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Abstract E straincomponents,Eq.(15);
emissivity,Eq. (16)

A linear flux approach Is developed for a finite
element thermal-structural analysis of steady-state Subscripts
thermal and structuralproblems. The element fluxesare T thermal
assumed to vary linearly In the same form as the s structural
element unknown variables, and the finite element
matricesare evaluatedinclosed form. Sincenumerical Superscripts
integration Is avoided, significantcomputationaltime T transpose
saving Is achieved. Solution accuracy and compu-
tational speed Improvementsare demonstratedby Introduction
solving several two- and three-dimensionalthermal-
structuralexamples. For hypersonicvehiclesto becomea practical

reality,efficienttechniquesare neededto analyzelight
Nomenclature weightairframeandenginestructuresfor repeatedand

prolongedexposureto their severeflightenvironment.
A finiteelementarea To understand the structural response under these
{B} boundaryloadvector severeaerodynamicloads,researchin the Aerothermal
cij materialelasticconstants Loads Branch, NASA Langley Research Center has
[Dx],[Dy] elementmatrices,Eq. (6) focused on developing effective computational
E, F x and y fluxcomponents approachesforpredictingthe aerodynamicflowandthe
h convectlvehaattransfercoeff.,Eq.(16); thermal and structural response of the structure,

beamthickness,Eq. (30) includingtheirinteractions1. Theapproachesconsistof
H Internalheat generation using:(1) a generalautomatedunstructuredgriddingto
[J] Jacoblanmatrix discretizethe aerodynamicflowfield and the structure,
k thermalconductivity (2) finiteelementmethodsto solvefor the environment,
J beamlength,Eq. (30) loads, and response for all three disciplines (flow,
t, m, n componentsof unitnormalvector thermalandstructuralresponse),and(3) adaptivemesh
[M] massmatrix refinementtechniqueswitherrorindicatorsto minimize
[N] elementInterpolationfunction the numberof grid points and Increase the solution
[Px],[Py] elementmatrices,Eq. (11) accuracy.
q heatflux A Taylor-Galerkinfinite elementalgorithm,has
{R} loadvector beenusedrecentlyto predictthe aerodynamicflowfield
s distancealongboundary as well as the thermal-structuralresponse for high
T temperature speedflowoverleadingedges2. The approachutilizes:
Tr fluidrecoverytemperature (1) a Taylor series expansion in time to establish
"Is surfacetemperature recurrencerelations for time marching,and (2) the
To referencetemperatureforzero stress methodof weightedresidualswithGa/erkin'scriterion
T_, surroundingmediumtemperature for spatialdiscretization.The governingequationsare

cast in conservationform. The standard primitive
&T temperatureIncrement variablesare replacedwiththeirfluxcounterparts,which
u, v,w displacementcomponents are assumedto vary linearlyoverthe elements. This
VI elementconstants,Eqs. (21)-(28) formulationallows the finite element matricesto be
x,y, z coordinatedirections evaluatedin closedform, thereby avoidingthe more

' _ coefficientof thermalexpansion expenslve numerical Integration. Since the Taylor-
Galerkln algorithm is a time marching (transient)

ox,_y,'_xy stresscomponents algorithm,the fullbenefitsof the linearfluxformulation
a Stefan-Boltzmannconstant forsteady-state'problems(steady-stateheat transferand

static structural problems) has not been exploited.
Furthermore,moststructuralproblemsmaybe treatedas

"ProjectStructuresEngineer,AerospaceTechnologiesDivision, quasistaticevenwhenthe aerodynamicloadsand the
MemberAIAA. thermalresponseare transient.
"*AerospaceTechnologist,AerothermalLoadsBranch,Member Thepurposeof thispaperis to extendtheTaylor-
AIAA. Galerkin algorithm to steady-state thermal-structural
""Head,AerothermalLoadsBranch,MemberAIAA.
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analysis. The linear flux formulation and solution SolutionProcedure
procedureare introduced.The finiteelementmatrices
(in integral forms) which are different from those For simplicity in presenting the linear flux
appearinginthe conventionalfiniteelementformulation, algorithm,both the steady-stateenergy equationand
are presented. A methodto derivethesefiniteelement structuralequilibriumequationsarewrittenIntheformof
matricesin closedformis developedandpresentedfor a scalarequationas,
bothtwo-andthree-dimensionalelements.

