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Abstract: In this study, hydroxyapatite with the substitution of calcium cations by iron and phosphate
by silicate groups was synthesized via a mechanochemical method. The as-prepared compounds have
the general formula Ca10−xFex(PO4)6−x(SiO4)x(OH)2−xOx/2 with x = 0–1.5. The thermal stability of
the as-prepared compounds was studied by ex situ annealing of powders in a furnace. It has been
established that, at 800 ◦C for x ≤ 0.5, a partial decomposition of the substituted apatites occurs with
the formation of the β–Ca3(PO4)2 phase. At high “x” values, the formation of this phase starts at the
lower temperature of 700 ◦C, followed by the formation of Fe2O3 at 900 ◦C. The introduction of iron
and silicate ions into the hydroxyapatite lattice was shown to decrease its thermal stability.
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1. Introduction

Apatites are a promising class of inorganic compounds that can be used to produce
new materials. The most studied compound with the apatite structure is currently hy-
droxyapatite Ca10(PO4)6(OH)2 (HA) with the ratio Ca/P = 1.67 [1]. Any deviation from
stoichiometry in the Ca/P ratio leads to the formation of other compounds of calcium
phosphates. Thus, a lack of calcium leads to the formation of tricalcium phosphate (TCP)
Ca3(PO4)2 with the ratio Ca/P = 1.5 [2,3].

Apatites belong to the class of bioresorbable materials, which actively contribute to
the metabolic processes of an organism to reconstitute bone tissue in part or in its entirety.
These materials form strong bonds with bone (and soft) tissue after implantation. They are
characterized by ion exchange reactions between the bioresorbable implant and body fluids,
which leads to the formation of a biologically active carbonated apatite layer on the implant.
In general, bioresorbable ceramics have poorer properties than bioinert ceramics, which do
not undergo ion exchange and have better mechanical strength. Therefore, bioresorbable
materials are most commonly used as bone defect fillers provided in the structures of
blocks, porous material, and granules [4]. In addition, apatites are widely used in modern
medicine as coatings on metal prostheses, as a medical and cosmetic means [5].

Apatites, in particular HA, are used in reconstructive surgery due to their excellent
biological activity, biocompatibility, and osteoconductivity [2,4,6]. In addition, the introduc-
tion of various substituent ions with certain properties into the HA structure leads to an
improvement in the biomedical properties of HA-based ceramics [7]. It is known that homo-
and heterovalent substitutions of calcium cations Ca2+ by Ag+, Zn2+, La3+, Fe3+, etc., and
the phosphate group PO4

3− by SiO4
4−, CO3

2−, etc., are possible in the HA structure [8].
It has been established that bone and cartilage tissues bind directly to Si-containing bio-

ceramics, which, due to the presence of Si, have enhanced biological activity. They stimulate
collagen type I synthesis, enhance osteoblast differentiation in cell lines, and improve regen-
eration of damaged bone [9]. In addition, Si-substituted hydroxyapatite plays an important
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role in the osteointegration of implants, as has been shown in both in vivo and in vitro
studies on the biological response to the material [10–12]. Camaioni et al. revealed [13]
that an increase in silicon content in the HA lattice leads to an increase in bioactivity, thus
resulting in faster apatite formation. On the other hand, if the silicon content in the HA
lattice is increased above 2 wt%, the destabilization of hydroxyapatite and the formation of
α–tricalcium phosphate occur (α–TCP) [14].

Iron is an important trace element in bones and teeth that is essential for various
biological processes. Recent studies have shown that the introduction of Fe3+ affects the
crystallinity and solubility of HA [15–17], whereas low iron concentrations positively
affect the biomedical properties of HA [18,19]. It was found that iron-doped HA shows
biocompatibility and does not exhibit a cytotoxic effect, and it has enhanced bactericidal
and mineralizing properties compared to unsubstituted HA [20]. Iron-containing HA is
magnetic; therefore, it may be useful for biological applications, such as magnetic resonance
imaging, cell separation, drug delivery, and as a heating mediator in hyperthermia therapy
for cancer treatment [21].

