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Thermal Stresses Due to a Plane 
Crack in General Anisotropic 
Material 
A solution is given for the thermoelastic stress field due to the obstruction of a 
uniform heat flux by a plane crack in a generally anisotropic body. A Green's func
tion formulation is used to reduce the problem to a set of singular integral equations 
which are solved in closed form. When the crack is assumed to be traction free, the 
crack opening displacement is found to be negative over one half of the crack unless 
a sufficiently large far field tensile stress is superposed. The problem is, therefore, 
reformulated assuming a contact zone at one crack tip. The extent of this zone and 
the stress intensity factors in all three modes at each crack tip are obtained as func
tions of the applied stress and heat flux. 

Introduction 
When the flow of heat in a solid is disturbed by some 

discontinuity such as a hole or a crack, the local temperature 
gradient around the discontinuity is increased. Thermal distur
bances of this type can produce material failure through crack 
propagation. The problem is complicated by the fact that the 
thermal distortion may cause the crack to open or close, hence 
changing the thermal boundary conditions. A number of 
studies dealing with flaw-induced thermal stresses in infinite 
isotropic regions have been published by Florence and 
Goodier (1963) and Olesiak and Sneddon (1959). For the plane 
crack in an infinite isotropic homogeneous body, it can be 
argued from consideration of symmetry that the crack faces 
will not separate and there will be only a mode II stress intensi
ty factor, unless heat is generated in the crack. 

Anisotropic Materials 
The widespread use of composite materials in structural ap

plications has generated renewed interest in anisotropic 
material behavior. In particular, information on thermal 
stress concentrations around material discontinuities in 
anisotropic bodies will have application in high-temperature 
composite materials. Solutions have been published for the ax-
isymmetric problem of the penny-shaped crack in a transverse
ly isotropic material by Tsai (1983) and for the two-
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dimensional (plain strain) problem of the Griffith crack in a 
general anisotropic material by Atkinson and Clements 
(1977). 

Atkinson and Clements (1977) give a solution for the two-
dimensional Griffith crack obstructing a uniform heat flux in 
a general anisotropic medium. They show that modes I, II, 
and III stress intensity factors are obtained unless the material 
has certain symmetries, which suggests that a mixed mode of 
fracture may occur. It also indicates that the crack must close 
for at least one direction of the heat flow. Closure is also ob
tained in thermoelastic interface crack problems (Martin-
Moran et al., 1983, Barber and Conminou, 1983) where the 
resulting change in the thermal boundary conditions at the 
crack faces leads to nonuniqueness of solution in certain cases. 

Atkinson and Clements did not consider these questions. 
Their solution assumes that the crack is always open and hence 
can only apply for a restricted range of conditions. Further
more, they did not give explicit expressions for the crack open
ing displacement from which the physical feasibility of their 
solution could be checked. 

These authors considered the cases of specified temperature 
on the crack faces and also that of a specified heat flux across 
the crack. However, the boundary condition taken for this lat
ter problem was dT/dX2 = - S (^ i ) across the crack faces and 
this can only be truly representative of the heat flux for certain 
symmetries of the thermal conductivity tensor, i.e., Kn = 0 for 
a crack lying on the Xx plane. Furthermore, there are dif
ficulties in adapting the solution method to the more general 
boundary condition, which will be addressed in a subsequent 
paper. 

In this paper the problem is reconsidered using a Green's 
function formulation which will allow us to express the solu
tion in terms of physical variables so that it is easier to deter
mine at intermediate stages whether the solution is physically 
reasonable. The method is then extended to consider the case 
where the crack is partially closed. 
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Ktj is the thermal conductivity tensor and G, is a function of 
the thermoelastic constants for the material, defined by equa
tion (42) of Sturla and Barber (1988). 