The capabilityof the linear flux formulationis aE + aF = H (4)
demonstrated using four examples: (1) a thermal a--x- _
analysisof a circularplatewithinternalheatgeneration,
(2) a structuralanalysis of a beam-bendingdue to Even thoughthe derivationpresentedbelowIs for the
thermalload, (3) a thermal-structuralanalysisof a two- thermalanalysis,the procedurecan be applieddirectly
dimensional aerodynamically heated leading edge to thestructuralanalysis.
model, and (4) a structural analysis of a three-
dimensional leading edge model. Results are LinearFlux Assumptions. Thekeyfeatureof the linear
comparedwith available analytical solutionsand the fluxformulationinthe thermalanalysisis to assumethe
conventionalfiniteelementsolutions, distributionof the elementheat fluxesE and F in the

same form as the element temperaturedistributionT,
Thermal-Structural Formulation thatis

The derivationof finiteelementequationsusinga T ( x,y ) = [ N ( x,y )] { T }
linear flux formulation Is presented for steady-state E( x, y ) = [ N ( x,y ) ] { E } (5)
thermal and structuralanalyses. For simplicity,the F ( x,y) = [ N ( x,y )] { F }
derivation presented herein is for two-dimensional
problems. Extensionto three-dimensionalproblemsis where [N(x,y)] are the element interpolationfunctions,
straightforward.Thegoverningequationsarewrittenin and {T}, {E} and {F} arethevectorsof theelementnodal
conservationformsothatthe linearflux formulationcan quantities. The assumptionof a lineardistributionof
be useddirectly. This formulationyields finiteelement element fluxes E and F whichare interpolatedIn the
matrices which can be evaluatedin closed form. A same form as other dependentvariables (e.g. T, as
method to evaluate these closed form matrices is shownin Eq. (5)), is widelyused in the computational
describedfor bothtwo-andthree-dimensionalelements, fluiddynamics2.

Governing Equations FiniteElementEquations. Thefiniteelementequations

Heat Transfer. The steady-statethermalresponseof are derivedusingthe methodof weightedresiduals3,
a structure is governed by the energy equation in The governingdifferentialequation,Eq. (4), Is multiplied
conservationform, by the weightingfunctions,[N(x,y)],andintegratedover

the elementareaA. Integrationby partsis performedto

o_ _ produce element Integral terms and the boundary
_)-"x"(ET) + dy ( FT ) = HT (1) surfaceintegralterms for applicationof differenttypesof

thermalboundaryconditions.Detailsof the derivation

wherethe subscriptT denotesthe thermalanalysis,ET follows the conventional finite element approachdescribed In Ref. 3. The finite element equations
andFT arethe heatfluxcomponents,andHT is the heat obtainedare Inthe form,
sourceper unitvolume. The heatfluxesET andFT are
relatedto temperaturegradientsby Fourier'slaw. [ Dx] {E} + [ Dy] {F } + { R} + { B} = 0 (6)

Structural Response. The staticstructuralresponse Inthisequation,thematrices[Dx]and[Dy]are
is governed by the equilibrium equations In

conservationform, [ Dx] = f { -_-xN } [ N] d A (7a)

0"--x"{Es} + {F } = 0 (2)
[Dy] = _{_-1 [N] dA (7b)

where the subscript s denotes the structuralanalysis. A
The vectors {Es} and {Fs}, which contain the stress The element nodal vector, {R}, associatedwith the heat
components,are given by source, H, Isdefinedas

{Es}T == % ]
{R} = f{N} H dA (8)

{Fs}T = [% o'y ] (3) A
J

The vector{B} representingtheboundarynodalvectoris
The stresscomponentsax, _y,and'_xyare related definedas

to the displacementgradientsandthe temperatureby
the generalizedHooke'slaw.



