (4.2)
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x = −2� x = −� x = � x = 2�

I II III

Figure 4.1. A layered plate of sandwich structures.

where the parameters k1 and k2 satisfy the equation

k4−LIk2 +MI = 0, (4.3)

where

LI = s2 +
(

s+ τIos
2
)(

εI + 1
)

+ εI
(

s+ τIos
2
)

s2,

MI = s2
(

s+ τIos
2
)(

1 + εI
)

.
(4.4)

(2) Region II (−ℓ ≤ x ≤ ℓ). The solution of (3.14) and (3.15) takes the form

ϑ̄II = B1

(

p2
1− s2

)

cosh
(

p1x
)

+B2

(

p2
2− s2

)

cosh
(

p2x
)

, (4.5)

σ̄ II = B1s
2 cosh

(

p1x
)

+B2s
2 cosh

(

p2x
)

, (4.6)

where the parameters p1 and p2 satisfy the equation

p4−LIIp2 +MII = 0, (4.7)

where

LII = s2 +
(

s+ τII
o s

2
)(

εII + 1
)

+ εII
(

s+ τII
o s

2
)

s2,

MII = s2
(

s+ τII
o s

2
)(

1 + εII
)

.
(4.8)

(3) Region III (ℓ ≤ x ≤ 2ℓ). The solution of (3.14) and (3.15) takes the form

ϑ̄III = C1

(

k2
1 − s2

)

cosh
(

k1x
)

+C2

(

k2
2 − s2

)

cosh
(

k2x
)

, (4.9)

σ̄ III = C1s
2 cosh

(

k1x
)

+C2s
2 cosh

(

k2x
)

. (4.10)

To get all the parameters A1, A2, B1, B2, C1, and C2, we have to specify the form of

K(θ).
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We consider that the dependence of K on θ is a linear function in some range of the

temperature, that is,

K(θ)= Ko

(

1 +K1θ
)

, (4.11)

where K1 is a small negative constant.

From (2.5), we have

ϑ= θ +
K1

2
θ2. (4.12)

After obtaining ϑ, the temperature increment θ can be obtained by solving (4.12) to give

θ J =
−1 +

√

1 + 2K J
1ϑJ

K J
1

, J = I, II, (4.13)

where the metal is the same for I and III.

5. The boundary conditions

(1) The thermal boundary conditions. We suppose that the medium is thermally shocked

in the two outer sides, that is,

θ = θoH(t) for x =±2ℓ, (5.1)

where H(t) is Heaviside unit step function.

After using Laplace transform, we have

ϑ̄=
ϑo
s

for x =±2ℓ, (5.2)

where ϑo = θo + (K I
1/2)θ2

o .

(2) The mechanical boundary conditions. We will consider the two sides of the medi-

um traction-free, that is,

σ = 0 for x =±2ℓ. (5.3)

After using Laplace transform, we have

σ̄ = 0 for x =±2ℓ. (5.4)

(3) The continuity conditions of the heat flux give that

q̄I = q̄II at x =−ℓ, q̄II = q̄III at x = ℓ. (5.5)

We will use the generalized Fourier’s law of heat conduction, namely,

q+ τoq̇ =−K(θ)
∂θ

∂x
. (5.6)
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Using the mapping defined by (2.5) and (2.6), we obtain

q+ τoq̇ =−Ko
∂ϑ

∂x
. (5.7)

Using the above-mentioned nondimensional variables, (5.7) becomes

q+ τoq̇ =−β
∂ϑ

∂x
, (5.8)

where β = (λ+ 2µ)K(To)/(3λ+ 2µ)αTKoTo.

After using Laplace transform, we get

q̄ =−
β

(

1 + τos
)

∂ϑ̄

∂x
. (5.9)

Then, conditions (5.5) will take the form

βI

(1 + τIos)

∂ϑ̄I

∂x
=

βII

(1 + τII
o s)

∂ϑ̄II

∂x
at x =−ℓ, (5.10a)

βII

(

1 + τII
o s
)

∂ϑ̄II

∂x
=

βIII

(

1 + τIII
o s
)

∂ϑ̄III

∂x
at x = ℓ. (5.10b)

(4) The continuity conditions of the stress give that

σ̄ I = σ̄ II at x =−ℓ, σ̄ II = σ̄ III at x = ℓ. (5.11)

Applying the previous condition in (5.2), (5.4), (5.5), (5.10a), (5.10b) and (5.11) to

equations (4.4)–(4.10), we obtain

ϑ̄=
ϑo

s
(

k2
1 − k2

2

)