The thermal boundary conditions (5), (7), can be satisfied 
by distributing Green's functions of the above form with 
weight Q(£) in the interval — a<xx<a. F rom equations (5) 
and (9) we then have 

-K\ — = q2(xl,0)=-q0 ; -a<Xi<a (12) 
J -a Xx — £ 

where K= K22{r — f) / A-wi is a real constant . 
This distribution will generally produce a discontinuity in 

temperature in the region x2 = Q, xx > — a, but temperature 
continuity outside the crack (i.e., xl >a) can be imposed by 
enforcing the auxiliary condition 

A A A A A Jk 

Fig. 1 The thermoelastic plane crack 

Statement of the P r o b l e m 

Let xx x2 x3, denote Cartesian coordinates and suppose that 
a homogeneous generally anistropic material occupies the en
tire space except for the region x2 = 0 , Ixj I <a, - oo < x 3 < oo, 
where there is a crack. The crack obstructs the heat flow as 
shown in Fig. 1. The crack is initially assumed to remain open 
and hence be free of tractions, and to prevent the transfer of 
heat between its faces. We, therefore, have the boundary 
conditions 

— a<xx <a ; x2 = 0 

— a<x, <a ; x-, = 0 

V x f + X2 -~ oo 

*Jxf + xl — oo 

(1) 

(2) 

(3) 

(4) 

The boundary conditions, and hence the displacement, 
stress, and temperature fields, are independent of the coor
dinate x}, but we emphasize that the solution is three-
dimensional in the sense that the stress components aa and 
displacement component H3 are nonzero because of the 
general anisotropy of the material. 

It is convenient to represent the solution as the sum of a 
uniform heat flux in an unflawed solid (which involves no 
thermal stress) and a corrective solution, for which the boun
dary conditions are 

<7 /2=0 

q2~0 

a<Xi<a ; x2 = 0 

— a<xx <a ; x2 = 0 

"Jx}+xi — oo 

a , y - 0 

(5) 

(6) 

(7) 

(8) ^JXi+X2— oo 

Mathemat ica l Formula t ion 

The problem will be formulated in terms of the ther
moelastic Green 's function derived in a previous paper (Sturla 
and Barber, 1988), corresponding to a temperature discon
tinuity of magnitude T0 on the half-line x2 = 0, xx > 0. The ap
propriate heat flux and tractions on the surface x2 = 0 are 

K22{j-f)T0 

Qi= -T-. ; *2 = ° 

4TT(X, 

ai2 = GiT0log\xl\ ; x2 = 0 

(9) 

(10) 

J —a 

Equations (12) and (13) have the well known solution 

<7o£ 
Q(f) = - -a<k<a 

(13) 

(14) 

and the stresses on the plane x2 — 0 can now be found from 
equation (10) in the form 

a,2 = G / J ° o Q ( ? ) l o g l x 1 - ? l ^ 

= {q0/K)Gixi ; — a<xx<a 

= (q0/K)Gj{xx-^xY:ra2) ; xx>a 

(15) 

(16) 

(17) 

after substituting for Q( £) from equation (14) and performing 
the integration. 

To satisfy the traction-free boundary condition (6), we must 
superpose a solution of the corresponding isothermal problem 
with tractions equal and opposite to those of equation (16) in 
the r a n g e — a<xx<a. Th i s s o l u t i o n is conven ien t ly 
represented by a distribution of dislocations of strength 5 , (£) 
in the same range. The solution for a single dislocation of 
strength Bt was obtained by Stroh (1958), the corresponding 
stresses and displacement on x2 = 0 being 

d, 

2-KX, 

(18) 

(19) "* =-7- D [A^M^+A^M^djlog lx, I 
a 

in the notat ion of Stroh (1958). In particular, 

Bi = bijdj, where bij=— £ ) [AiaMaj -AmMa-\, 

Aia and MaJ are functions of the material constants, defined 
by equations (7) and (38) of Stroh (1958), and the summation 
on a is over the three roots with positive imaginary part of the 
equation 

l^/iti +Pa(cnk2 + ci2kl)+plci2k2\=G (20) 