{B} = f(N}[N] ds it{E} +re{F}) nodal stress components In two dimensions areobtainedusingthe constitutiverelations,
$

= fiN}iN] ds (q} (g) GI = clle] + I)=(T'To) 1,j=1,2,3 (15)
8

where _j are the nodalstraincomponents,and To is
' where i and m are the componentsof a unitvector the referencetemperaturefor zero thermalstress. The

normal to the elementboundary. The finite element matedalelasticconstants,cij,andthethermalexpansionmatricesshownIn Eqs. (7)-(9) are evaluatedIn closed
formas willbe demonstratedInthesubsequentsection, parameter,Pi,may betemperaturedependent.

Since the fluxes, E and F, are related to the
temperaturegradientsgivenby Fourier'slaw, Boundary Conditions. The boundaryconditionsfor

thermal analysisare appliedvia the boundary nodal

E = -k _T (10a) vector{B}showninEq. (9). Thevector{q} appearingIn
o_'--_" this equation may be replaced by different types of

boundaryconditions,
8T (IOh)R = -k2"7

0 (insulated)

wherek Is the materialthermalconductivity,theelement
nodal flux vectors,{E} and iF}, can be expressedIn qs (specifiedheating)
termsofelementnodaltemperature,{T},as q = .< (16)

hits - Tr) (surfaceconvection)
{E} = - kIPx] {T) (lla)
(F} = - k [Py] (T} (11b) 4 4

E<_(Ts- T.) (surfaceradiation)
where the matrices,[Px] and [Py], are relatedto the
element shape and are given in the Appendix. The The boundary conditions for the structural
elementnodal fluxvectors,Eqs. (11a) and (11b), are analysis,suchas the appliedsurfacepressure,can be
substitutedIntoEq. (6) to obtainthe finalfiniteelement added into the structuralequationsvia the surface
equations In terms of the unknownelement nodal boundaryvector. The procedureis identicalto that for
temperature,{T},inthe form, the thermal analysis previously described and Is

thereforeomitted.
[K](T) = (R) + (a} (12)

Derivation of Closed Form Finite Element
wherethestiffness(orconduction)matrix,[K],isgivenby Matrices and Element Nodal Gradients

[K] = k [Dx] [Px] + k[Dy] [ Py] (13) Allfiniteelementlntegrals,suchas [Dx],[Dy], and
{R}, which are given by Eqs. (7) and (8), can be

Equation(12) is In a formsimilarto that obtainedfrom expressedIn'closed forms. This is true for simple
the conventionalfiniteelementapproachexceptthatthe elementtypes(rods,trianglesandtetrahedrons)as well
latterstiffnessmatrixIsdeflnedby as for more popular elements (quadrilaterals and

hexahedrons).In addition,closedformexpressionsfor

[K] J'k °_N aN other finite element Integrals(suchas the consistent= (_ } [ _ ] dA + mass matrix) and the gradientsof elementvariables
A (such as o_T/_)x)which are normallyrequiredIn other

_N o_Nk {--_--}[_--]dA (14) finite element formulationscan be obtainedby the
A proceduredescribedbelow.

Quadrilateral Element
Evaluationof the conventionalstiffnessmatrix,[K], for
some element types, such as the two-dimensional Typical finite element integrals for a general
quadrilateral and three-dimensional hexahedral quadrilateralelement, as shownin Fig. 1, are given
elements,requiresthe useof numericalIntegration. belowusingnaturalcoordinates

For nonlinearproblems(e.g. due to temperature
dependentthermalconductivity),Eq. (12) Is solvedby 1 1

the Newton-Raphson Iteration technique3,4. This [i] =/j" iN] T iN] IJI d_dq (17)
procedure is Identicalto that used In the conventional .1 -1
finiteelementapproach, i i

The approachpresentedfor the thermalanalysis
[Dx] j'j" _)N iN] IJI dE,dq (18)is applieddirectlyto derivethe finiteelementequations = (_"}