The purpose of this study was to explore the possibility of mechanochemical synthesis
of HA with the simultaneous substitution of the calcium cations with iron and the phos-
phate group with silicate, and analysis of the thermal stability of the obtained compounds.
To the best of our knowledge, no study has reported the effect of this type of substitution
on the thermal stability of HA.

2. Materials and Methods
2.1. Mechanochemical Synthesis

Iron- and silicon-substituted HA (x–FeSi–HA) samples were obtained by
mechanochemical synthesis (MS) via the treatment of the reaction mixture in the planetary
ball mill AGO-2. The synthesis was carried out in water-cooled steel vials with 0.8 cm steel
balls at a rotation speed of 1200 rpm for 40 min. The weight ratio of the reaction mixture to
balls was 1:20. To prevent contamination of the product, the vials were lined with a reaction
mixture for 0.5 min.

Freshly calcined calcium oxide CaO, calcium hydrophosphate CaHPO4, amorphous
silicon dioxide SiO2·0.7H2O, and iron (III) phosphate FePO4·2H2O were used as the initial
reagents. The reagents used were of chemical or analytical grade. The reagents were mixed
in ratios according to the equations given in Table 1. The samples were prepared assuming
that calcium cations and the phosphate groups were simultaneously substituted with iron
and silicate, respectively. The concentration of iron and silicon within the sample was equal.
The samples were designated as x–FeSi–HA, where x is a substituent concentration (mole
of substituent per mole of HA).

The stoichiometric sample β–TCP was prepared by mechanical activation (MA) of the
reagent mixture for 5 min according to the following reaction:

2.0CaHPO4 + 1.0CaO MA→ Ca3(PO4)2 + H2O

The as-prepared powder mixture, which was a precursor for the synthesis of β–TCP,
was then thermally treated at a temperature of ≥700 ◦C.
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Table 1. Ratios of the initial reagents and plausible stoichiometries of the mechanochemically
synthesized samples.

Degree of Substitution (x) Sample Designation Equations for Plausible Chemical Reactions

0 HA 6.0CaHPO4 + 4.0CaO MS→ Ca10(PO4)6(OH)2 + 2H2O

0.1 0.1–FeSi–HA 5.8CaHPO4 + 4.1CaO + 0.1FePO4·2H2O + 0.1SiO2·0.7H2O MS→
Ca9.9Fe0.1(PO4)5.9(SiO4)0.1(OH)1.9O0.05 + 2.17H2O

0.2 0.2–FeSi–HA 5.6CaHPO4 + 4.2CaO + 0.2FePO4·2H2O + 0.2SiO2·0.7H2O MS→
Ca9.8Fe0.2(PO4)5.8(SiO4)0.2(OH)1.8O0.1 + 2.34H2O

0.5 0.5–FeSi–HA 5.0CaHPO4 + 4.5CaO + 0.5FePO4·2H2O + 0.5SiO2·0.7H2O MS→
Ca9.5Fe0.5(PO4)5.5(SiO4)0.5(OH)1.5O0.25 + 2.85H2O

1.0 1.0–FeSi–HA 4.0CaHPO4 + 5.0CaO + 1.0FePO4·2H2O + 1.0SiO2·0.7H2O MS→
Ca9.0Fe1.0(PO4)5.0(SiO4)1.0(OH)1.0O0.5 + 3.70H2O

1.5 1.5–FeSi–HA 3.0CaHPO4 + 5.5CaO + 1.5FePO4·2H2O + 1.5SiO2·0.7H2O MS→
Ca8.5Fe1.5(PO4)4.5(SiO4)1.5(OH)0.5O0.75 + 4.55H2O

2.0 2.0–FeSi–HA 2.0CaHPO4 + 6.0CaO + 2.0FePO4·2H2O + 2.0SiO2·0.7H2O MS→
Ca8.0Fe2.0(PO4)4.0(SiO4)2.0O + 5.40H2O

2.2. Ex Situ Annealing

The as-synthesized x–FeSi–HA powders as well as β–TCP precursor were heated in a
high-temperature chamber-type electrical furnace (PVK 1.4−8, Russia) at 300, 600, 700, 800,
900, 1000, 1100 ◦C for 2 h in the air. The powders were annealed in corundum crucibles.