Combining (16) and (18) the boundary condition (6) is 
satisfied if 

1 ffl did 

2-K J -a Xx-

1 f Mi)di + q0Gixl/K=0 -a<xx<a (21) 

where r is the root with positive imaginary part of the equation 

It is also necessary to impose the closure condition 

[" d,U)dt = 0 (22) 
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to enforce continuity of displacements in the region x2 = 0, 
and xx >a. Solving for d, (£) we have 

K V ^ T 2 

and hence the stresses ai2 on the plane A"2=0, \xx I >a are 
given by 

Qa^i 

K 
[xx±-Jxx

1 

>-« (x,-?)V^T2 

2K Jxf^a2 ~< •*' 
+ ; xx > a 
- I x , < - a 

(24) 

(25) 

from equations (17), (18), and (23). We note that stress inten
sity factors in all three modes are obtained at xx = a + of 
magnitude: 

q0G2 / n x 3/2 
^ =lim ~4xx-aa22= ——- (—-1 

A-j^a A \ Z / 

A- V 2 / 
Kn = lim V^! - a <r1: 

, ^0G3 / a \ 3/2 

A-m = hm Vx, - a an = —— {—) 

(26) 

(27) 

(28) 

Equal and opposite stress intensity factors are obtained at 
xx = — a. The displacement in the entire space is given by 

nog(z,-«)-i][z,-H$ 
ut = 2Re 

L 4717 J - £ 

v f« [ l o g ( « „ - € ) - l ] [ z a - { ] f 
L,AkaFaq0 — 

J - a 

•rf€ 

rff 

go 
2 ; ^ 

XXM^.J^ 

V?^T2 

($ 2 -« 2 /2 ) log(z„-£) 

sfa^¥ 
dk 

(29) 

= 2Re[-^E^^G7(^>^F?-§.] 

^*9o (a 

M 
[•y- logfe + *V^72) + -^ VF^2 - Y+«2] 

+ L A k a F a Qo [ 4 " logfea + tia2-z2
a) 

+^V^4-f+«2}] (30) 

where JŜ  and Fa are functions of the material constants, 
defined by equations (22) and (38) of Sturla and Barber 
(1987), also z, =xx + TX2 and za =xx +pax2, wherepa is defin
ed by equation (20). The temperature distribution and hence 
the strains behave like \/za as lzal—oo, therefore the 
displacement vector uk ~ log I za I when lz„l—<». 

The crack opening displacement is given by 

Au2 = u2(xl,0
 + )-u2(xu0-) 

= (q0b2JGj/2K)Xl^^x} 

using equation (36) of Sturla and Barber (1987). 
From equation (32) it can be seen that Au2 must be negative 

in either - f l < A r , < 0 o r 0 < x , < a , depending on the sign of 
byGj (except in the special case byGj = 0) and therefore the in
itial assumption of a fully open crack is invalid for either 
direction of the heat flow unless the crack has some initial 
separation between its faces or is opened by an applied tensile 
stress. If b2jGJ = 0, Au2 = 0 for all xx within the crack and 

hence there is no tendency for the crack to open or close. 
There is, however, a relative tangential displacement between 
the crack faces. This case is obtained if the material is sym
metrical about the plane xx = 0. 

For the latter case, the boundary condition (4) is modified 
to include 

022~*ao ' Vx2 +x2^co (33) 

and this new problem can be treated by superposing the solu
tion due to Stroh (1958) for the isothermal problem of a 
Griffith crack in a general anisotropic medium opened by a 
uniform tensile stress, a0. 

In particular, we find that the crack opening displacement 
(equation (32)) is increased to 

A"2 = ( g ° y xx + 2b22a0)sfa^xj, Ixx I < a (34) 

and the opening mode stress intensity factor becomes 

K,= ± 
QoG. 0G2 /_a_y 

K \ 2 / "0 +; xx >a 
-;xi<-a 

(35) 

The other stress intensity factors, Klx, Km, are unaffected 
by the applied tensile stress. 