• for the structuralanalysis.The equationsareIdenticalto .i-i
Eqs. (5)-(13), where the temperaturevector, [T}, is
replaced by the displacementvector containingthe where [M] Is theconsistentmassmatrixand [Dx] Is the
componentsu and v In x- and y-directions,and the element matrix previouslydefined in Eq. (7a). The
vectors{E} and (F} representthe elementnodalstress determinant of the Jacoblan IJI represents the
components. For elasticorthotroplcmaterials,typical transformationfromthe elementglobalx-y coordinates

3



to the natural coordinates F.,-_I (see Fig. 1). The an example,V1 is obtalnedby equatingEqs. (22) and
transformationpermits the element Integrationto be (19)withthepropertyat node1 (_=rl=-I In Fig.1) to give
evaluated over a square. The determinantof the
Jacobianfor the two-dimensionalquadrilateralelement V1 = [(x2- xl) Y4 + (xl "x4) Y2 + (x4"x2) Yl]/4 (23)Is

The useof the determinantof the Jacobianinthe

Jll J12 formof Eq. (21) Insteadof the originalEq. (19) permits
IJ I J21 J;_ the finite elementmatrices,(Eq. (17) and (18)), to beevaluatedin closed forms. The use of the symbolic

__._: _ 4 manipulation program MACSYMA5 greatly simplified_1( NIxl) at I_ ( NIYl) thisevaluation.Thedeterminantof theJacobianintheformof Eq.
= (21) Is also usedto deriveclosedformexpressionsfor

a 4 a _( ) the element gradients. For example, the element_" t_ ( Nfxj) _" NIYl temperaturegradient,aT/ax,isgivenby

°' ['"J LJ= _-_I_(NIxI).-_- i_ ( NIyl) aTa-"Z=_l(J22 "_- "J,2 _" ){T} (24)
_ 4 2 4

--_a_,._(Nly,). _-i_(Njx_) (19) where J12 and J22 are defined in Eq. (19). The
where temperature gradient at node 1 can be determined by

setting _=_1=-1to yield
1

NI=Nt( _, 1])=_-(1+ _F_i)(l+qTIt) i=1.....4 (20)
aT (T2"T1)Y4 + ( TI"T4) Y2+ (T4"T2)Yl (25)

The algebraic expressionfor the determinantof _ Inode1 = (X2- X1) Y4+ (Xl "X4 ) Y2+ (x4"x2)'Yl
the Jacobian shown in Eq. (19) is in the form of the

partial derivativesof the element interpolation functions where subscripts denote the element node numbers
Ni(_,11)and the element nodal locations(Xl,Yi; i = 1.....4). shownIn Fig.1.
The expression for the determinant of the Jacoblan Is The approach presented here Is used to derive
quite lengthy (contains a total of 64 terms if fully closed form expressions for the other finite element
expanded),and thus resultsin a tedious taskfor deriving matrices(eg. [Dy], and {R}) and nodalvariablegradients.
the closed form element matrices (Eq. (17) trod (18)). These closed form expressions are used In the
Such a task becomes almost impossiblefor the three- formulationfor both thermaland structuralanalyses.
dimensional 8-node hexahedral element in which the
determinantof the Jacobian, If fully expanded,contains HexahedralElement
approximately 200,000 terms. To overcome this
difficulty,the determinantof the Jacobtanis rewrittenIn The three-dimensionalfiniteelementmatricesare
an alternatesimplerform, inthe sameformas shownin Eqs.(17) and(18), except

that integrationIs performedover the elementvolume.