2.3. Sample Characterization

Fourier transform infrared (FTIR) spectra of the powders were recorded on an Infralum
FT–801 spectrometer (Simex, Novosibirsk, Russia). The specimens were prepared by the
KBr pellet method.

X-ray diffraction (XRD) patterns of the samples were recorded on a D8 Advance
powder diffractometer (Bruker, Karlsruhe, Germany) with Bragg–Brentano geometry using
CuKα radiation. The X-ray phase analysis of the compounds was carried out using an
ICDD PDF–4 database (2011). The unit cell parameters and crystallite size were refined by
the Rietveld method using Topas v. 4.2 software (Bruker, Karlsruhe, Germany).

TEM and high-resolution TEM (HRTEM) images were obtained using a Themis-Z 3.1
microscope (TFS, Waltham, MA, USA) at an accelerating voltage of 200 kV. The microscope
is equipped with a field emission cathode having a monochromator and with two aberration
correctors. Energy-dispersive X-ray (EDX) microanalysis of the elemental composition of
the samples was performed on a four-segment Super-X detector (with an energy resolution
of ~120 eV) in scanning dark-field mode with the construction of maps of distributions of
elements by means of characteristic lines of the spectrum from each point in an analysis
region. Samples for the electron microscopic examination were dispersed by ultrasonication
and deposited from alcohol on a substrate: copper-perforated grids 3 mm in diameter
covered with a thin carbon mesh. The Fourier images were calculated from HRTEM
photographs using the Velox v. 2 program (TFS, Waltham, MA, USA).

Simultaneous thermal analysis (STA) included the determination of mass loss, differ-
ential scanning calorimetry (DSC), differential thermal analysis (DTA), and the registration
of the evolved gas using a mass spectrometer. STA was carried out by means of an STA
449 F1 Jupiter device (Netzsch, Lesb, Germany) equipped with a QMS 403 C Aeolos mass
spectrometer. The measurements were performed in a Pt—10 wt%Rh crucible under an
argon–oxygen mixture (80:20) at a heating rate of 10 ◦C/min.
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3. Results and Discussion
3.1. Analyses of the As-Prepared Samples

The FTIR spectra of the mechanochemically synthesized x–FeSi–HA samples are
presented in Figure 1. The spectra show the absorption bands of HA assigned to the
bending vibrations of the O–P–O bond at 570 and 601 cm−1 and to the stretching vibrations
of the P–O bond at 1047 and 1090 cm−1. The absorption bands at 631 and 3572 cm−1

belong to the libration and stretching vibrations of the O–H group, respectively. As the
concentration of introduced substituents increased, the absorption bands were broadened
and some of the bands of the tetrahedral phosphate ion were slightly shifted, indicating a
change in the local environment. Thus, in the spectrum of 2.0–FeSi–HA, only two intense
phosphate bands at 567 and 1060 cm−1 are clearly observed. A band at 940 cm−1 detected
in substituted samples belongs to the silicate group in the apatite structure. This band was
registered at 950 cm−1 for Si-substituted HA obtained by the same method of synthesis [22].
The observed shift as well as the absence of the rest of the absorption bands of silicate
in HA [22,23] can be explained by the presence of additional substituent and by the low
crystallinity of the material. It should be noted that the absorption bands of the initial
silicate are not observed even in the sample with the maximum degree of substitution; for
content, x = 2.0, the unit cell of which hosts two silicate tetrahedra.
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Figure 1. FTIR spectra of the as-synthesized x−FeSi−HA samples. General (a) and magnified views
of the 550–650 cm−1 (b) and 3550–3610 cm−1 (c) ranges.

An increase in the concentration of substituents (up to x = 0.5) in the samples resulted
in a decrease in the intensity of the absorption bands of the stretching (3572 cm−1) and
libration (631 cm−1) vibrations of the hydroxyl group (Figure 1a,b). At the same time, there
was a shift in the position of the band of stretching vibrations. At x ≥ 1.0, these bands
do not appear, which is probably because, at these concentrations, each OH- group in the
hydroxyl channel is isolated from the neighboring one either by the O2− anion or by a
vacancy (see the chemical formulas listed in Table 1).