We can always choose the coordinate system such that 
q0b2JGj<0, corresponding to the case where the crack tends 
to close at the tip xx = a. In this case, equation (34) defines a 
positive crack opening displacement for all xx provided 

<?o > ~ q0b2JGja/2b22K (36) 

Solution With Partial Contact 

If the inequality (36) is not satisfied, a negative crack open
ing displacement is predicted near xx = a and we anticipate 
contact between the crack faces, as shown in Fig. 2. The con
tact is assumed to be frictionless and to afford no resistance to 
heat flow. There is, therefore, no temperature discontinuity 
between the faces, except in the open region -a<xx <c. The 
heat conduction problem is, therefore, identical to that for an 
insulating crack of extent -a<xx <c and can be formulated 
in terms of a distribution fi(£) of Green's function in this 
range. Enforcing the condition (5) over this range we obtain 

Q(€)rf{ 
( * i - f ) 

with the auxiliary condition 

J - a (x,~ •-Qo — a<xx <a 

whose solution is 

G(£): 

Q(f)rf€ = 0 

q0 £+(a-c)/2 

(37) 

(38) 

(39) 
*K V(a + £ ) ( c - £ ) 

The mechanical boundary conditions at the crack faces can 
be stated in the form 

(31) 

(32) 

CT12 = ff23=0 

^ 2 2 = 0 

u2{xuQ
 + ) = u2{xxfi-) 

022 —^O S ff12> ff23~° 

— a<xx <a 

— a<xx <c 

c<xx <a 

s/xf +X2~ OO. 

(40) 

(41) 

(42) 

(43) 

We subtract the unperturbed uniform tension solution, 
a(xx,x2,x3) = a0, thereby modifying the boundary conditions 
(41), (43) to 

a22=-a0 ; —a<xx<c (44) 

a2 2 -0 ; V x f + x f - o o . (45) 
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As for the case of a fully opened crack, we solve this boun
dary value problem by constructing the appropriate stress and 
displacement fields in terms of a distribution of dislocations 
Bj(l-) in the range — a<xt <a. In view of the boundary condi
tion (42), the distribution B2{£) must be nonzero only in the 
range — a<X\<c, but Bu B3 extend over the entire crack 
length since slip is permitted in the contact region c < x , <a. 

The total traction on the crack faces due to the ther-
moelastic solution and the dislocation distributions can then 
be written 

A A A A 

loGi £+(a-c)/2 
a -KK J-« V ( ^ + £ ) ( c - £ ) 

' 2TT J 

\og\xx-l\dl 

+ -
= 0 , /= 1,3; — a<xx <a 

= —a0, i = 2 ; — « < x , < c 

( * i - » 
(46) 

(47) 

(48) 

The integral in the first term in equation (46) can be evaluated 
to give 

r £ + ( « - c ) / 2 ( c-a\ 

; ~a<x{<c (49) 

= -ir\xl —- + \/(xl+a)(xl-c)h x , > c 

and hence the boundary conditions (47), (48) are meet if dt (£) 
(i = 1,2,3) satisfies the integral equations 

2q0Gi 

K 

2q0G2 

K 

[*i + — H(Xi - c ) V ( x , + a) (Xj - c ) J 

J : . d,(i)dt 

2 i r J - « ( X j - i i ) 

{ - ^ l 
1 

= 0 ; /=1,3 ; — a < x , < a 

— a<Xi <c 

It is also necessary to impose the conditions 

(" 5,(?) = 0; /= 1,2,3 
J —a 

B2(£) = 0 c<Xi<a 

(50) 

(51) 

(52) 

(53) 

to ensure that there is continuity of displacement on the plane 
x2 = 0, x, >a and that the crack closes in c<xx <a. 

Since B; = bjjdj where by is a nonsingular matrix, we have 

d2(Xi) = 

4 ( 0 ^ = 0 

&21dl(*l)+623tf3(*l) 

i= 1,3 (54) 

c < x , < « (55) 
^22 

T t T 
T T T ! T T ! ! * 

> Xj 

A A 

T T T ! 
• i r v + ' l r l r ^ + l r ^ 0 

Fig. 2 The plane crack with partial contact 

1 f« rf2(0rf$ 
_ ^ r - \ - ; zr > -a<x{<c 

2ir Sc ( x , - 0 

j ' a r f 2 « ) r f { = - j c * r f 2 t t ) r f f 

(57) 

(58) 

where the expression involving d2 (J) in the range c < £ < a can 
be evaluated using equations (55), (56). 