IJI = _:N_(_,,11)Vj (21) For an 8-nodehexahedralelementas shownIn Fig. 2,the elementinterpolationfunctionsare,

where Ni(_,,11)are the functions of the natural 1
coordinates _ and "q,and are selectedso that Eq. (21) NI= NI(_,1],r_)=_- (l+F_l) (1+111-11)(l+r_ i) i=1.....8 (26)
represents the complete order of polynomialsof _ and

and the determinantof the JacobianIs given by,
TI as appearing in the original Eq. (19). The unknown

constants,Vi, are functionsof the nodalcoordinatesand _ _are to be determined. For a two-dimensional (_Ntxl) (£NlYl) (£Nizl)

quadrilateral element, the functions, Ni(F,,_I),can be _ _ _._represented by the Isoparametricquadrilateralelement (£NIxl) (£NlYi) (£NIzl) (27)
interpolationfunctions,Ni(F_,TI),as given by Eq. (20). IJ] --
Equation(21) then becomes _-_-(T..N,x,) _-_(T_.N,y,)_--_- (£N,z,)

4

I J [ = I_ Nt(_'11) Vt By following the procedure described In theprevioussection,the above determinantof the Jacoblan

N1V1 + N2V2 + N3 V3 + N4V4 (22) is rewrittenIn an-alternatesimplerform as in Eq. (21). In= three dimensions, the hexahedral element Interpolation

The unknowns, Vi , I=1.....4, can then be determined functions, Ni(_,l],t_),givenIn Eq. (26), can not be usedto
representthe function,Ni(_,ll,t;),in the same fashionas

easily usingthe propertiesof Ni(_,_), that is Ni(_,11) in the two-dimensionalJacobianformulation. This ts
equalto unityat nodeI andzeroat theothernodes. As becausethe hexahedralelementinterpolationfunctions,



Ni(F,,11,_],do not provide a completepolynomialas analytical method, linear flux approach, and the
requiredby the determinantof the JacoblanshownIn conventionalapproachare shownin Table 1. These
Eq. (27). Therefore the functions, NI(P_,_,4),are resultsIndicatethat the linearflux formulationprovides
represented by 27-node Langrange cubic element slightly higher solution accuracy compared to the
interpolationfunctionsto obtaina simplerform for the conventionalfiniteelement formulation.This Is due to
Jacoblandeterminant,givenas Eq. (28) the fact that four Gauss point numericalIntegration,

whichis commonlyused to evaluatethe conventional
finiteelementstiffnessmatrix, (see Eq. (14)), can not

IJ I = _ NI(_,,11 _) VI i=1.....27 (28) provide exact Integration for arbitrary quadrilateral
_.1 ' elementshapes.

The unknownsVi are determinedby equatingthe Eqs.
(27) and (28) at the nodal locationsof the Lagrange Table 1 Comparativenodaltemperature(OF)anderrors
cubic element. The programMACSYMA5 was usedto
derive these unknowns,VI, as well as the associated
element matricesand the element nodal gradientsin location Analytical Linearflux Conventional
closedform. The algebraicexpressionsforthe matrices Eq. (29) Temp. Error Temp. Error
andthegradientswerevery lengthythereforetheywere % %
translatedintoFORTRAN statementsusingMACSYMA
andwereuseddirectlyinthe analysiscode. The useof A 100.0 96.9 3.1 96.5 3.5
these closed form expressions reduces the B 92.0 88.3 4.0 87.9 4.4
computational time compared to the traditional C 68.0 67.8 0.3 67.3 1.0
numericalintegration,as will be demonstratedin the
nextsection.

The computationaltime for linear flux approach
Appllcatlon and the conventionalapproachare given in Table 2.

The comparisonof the computationaltime Indicatesa
Fourexamplesare presentedto demonstratethe 39% savingsfor the linear flux approach. The time

accuracyandcomputationalefficiencyof the linear flux savingsis due to the use of the closedformalgebraic
formulation.Theseconsistof:(1) a thermalanalysisof a expressionsrather than the numericalIntegrationto
circular plate with internal heat generation, (2) a evaluatethefiniteelementstiffnessmatrix.
structuralanalysis of a beam bendingdue to thermal
load, (3) a two-dimensionalthermal-structuralanalysis Table 2 ComparativeCPUtime(CRAY-2
of an aerodynamicallyheatedleadingedge model,and seconds)forevaluatingelement
(4) a three-dimensional structural analysis of an stlffnessmatrlx
aerodynamicallyheated leadingedge model. Results
obtainedby the linear flux formulationare compared
withavailableanalyticalsolutionsandthe conventional Linearflux Conventional % Savingfiniteelementsolutions.