FTIR spectra of all the synthesized samples have the broad absorption bands of
adsorbed water (1640 and 3423 cm−1). The absorption bands of the carbonate group [6] at
875, 1420, and 1480 cm−1 are observed only for unsubstituted HA.

The XRD patterns of the as-synthesized x–FeSi–HA samples are shown in Figure 2.
As seen, all reflections belong to the HA phase (card PDF 40–11–9308). Reflections of the
initial reagents are not observed. It should be noted that the resulting powders have XRD
patterns close to that of cortical bone [24,25] and human enamel [26]. As the concentration
of the introduced substituent ions increases, a broadening of the reflections of the HA phase
and a decrease in their intensity are observed, indicating a decrease in the crystallite size.
According to the XRD data, the 2.0–FeSi–HA sample is completely amorphous. Therefore,
we can conclude that the synthesis of HA with the substitution for both iron and silicate is
possible for contents up to x = 1.5, inclusive.
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The dependences of the lattice parameters of dual-substituted apatite on the concen-
tration of the substituents are given in Figure 3. For comparison, the changes in these
parameters for single-substituted apatite with iron cations and the silicate groups under
similar synthesis conditions are given in Figure 3. These data were taken from [22,27],
respectively. The lattice parameters of the apatite phase determined from Rietveld X-ray
refinements showed that the simultaneous introduction of the two types of substituents
into the HA structure increases the lattice parameter a and decreases the lattice parameter
c. Figure 3a,b show that a similar effect is observed when iron cations are introduced into
the HA structure. Probably, this type of ion contributes the most to the structural changes
upon dual substitution. The unit cell volume upon dual substitution changes non-linearly
as the substituent concentration increases, while the crystallite size decreases (Figure 3c,d).

The iron cation Fe3+ has a smaller ionic radius (0.55 Å) compared to the calcium cation
Ca2+ (1.00 Å); therefore, the introduction of iron ions into the HA structure should lead
to a decrease in the parameters a and c. However, in our case, the incorporation of the
iron cations only in the HA lattice resulted in a slight increase in the parameter a and a
decrease in the parameter c. A similar effect for x–Fe–HA was reported in studies [17,20].
Possibly, this is due to OH vacancy formation to compensate for the excess positive charge
from ion Fe3+. The silicate ion (0.39 Å) has a larger ionic radius compared to the phosphate
ion (0.35 Å); therefore, at high concentrations, the dual substitution of HA by iron and
silicate ions should further increase the parameter a. It should also be noted that, in the
case of dual substitution, a change in the composition of cations located in the hydroxyl
channel, namely, the availability of hydroxyl groups and O2− vacancies, should affect the
lattice parameters (see Table 1). In addition, it is also necessary to take into account the
different number of water molecules in the x–FeSi–HA crystal lattice, which can also change
the values of the lattice parameters [6,28]. Therefore, in the case of heterovalent multi-
substituted HA structure, it is rather difficult to identify the ions affecting the parameters
of the crystal lattice.

As seen in TEM images (Figure 4a–c), the introduction of substituent ions does not
change the particle morphology. At a low degree of substitution (Figure 4a), single particles
20–30 nm in size as well as large dense aggregates 1000 nm in size are observed. At the
highest concentration of substituents, most of the powder is aggregates.
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According to the XRD data (Figure 2), all samples have a crystalline structure, except
for the 2.0–FeSi–HA sample. HRTEM and the Fourier images (Figure 4d–i) also confirm
this fact. A diffuse hallo which is characteristic of amorphous material is observed for the
2.0–FeSi–HA sample (Figure 4e).

Figure 5 shows that the distribution of elements in 2.0–FeSi–HA particles was prac-
tically uniform. A slight heterogeneity is observed in the distribution of silicon, which is
explained by its agglomeration due to the high water content in it. At lower concentrations
of silicate in the initial mixture, this effect is not observed. Table 2 shows that with an
increase in the concentration of the introduced substituents in samples, the concentra-
tion of the studied elements increases. Their concentrations were close to the expected
concentrations, which indicates an efficient mixing of the reagents.
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Table 2. EDX microanalysis data of the as-synthesized x–FeSi–HA samples.