Equations (55), (56), (57), and (58) have the solution 

rf2(«) = 
QobyGj [*-pr)Y-m'] 

bnK V(£ + a ) ( c - £ ) 

+ 2a0 
V ( $ + « ) ( c - $ ) 

<7„ (ft2 1G,+b2 2G2)r (a + c)2 

4tf 

-8tt + a)H(c-0J-4r^-l ^ t + a J 

"Lv? -S2 

(59) 

from equations (52), (53) and hence we can solve equations 
(50), (54) obtaining 

The stresses on x2 = 0 can now be obtained from equations 
(46), (56), and (59) in the form 

q0(a + c)2 sgn(x,) 

<*/({) = 
q0G,[ (a + c)2 

AK 
f (a + c)' 

L V?^T2 m + a)H(c-H) c-t 

i = l , 3 

8^ Vxf^2" 
l x , l > a j = l , 3 (60) 

(56) 
(qob2jGj /a + c\2 -; sgn(x,) 

A 022A \ 2 / J V(x, + ff)(x, • •c) 

We now write equation (51) and the corresponding closure 
condition (54) in the form a + c\2 (b2lG,+b2,G,)q0 [H(x{ -a)-H( - a - * , ) ] 

27T 
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2?0G2 f ( o - c ) - VT) 2^22^ V x T ^ P 

x , > c ; X! < —«; (61) 
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To complete the solution, we must determine the length of 
the separation zone from the condition that the stress a22 tend 
to zero at xl —c. Thus, from equation (61) we have 

4Kb22a0 

c= : — a (62) 
VobyGj 

Using equation (62), equations (60) and (61) can then be 
written 

\2 G -°° sgn(Xl) 

(63) 
*•"[•&]'"• I*! \>a i= 1,3 

CT22 = T % 
xx-c 2b22Ko\ (b2X G, + b23 G3) 

x, +a Qoi.b2jGj)2 

^ [H(xx-a)-H(-a-xx)] -;xi>c 
^fxJZTai +;xx<-a > 

Crack Opening Displacement and Stress Intensity Fac
tors. By the definition of a dislocation, we have that the 
crack opening displacement can be obtained as 

Aw2=- P B2(i)di = -bv\
Xl dj(H)dZ 

J —a J —a 

9pbyGj 

K 
(*[ —c) *J (x{ +a)(c—Xi) 

(65) 

(66) 

using equations (56), (59), and (62). Thus the crack opening 
displacement will be positive for - a < x x <c if q0b2jGj<0, as 
assumed. We note that the derivative of At/2 is also zero at the 
transition from contact to separation {xx = c), as in conven
tional contact problems. 

From equations (63) and (64) it can be seen that all com
ponents aj2 (/= 1, 2, 3) of the stress tensor are singular at both 
ends of the crack (i.e., xx ±a). The stress intensity factors are 
given by: 

2b22(b2lGi+b2iGi)K o-0
2 

K,= -
J2a(b2JGj)2 <70 

x, =a + (67) 

,[ b22Koj -[ 
1/2 _ 2b22(b2XGx+b2iG3)K o$ 

byGjCi0 

K„ • =±K. 
' • [ • 

b22 

- byGj -X 

-/2a(b2JGj)2 

<7o 
= 1,3; 

+ ; xi 
-;xx 

•• — a -

= a + 
= -a — 

(68) 

(69) 

Notice that stress intensity factors in all three modes are ob
tained at both ends of the crack, including a nonzero Kx at the 
closed tip, Xi=a. This results from coupling between the 
tangential displacements (slip) in the contact zone and the 
stress component a22, on x2 =0 . 
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