CircularPlateWithInternalHeatGeneration 0.1036 x 10-3 0.1690x 10-3 39

A 20 in.diameterstainlesssteelcircularplatewith
internalheat generationand specifiedzero temperature BeamBendingDue to"thermalLoad
along the circumferentialboundaryshownin Fig. 3 Is
used as the first example. Analyticalsolutionfor the As a secondexample,a 4 In. long,0.1 in. thick

stainlesssteel beam pinned on the bottomedges Is
variationof temperaturein the plateis available andIs considered and Is shown In Fig. 5. The beam Is
givenby assumedto be flat,and stressfree at roomtemperature.

The beamtemperatureIs raiseduniformlyby 65°F. TheT (r) = ( 100- r2 ) (29) edgeconstraintscausethe beam to bendIntoa convex
shape. At this relatively low temperatureand small

whereQ is uniformlydistributedinternalheatgeneration deformation, beam structural response may be
,rateper unitvolume,k theplatethermalconductivityand approximatedby the beam-columntheory6, In which
r the plate radialdistance. Due to symmetry,only a shear effects are neglected. For cylindricalbending,
quarter of the plate is modeledwith 10 quadrilateral flexuralrigidityofthe beam,D, Is equalto Eh3/12,where
elementsas showninFig.3. Thedistortedquadrilateral E Is themodulusofelasticityandh Is the thicknessof the
elementshapewasselectedto evaluatethe formulation beam(see Fig.5). Thedeflection,v(x),Isgivenby7

• performance under an arbitrary unstructuredmesh

condition, h I cos_.__..__._x-1 ) (30)The plate temperaturedistributionobtainedfrom v ( x ) = _-, ;L!
the linear flux formulation Is compared-with the COS

analyticalsolution(Eq. (29)) andthe conventionalfinite
elementsolutionin Fig.4. Becauseof the crudemesh
used in the model, both finite element solutions wherells lengthofthebeamand_. isq-_.Theaxlal
underpredictthe temperaturedistribution.The tempe- constraintforce,P, Iscomputedfrom
raturesat nodesA, B,andC (seeFig.3),obtainedbythe



p f h2 _.1 aerodynamic heating(qs In Eq. (16)) is convertedInto
h---E-+ Y _'tan (2) + the surfaceconvectionboundarycondition(h(Ts-Tr)inEq. (16)). It shouldalsobe notedthatthechangeInthe

t sin_.t,, surface convectioncoefficient, h, with the surface
h2 P ( 2 __ ) . (z&Tt = 0 (31) temperature,Ts, Is smallcomparedto thechangeInthe
8 D cos2 }..tt heatingrate,qs.

2 The predicted steady-state leading edge
temperaturecontoursandthe outersurfacetemperature

wheret_Tis thebeam temperatureIncrement. distributionare comparedwith the conventionalfinite
Usingsymmetry,one-halfof thebeamIs modeled element solutions in Fig. 9. The temperature

with 160 quadrilateral finite elements. The finite distributionsobtainedfrombothapproachesare almost
elements are uniformly distributedwith 40 elements identicalwith the maximumdifferenceof 0.2% at the
along the beam length and 4 elements throughthe noseof the leadingedge wherethe peak temperature
beam thickness. Both the linear flux and the occurs.
conventionalfinite element approachesyield identical The aerodynamicpressureon the leadingedge
beam deflections. The predicteddeflectiondistribution and the flow pressurecontours8 are shownin Fig 10.
is comparedwiththe solutionfromthebeamtheory,(Eq. Thepeakpressureoccursat the flowstagnationpointon
(30)), In Fig.6. The figureshowsa very goodagreement the noseand the pressureis nearlyuniformon the top
of the beam deflectiondistributionswith the maximum and bottomsurfaces. This aerodynamicpressure(Fig.
differenceof about2% atthebeamcenter(x--0). 10) andthe leadingedge temperature(Fig.9) are used