Sample

Concentration (at.%)

Composition of Synthesized Materials Expected Composition

Ca Fe P Si Ca Fe P Si

HA 66 - 34 - 63 - 37 -

0.5–FeSi–HA 59 3 35 3 59 3 35 3

1.0–FeSi–HA 58 8 29 5 57 6 31 6

2.0–FeSi–HA 44 11 33 12 50 12 26 12

3.2. Thermal Properties

According to the STA data, when the samples with different dopant concentrations
were heated up to 600 ◦C, an intense weight loss caused by the release of water occurred
(Figure 6). As seen, in this case, for 2.0–FeSi–HA, the amount of the water released
increased as the concentration of the introduced substituents increased up to 10 wt%.
According to the reactions listed in Table 1, the initial reagents containing substituent ions
are hydrates; therefore, the more hydrated the compounds are, the more water is released
upon interaction with the initial reagents. The water released is adsorbed by particles, and
it is also captured by the emerging crystal lattice of apatite [28]. A small amount of water
released at temperatures above 700 ◦C is attributed to the dehydroxylation of apatite [29].
In addition, the DSC curve of the 2.0–FeSi–HA sample (Figure 6d) exhibits an exo-effect at
735 ◦C, which can be associated with the structural transformations accompanied by the
precipitation of the β–Ca3(PO4)2 phase (β–TCP) [3]. In the 0.5–FeSi–HA and 1.0–FeSi–HA
samples, there was no exo-effect at 735 ◦C, although the slope of the DSC curve changed.
Therefore, the process of structural transformation was less pronounced in this case due to
the smaller amount of the released phase.
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Based on the STA data, for further investigation, the annealing temperatures 600 ◦C
and 800 ◦C were identified as those wherein the main structural changes of the samples
occur. Up to 600 ◦C, the removal of adsorbed water and lattice water was observed, and up
to 800 ◦C, structural transformations in the substituted HA lattice occurred.

According to the FTIR spectra, the phase composition of the samples annealed at
600 ◦C (Figure 7a) did not change, although, compared to the as-synthesized samples
(Figure 1), a slight narrowing of all absorption bands can be observed. As well as before
annealing, the absorption bands of the phosphate ion were broadened with an increase
in the concentration of the introduced substituents, and, at high concentrations, some of
the bands were shifted (Figure 7b). The absorption bands of the OH- groups at 632 and
3572 cm−1 became more intense and narrower for the samples with a substituent content
x = 0.0–1.0. In the as-synthesized samples, some of the water molecules were probably
in the hydroxyl channel instead of the OH -groups. The absorption bands of the OH-
groups were absent in the samples with content x = 1.5 and 2.0. Instead of them, there
was a set of weakly expressed bands in the range of the stretching vibrations of the OH-
groups (Figure 7c). The absorption band assigned to the vibrations of silicate tetrahedra
was observed at 931 cm−1. One of the reasons for the shifting may be the removal of lattice
water from the substituted HA.
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It should be noted that the behavior of the libration and stretching vibrations of the
OH- groups confirms the correctness of the chemical compositions of the synthesized
samples with the general formula Ca10−xFex(PO4)6−x(SiO4)x(OH)2−xOx/2, given in Table 1.
Consequently, a simpler option to mutually balance the excess charges of the cations and
anions introduced on the formation of Ca10−xFex(PO4)6−x(SiO4)x(OH)2 did not occur. This
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can be explained as follows. The hydroxyl groups in the HA structure are placed in a
channel with walls formed by the calcium cations [6]. Upon substitution of Ca2+ by Fe3+

cations, the channel walls at the site of substitution acquire an excess positive charge, which
requires compensation that can be achieved by the loss of the OH− group in favor of the
O2− anion.

With an increase in the annealing temperature to 800 ◦C, the FTIR spectra of the
samples with x = 0.5–2.0 significantly changed (Figure 7d–f), indicating the structural
transformations revealed by the thermal analysis data. As seen in Figure 7d, the β-TCP
spectrum differs significantly from that of the substituted samples, with x = 1.0–2.0. Given
that, upon heating to 735 ◦C, the substituted β-TCP, rather than stoichiometric β-TCP, can
be formed, and the substituent ions should change the FTIR spectrum of β-TCP. Based on
this assumption, we found that the FTIR spectra of the samples with x = 1.0–2.0 are similar
to that of the iron-substituted β-TCP [30]. However, in our case, the absorption band values
are slightly different, which may be due to the presence of both the iron cations and the
silicate anions in the β-TCP structure.

