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Thin films of neodymium aluminate (NdAlOx) have been deposited by liquid injection metalorganic chemical vapor deposition
(MOCVD) using the bimetallic alkoxide precursor [NdAl(OPri)6(PriOH)]2. The effects of high-temperature postdeposition
annealing on NdAlOx thin films are reported. The as-deposited thin films are amorphous in nature. X-ray diffraction (XRD)
and medium energy ion scattering (MEIS) show, respectively, no crystallization or interdiffusion of metal ions into the substrate
after annealing at 950◦C. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the thin films exhibited good
electrical integrity following annealing. The dielectric permittivity (κ) of the annealed NdAlOx was 12, and a density of interface
states at flatband (Dit) of 4.01 × 1011 cm−2 eV−1 was measured. The deposited NdAlOx thin films are shown to be able to endure
high-temperature stress and capable of maintaining excellent dielectric properties.

1. Introduction

Recently, considerable effort has been exerted in developing
high-κ rare earth oxide, M2O3 (M = La, Pr, Nd, etc.), as a
replacement of the conventional SiO2-based gate dielectric
material [1]. The incorporation of neodymium (Nd) ions in
insulating layers has important applications for solid-state
laser materials, luminescent materials, protective coatings,
and gate dielectric applications [2, 3]. However, Nd2O3 is
thermally unstable upon annealing and can be partially
transformed to NdO(OH) when exposed to atmospheric
conditions [4]. One of many solutions to enhance the
thermal stability is the incorporation of aluminium (Al)
to develop innovative multifunctional advanced lanthanide-
aluminates-based ceramics, MAlO3 (M = La, Pr, Gd, and
Nd). The lanthanide aluminates are promising high-κ candi-
dates as they combine the advantages of the high permittivity

of the lanthanide oxide with the chemical and thermal

stability of Al2O3. Furthermore, they remain amorphous up

to high temperatures, leading to a large reduction in leakage
current relative to polycrystalline M2O3 films during CMOS

processing [5, 6].

Work on NdAlOx was mostly reported as a ceramic
material for microwave applications and as a diffusion

barrier in solid-oxide fuel cells [7, 8]. Growth of NdAlOx thin
films have previously been achieved by various deposition

methods, including pulsed laser deposition [9], chemical

vapor deposition [10, 11], e-beam evaporation [8], and
atomic layer deposition [4]. To date, however, little is still

known about the physical and electronic characteristics of
NdAlOx due to a lack of suitable precursors with appropriate
stability, volatility, and decomposition characteristics. This
has motivated us to further exploit these perovskite thin films
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for gate dielectric applications using an alternative single-
source precursor. The use of single-source precursor allows
better mixing of the components at atomic level, significantly
lower decomposition temperature, and free from halide ions
contamination [11].

In this work, the effects of high-temperature postdeposi-
tion annealing (PDA) on the properties of the NdAlOx thin
films, deposited by metalorganic chemical vapor deposition
(MOCVD) using single-source precursor, were studied.

2. Experimental

Near stoichiometric NdAlOx thin films (Nd/Al = 0.87) were
deposited on n-type silicon (100) substrates by liquid injec-
tion MOCVD at 450◦C on an Aixtron AIX 200FE AVD reac-
tor fitted with the “TriJet”TM liquid injector system [12], uti-
lizing the single-source precursor [NdAl(OPri)6(PriOH)]2.
Selected films were subjected to high-temperature (750–
950◦C) postdeposition annealing (PDA) in pure nitrogen
(N2) ambient for 60 seconds. Subsequently, a postmetalliza-
tion forming gas anneal (FGA) was carried out at 400◦C for
30 minutes using H2 : N2 in the ratio 1 : 9, together with a
control as-deposited sample.

X-ray diffraction (XRD) was performed on the studied
films using nickel-filtered Cu Kα radiation (λ = 1.5405 Å)
with a 2θ increment of 0.2◦ per second. The samples were
scanned over a θ/2θ range of 20◦ to 40◦. Medium energy
ion scattering (MEIS) experiments were carried out using a
nominal 200 keV He+ ion beam and a 70.5◦ scattering angle.
Cross-section transmission electron microscopy (TEM) was
carried out using a JEOL 2000 FX operated at 500 kV.
Capacitance-voltage (C-V) measurements were conducted
on the MOS capacitors of the structure (Au/NdAlOx/SiO2/n-
Si) using a HP4192 impedance analyzer, with 30 mV RMS
probe signal, at various frequencies (1 kHz–1 MHz). Leakage
current (I-V) measurements were obtained using a Keithley
K230 programmable voltage source and a 617 type electrom-
eter.

3. Results and Discussion

Phase transitions of the gate dielectric, as a function of PDA
temperatures, were accessed by X-ray diffraction (XRD). The
X-ray diffraction traces of the as-deposited and PDA samples
(regardless of PDA temperature) exhibited a diffraction peak
consistent with the (200) peak from the silicon substrate.
No other diffraction features were observed (Figure 1(a)),
suggesting that they were essentially amorphous. In addition,
MEIS results indicated that no significant level of crystallinity
or movement of metal ions was in evidence in the 950◦C PDA
film as demonstrated in Figure 1(b).