[
(

k2
1 − s2

)

cosh
(

2ℓk1

) cosh
(

k1x
)

−

(

k2
2 − s2

)

cosh
(

2ℓk2

) cosh
(

k2x
)

]

,

− 2ℓ ≤ x ≤−ℓ, ℓ ≤ x ≤ 2ℓ,

(5.12)

ϑ̄=
ϑo

s
(

k2
1 − k2

2

)

L

[(

L11

cosh
(

2k1ℓ
) −

L12

cosh
(

2k2ℓ
)

)

(

p2
1− s2

)

cosh
(

p1x
)

+

(

L21

cosh
(

2k1ℓ
) −

L22

cosh
(

2k2ℓ
)

)

(

p2
2− s2

)

cosh
(

p2x
)

]

, −ℓ ≤ x ≤ ℓ,

(5.13)

σ̄ =
sϑo

(

k2
1 − k2

2

)

[

cosh
(

k1x
)

cosh
(

2ℓk1

) −
cosh

(

k2x
)

cosh
(

2ℓk2

)

]

, −2ℓ ≤ x ≤−ℓ, ℓ ≤ x ≤ 2ℓ, (5.14)

σ̄ =
sϑo

(

k2
1 − k2

2

)

L

[

(

L11

cosh
(

2k1ℓ
) −

L12

cosh
(

2k2ℓ
)

)

cosh
(

p1x
)

+

(

L21

cosh
(

2k1ℓ
) −

L22

cosh
(

2k2ℓ
)

)

cosh
(

p2x
)

]

, −ℓ ≤ x ≤ ℓ,

(5.15)
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where

L11 = δ cosh
(

p2ℓ
)

sinh
(

k1ℓ
)

k1

(

s2− k2
1

)

+ cosh
(

k1ℓ
)

sinh
(

p2ℓ
)

p2

(

p2
2− s2

)

,

L12 = δ cosh
(

p2ℓ
)

sinh
(

k2ℓ
)

k2

(

s2− k2
2

)

+ cosh
(

k2ℓ
)

sinh
(

p2ℓ
)

p2

(

p2
2− s2

)

,

L21 = δ cosh
(

p1ℓ
)

sinh
(

k1ℓ
)

k1

(

k2
1 − s2

)

− cosh
(

k1ℓ
)

sinh
(

p1ℓ
)

p1

(

p2
1− s2

)

,

L22 = δ cosh
(

p1ℓ
)

sinh
(

k2ℓ
)

k2

(

k2
2 − s2

)

− cosh
(

k2ℓ
)

sinh
(

p1ℓ
)

p1

(

p2
1− s2

)

,

L= cosh
(

p1ℓ
)

sinh
(

p2ℓ
)

p2

(

p2
2− s2

)

− cosh
(

p2ℓ
)

sinh
(

p1ℓ
)

p1

(

p2
1− s2

)

,

δ =

(

1 + τII
o s
)

βI

(

1 + τIos
)

βII
=

(

1 + τII
o s
)

βIII

(

1 + τIII
o s
)

βII
.

(5.16)

From (3.2), we have

ū=
1

s2
Dσ̄ , (5.17)

hence, we get

ū=
ϑo

s
(

k2
1 − k2

2

)

[

k1 sinh
(

k1x
)

cosh
(

2ℓk1

) −
k2 sinh

(

k2x
)

cosh
(

2ℓk2

)

]

, −2ℓ ≤ x ≤−ℓ, ℓ ≤ x ≤ 2ℓ, (5.18)

ū=
ϑo

s
(

k2
1 − k2

2

)

L

[(

L11

cosh
(

2k1ℓ
) −

L12

cosh
(

2k2ℓ
)

)

p1 sinh
(

p1x
)

+

(

L21

cosh
(

2k1ℓ
) −

L22

cosh
(

2k2ℓ
)

)

p2 sinh
(

p2x
)

]

, −ℓ ≤ x ≤ ℓ.

(5.19)

Those formulas complete the solution in the Laplace transform domain.

6. The solution in the physical domain

In order to invert the Laplace transform in (5.7)–(5.19), we adopt a numerical inversion

method based on a Fourier series expansion [7].