The XRD patterns after the ex situ heat treatment of the FeSi-HA powders for 2 h
(Figure 8) show that the β-TCP phase appeared in all the substituted samples at temper-
atures above 600 ◦C. Thus, at x = 0.1–0.5, β-TCP started to appear at 800 ◦C, whereas at
high concentrations (x = 1.0–2.0), this phase was detected at 700 ◦C. An increase in the
annealing temperature resulted in an increase in the β-TCP content in all the substituted
samples (Table 3), whereas the unsubstituted HA remained single-phase at all treatment
temperatures. For substituent concentrations x = 1.0–2.0 at a temperature above 800 ◦C,
another phase appeared, iron (III) oxide, whose concentration increased with an increase in
the temperature and the degree of substitution.

An interesting fact is that the individual silicate-containing phase, which is commonly
formed upon x–Si–HA heating [22], was not observed in the x–FeSi–HA samples even at a
high concentration of the introduced silicon and at high treatment temperatures. Obviously,
upon x–FeSi–HA decomposition, the silicate anion remains in the apatite phase or in the
β–TCP phase, whereas the iron cation introduced in high concentrations (x > 0.5) leaves the
phosphate structure and forms an individual oxide phase, indicating the supersaturation
of calcium phosphate with iron.

Table 3. Concentrations of phases (wt%) calculated by the Rietveld method from XRD patterns of
x–FeSi–HA samples after ex situ annealing.

Sample Phase 700 ◦C 800 ◦C 900 ◦C 1000 ◦C 1100 ◦C

HA HA 100 100 100 100 100

0.1–FeSi–HA
HA 100 100 92 89 87

β–TCP 0 0 8 11 13

0.2–FeSi–HA
HA 100 95 76 70 66

β–TCP 0 5 24 30 34

0.5–FeSi–HA
HA 100 85 57 43 37

β–TCP 0 15 43 57 63

1.0–FeSi–HA
HA 97 67 32 14 12

β–TCP 3 33 67 81 83
Fe2O3 0 0 1 5 6

1.5–FeSi–HA
HA 79 31 7 2 1

β−TCP 21 69 93 90 90
Fe2O3 0 0 1 8 9

2.0–FeSi–HA
HA 15 6 7 3 1

β–TCP 85 94 91 89 89
Fe2O3 0 0 1 8 10
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Given the fact that the silicate-substituted apatites show higher thermal stability [22] as
compared to the iron-substituted apatites [27], it can be assumed that the main destabiliza-
tion in the x–FeSi–HA lattice was caused by iron cations, which have an ionic radius almost
two times less than calcium ions. The thermal expansion that occured upon heating of
the x–FeSi–HA samples increased the interatomic distance, thus reducing the electrostatic
attraction between cations and anions. Clearly, the destruction of the x–FeSi–HA crystal
lattice upon heating occurs in the region of the localization of the iron cations because
the distance between the iron cation and the nearest oxygen anions becomes larger than
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that required for their attraction. The presence of the silicate anions in the x–FeSi–HA
structure should further increase the volume of the unit cell; therefore, the limit of thermal
stability of x–FeSi–HA, as compared to x–Fe–HA, is reduced by 100 ◦C, as we have shown
in this study.