Figure 2 shows TEM micrographs in which the thick-
nesses of the high-κ stack, including the interfacial layer,
were evaluated. The high-κ thickness and a thin native oxide
interlayer, adjacent to the silicon substrate, changed from
11 nm and 1.5 nm, respectively, and to 10.4 nm and 2.5 nm
respectively, after 950◦C PDA. This could be due to inter-
diffusion of oxygen between SiO2 and NdAlOx. The growth
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Figure 1: (a) X-ray diffraction traces for NdAlOx/SiO2 stacks as a
function of RTA temperatures. (b) A comparison of MEIS data of a
NdAlOx/SiO2 stack prior to and after RTA in pure N2 ambient for
1 min.

of the SiO2 layer, following annealing, is also visible in
the MEIS energy spectrum (Figure 1(b)). The amorphous
nature of the thin films is also observed in the TEM analysis
(Figure 2) confirming the XRD findings.

The high-frequency C-V characteristics of as-deposited
and PDA samples are shown in Figure 3. Both as-deposited
and PDA samples exhibited small counter-clockwise hys-
teresis (<0.1 V). A positive shift of flatband voltage (VFB)
(the shift of VFB is 0.97 V) in the as-deposited sample was
observed and contributed to fixed negative oxide charges.
However, a near-ideal flatband voltage (VFB = 0.65 V)
was obtained in the 950◦C PDA sample. This may indicate
that negative fixed oxide charges could be compensated
by nitrogen-induced positive fixed oxide charges generated
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Figure 2: TEM image of the as-deposited and 950◦C PDA
NdAlOx/SiO2 stacks shows the thicknesses of oxide layers change
from 1.5 nm/11 nm to 2.5 nm/10.4 nm, respectively.
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Figure 3: A comparison of high-frequency C-V curves with and
without N2 PDA treatment. MOSCs with [Au/NdAlOx/SiO2/n-
Si/Al] structure were fabricated with an effective area of 4.9 ×
10−4 cm−2. The inset is a plot of capacitance equivalent thickness
(CET) versus NdAlOx physical thickness, which shows an increase
in the dielectric permittivity (7 to 12) and changes of the interfacial
layer (1.5 to 2.5 nm) after PDA treatment.

during annealing at the NdAlOx/SiO2 interface. Terman
analysis [13] yields an interface density of states, Dit, of
4.94× 1011 cm−2 eV−1 and 4.01× 1011 cm−2 eV−1 at midgap
for as-deposited and 950◦C PDA samples, respectively. This
is lower than Dit of other recent high-κ candidates, Dit of
2.5×1012 cm−2 eV−1 found in La1.3Hf1.0O4.1 [14], but higher
than the interface state density of 5× 1010 cm−2 eV−1 shown
by YxHf1−x Oy (x = 0.065) [15].
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Figure 4: Leakage current density (J) versus electric field (Eox)
applied across the NdAlOx/SiO2 stacks as a function of PDA
temperatures. The NdAlOx films thickness was thigh−κ ∼ 10.4 to
11 nm.

Despite an increase of the interfacial layer in the PDA
samples, the measured capacitance in strong accumulation
was found to be higher than that of the as-deposited
samples. The inset of Figure 3 shows a plot of the high-κ
dielectric thickness against capacitance equivalent thickness
(CET). The slope revealed the NdAlOx dielectric permittivity
(κ) to be 7 and 12 in the as-deposited and 950◦C PDA
films, respectively. The increase of dielectric permittivity
(κ), observed after receiving thermal treatment, could be
due to a small change of the crystal symmetry, with the
formation of some small nanometer scale crystallites with
higher permittivity phases of NdAlOx [16, 17].

The leakage current densities (J) at 2 MV cm−1 in all
samples, even after 950◦C PDA, were below 1× 10−7 A cm−2

(Figure 4), which is comparable with other leading edge
high-κ dielectrics [18]. The average breakdown, regardless
the annealing treatment, also occurs at the equivalent field
strength of 7 MV cm−1.

4. Conclusions

The NdAlOx thin films deposited by liquid injection
MOCVD have been shown to remain amorphous up to
950◦C as shown by XRD analysis. No significant level
of crystallinity or movements of metal ions was also in
evidence after annealing at 950◦C as indicated in MEIS
energy spectra. Electrical properties of NdAlOx samples,
after high-temperature annealing, were presented. Good
electrical integrity was maintained even after 950◦C PDA
as shown by C-Vand I-V results, showing the extracted
dielectric permittivity of 12, a low leakage density of 7 ×
10−7 A cm−2 at 2 MV cm−1, and a density of interface states
at flatband Dit of 4.01 × 1011 cm−2 eV−1. These features
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make the neodymium aluminate a potential candidate for the
dielectric replacement.
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