By this method, the inverse f (t) of the Laplace transform f̄ (s) is approximated by

f (t)=
ect

t1

[

1

2
f̄ (c) + Re

N
∑

k=1

f̄

(

c+
ikπ

t1

)

exp

(

ikπt

t1

)

]

, 0 < t1 < 2t, (6.1)

where N is a sufficiently large integer representing the number of terms in the truncated

Fourier series, chosen such that

exp(ct)Re

[

f̄

(

c+
iNπ

t1

)

exp

(

iNπt

t1

)

]

≤ ε1, (6.2)

where ε1 is a prescribed small positive number that corresponds to the degree of accuracy
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Table 7.1. Materials parameters.

The parameter Copper I, III Stainless steel II

αT 17.8× 10−6 k−1 17.7× 10−6 k−1

ρ 8954 kg·m−3 7970 kg·m−3

CE 383.1 m2·k−1·s−2 561 m2·k−1·s−2

Ko 386 kg·m·k−1·s−3 19.5 kg·m·k−1·s−3

To 293 k 293 k

µ/λ 0.497425 0.700680

τo 0.02 s 0.01 s

ε 0.0150 0.0141

β −2654.53 −4518.48

K1 −0.1 −0.2

required. The parameter c is a positive free parameter that must be greater than the real

part of all the singularities of f̄ (s).

The optimal choice of c was obtained according to the criteria described in [7].

7. Numerical results

The copper material and the type 316 stainless steel are chosen for purposes of numerical

evaluations [11] as shown in Table 7.1.

The computations were carried out for value of time, namely t = 0.25, 0.40 and for

length ℓ = 1 (unit length).

The numerical values of the temperature, displacement, and stress are represented

graphically, where the solid line in the temperature distribution shows the case when

the thermal conductivity is constant or for time t = 0.25, while the dotted line shows the

case of thermal conductivity variable or for the time t = 0.40.

8. Discussion

Figures 8.1 and 8.4 show the temperature filed with respect to x-axis, and we have noticed

the following.

(1) The value of the temperature increases when the thermal conductivity is constant

and decreases when the thermal conductivity is variable.

(2) The difference between the two curves at any fixed point of x in the two regions

I and III (copper) is larger than the region in II (stainless steel).

(3) The length of the discontinuity of the temperature at the contact points of the

two metals is 0.09, not small.

(4) The value of the temperature increases when the time increases till the points that

are closed to the effect of the shock with length 0.01 inside the material, then, the

value of the temperature decreases when the time increases.
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21.510.50−0.5−1−1.5−2

x

0

0.2

0.4

0.6

0.8

1

1.2
θ

K constant

K variable

I II III

Figure 8.1. The temperature distribution at t = 0.25.

21.510.50−0.5−1−1.5−2

x

0

0.2

0.4

0.6

0.8

1

1.2
θ

t = 0.25

t = 0.4

I II III

Figure 8.2. The temperature distribution.

(5) The length of the discontinuity in the temperature at the contact points increases

from the value 0.09 when t = 0.25 to the value 0.14 when t = 0.40.

Figures 8.2 and 8.5 show the stress filed with respect to x-axis, and we have noticed the

following.

(1) The absolute value of the stress increases when the thermal conductivity is con-

stant and decreases when the thermal conductivity is variable.

(2) The difference between the two curves at any fixed point of x in the two regions

I and III (copper) is larger than the region in II (stainless steel).
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21.510.50−0.5−1−1.5−2
x

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

σ

K constant

K variable

I II III

Figure 8.3. The stress distribution at t = 0.25.

21.510.50−0.5−1−1.5−2
x

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

σ

t = 0.25

t = 0.4

I II III

Figure 8.4. The stress distribution.

(3) The lengths of the discontinuity of the stress at the points x = ±1.74 decrease

when the thermal conductivity is variable.

(4) The absolute values of the maximum points of the stress decrease when the ther-

mal conductivity is variable or when the time increases.

(5) The points of the discontinuity of the stress is shifted form the points x =±1.74

to the points x =±1.61 when the time changes from t = 0.25 to t = 0.40.

(6) The lengths of the discontinuity in the stress decrease when the time changes

from t = 0.25 to t = 0.40.

(7) The tangents of the stress curves are not continuous at the points of the contact

x =±1.
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Figure 8.5. The displacement distribution at t = 0.25.
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Figure 8.6. The displacement distribution.

Figures 8.3 and 8.6 show the displacement filed with respect to x-axis, and we have no-

ticed the following.

(1) The values of the displacement are very closed for the two cases when the thermal

conductivity is variable or constant.

(2) The displacement is discontinuing at the contact points of the metals x =±1.

(3) The absolute values of the maximum points of the displacement increase when

the time increases.
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