Figure 9a–c shows changes in the lattice parameters and crystallite size for the apatite
phase as the annealing temperature of the samples with different degrees of substitution
increased. In the sample with x = 2.0, the concentration of the apatite phase was less than
10 wt%, so the parameters for this sample are not given. As seen, the removal of adsorbed
water at 300 ◦C led to a decrease in the lattice parameters in all the samples. The removal of
lattice water at 600 ◦C did not change the parameter a, while the parameter c was increased.
A further increase in the substituent content increased the parameter c. With a further
increase in the temperature, the parameter c continued to increase, while the parameter
a started to decrease. In both cases, the higher the substituent concentration, the more
the lattice parameters changed. In the samples with a high concentration of substituents
(x = 1.0, 1.5), at the high temperatures at which iron oxide is formed, a significant deviation
of the parameters from a linear dynamic, with the analyzed values approaching the values
for unsubstituted HA, took place. Therefore, we can conclude that at high temperatures, in
the samples with x = 1.0 and x = 1.5, a decrease in the concentration of the iron cations was
observed. These changes do not affect the size of the crystallites formed (Figure 9c). For
all the samples, starting from 600 ◦C, the crystallite size monotonically increased with an
increase in the annealing temperature.
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The variation in the lattice parameters of the β-TCP phase with an increase in the
treatment temperature of the samples is shown in Figure 9d–f. For comparison, the struc-
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tural parameters of the unsubstituted stoichiometric β-TCP are also given in the figure.
These data confirm that some of the substituent ions are in the structure of β-TCP. With an
increase in the concentration of substituents, the parameter a of the substituted samples at a
fixed temperature decreased, whereas its value increases as the temperature increased. For
unsubstituted β−TCP, both the a and c lattice parameters almost did not change. The pa-
rameter c in the substituted samples had more complicated dynamics of change (Figure 9e).
For the samples with x = 0.2–1.5, the values of the parameter c almost did not change at
all treatment temperatures, which is probably due to the similar concentration of one of
the substituents. With an increase in the temperature, the parameter c of these samples
increased, maintaining the dynamics similar to that of the parameter a. The behavior of the
parameter c for the sample with x = 2.0 was almost similar to that for the stoichiometric
β-TCP. Thus, it changed slightly as the temperature increased, but the line of changes of
the parameter c for this sample was lower by ~0.05 Å. Unlike the data suggesting that the
parameters a and c of the iron substituted β-TCP decrease as the iron content increases [30],
our study showed that β-TCP contains both iron cations and silicate anions. The con-
centration of the latter probably increases as the treatment temperature of the samples
with x = 0.2–1.5 increases, which is reflected in an increase in the lattice parameters of
the samples.

The size of the crystallites of the substituted β-TCP phase decreased with an increas-
ing concentration of the substituents (Figure 9f), which indicates a complication of the
crystallization process. In addition, an increase in the treatment temperature led to an
increase in the crystallite sizes.

4. Conclusions

A series of samples of the substituted apatites with an equal content of the introduced iron
cations and silicon anions was prepared by the mechanochemical method. It was found that,
up to x ≤ 1.5, a single-phase substituted HA of the Ca10−xFex(PO4)6−x(SiO4)x(OH)2−xOx/2
composition was formed. This compound contains a small amount of water (<10 wt%)
released during the interaction of the initial reagents. With an increase in the concentration
of substituents, the formation process of the crystal lattice became more complicated, which
decreased the degree of crystallinity of the material. At the degree of substitution x = 2.0, an
amorphous product was formed.

An analysis of the behavior of the synthesized materials upon heating showed that the
introduction of the substituents leads to a decrease in the thermal stability of hydroxyapatite,
and the stability limit depends on the concentration of the substituents. Upon heating
of the x–FeSi–HA sample with x ≤ 0.5 in a high-temperature furnace at 800 ◦C for 2 h,
it was partially decomposed, with the formation of the substituted β–Ca3(PO4)2 phase.
At higher concentrations, the formation of the substituted β-Ca3(PO4)2 began already at
700 ◦C, followed by the formation of Fe2O3 at 900 ◦C. The formation of iron oxide was
accompanied by changes in the lattice parameters of the apatite phase, indicating the release
of the iron cations from the apatite phase. Therefore, we can conclude that the limit of iron
and silicon ion contents for the simultaneous substitution in hydroxyapatite is lower than
x = 1. The low thermal stability of x–FeSi–HA with substitution by iron cations is due to
the smaller ionic radius of iron.

This study shows that the as-synthesized materials can be used for the manufacture
of medical ceramic products with a heat treatment temperature of not higher than 700 ◦C.
For apatites with a low concentration of substituents (x ≤ 0.5), the temperature can be
increased by 100 ◦C.
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