The predictedbeam deflectionobtainedfromthe as the aerothermalloads for predictionof the leading
linearflux formulationdemonstratesthe capabilityof the edge structuralresponse. The leadingedge material
approachfor providingthe same solutionaccuracyas properties,such as the modulusof elasticityand the
the conventional finite element approach for the coefficient of thermal expansion, are temperature
structuralanalysis. Of course,the computationaltime dependent9. The finiteelementdiscretizationpreviously
savingof 39% Is still achievedin the evaluationof the used In the thermal analysis Is also used for the
finiteelementstiffnessmatrix, structuralanalysisto eliminatethe data manipulation

normallyrequiredby the differentanalysisdisciplines.
Two-DimensionalLeadingEdgeModel The predictedtangentialstresscontourssuperimposed

on the deformedleadingedge are shownin Fig. 11.
To furtherdemonstratethecapabilityof the linear The Increased leadingedge temperaturecauses the

fluxformulationforboththermalandstructuralanalyses, leadingedge to expand. The temperaturedifference
the approachis appliedto predictthe thermal-structural between the lower and upper sections (higher
response of an aerodynamicallyheated leadingedge temperatureon the lower section)causesthe leading
subjectedto a high speed flow. The leading edge edge to bendand rotateupward. The figureshowsthat
consistsof a 0.25 In. nosediameter,3 In. longmodel the tangentialstress,whichis primarilycausedby the
made of 0.1 In. thlck Inconel617 alloyas shownin Fig. temperaturedifference between the two sections,is
7. The thermal boundaryconditionsalong the outer relativelylow. Theseresultsare In excellentagreement
surface consist of applied aerodynamicheating and withtheconventionalfiniteelementresultsIndicatingthe
emittedsurfaceradiation.The leadingedgeIs Insulated validityof the"linear fluxformulationfor the structural
along the Inner surface. A schematicof the finite analysis. Again, a 39% computationaltime savingIs
element model, which consistedof 508 quadrilateral achievedusingthe linearfluxapproach.
elementsis giveninthefigure. ThemeshIs gradedwith The predictedstructuralresponseobtainedfrom
five elementsthroughthe thlcknessand 127 elements the two-dimensionalleadingedge modelis basedon a
along the circumference. Approximately70% of the plane strain assumption. The use of thisassumption
elementslie inthe0.25 In. noseofthe leadingedge. resultsin highcompressiveaxial stresses(-150 ksl)In

The aerodynamicheatlngalongthe leadingedge the directionnormalto leadingedge cross-section.A
outer surface and the aerodynamic flow field three-dimensional analysis with the appropriate
representedby theMach numbercontoursare shownIn boundaryconditionswould provide a more realistic
Fig.8. TheseflowsolutionswereobtainedfromRef.8 leadingedge axial stressprediction. Sucha structural
by solving the Navler-Stokesequations. The Mach analysisIs presentedInthenextapplication.
numbercontours Indicatean unsymmetdcbow shock
shape from the free streamMach 5.25 flow,whlchIs Three.Dimensional Leading Edge Model
Inclined12.5° relativeto thebottomof the leadingedge.
The aerodynamicheating rate distributionis relatively As mentioned In the theoretical formulation
lowalongbothloweranduppersurfacesof the leadlng section,theextensionof the linearfluxapproachto three
edge comparedto the stagnationpoint heating rate. dimensionsIs straightforward.The approachhasbeen
The aerodynamicheatingrate on the lower surface is extendedfor both the thermaland structuralanalyses
slightlyhigherthanthe uppersurface. Theaerodynamic usingthe 8-nodehexahedralelement. The use of the
heatingIncreasessignificantlyat the nosebecausethe hexahedral element is preferred over other three-
flowstagnatesInthatregion, dimensionaleli_menttypes (such as the tetrahedral

The leadingedge aerodynamicheating,shownIn element)to reducethe computermemory requiredfor
the Fig. 8, was predictedassumlnga uniformsurface the analysis (a hexahedral element consistof five
temperatureof 530°R. Duringthe transientresponse, tetrahedralelements). The purposeof presentingthis
the aerodynamicheatingrate decreasesas the leading applicationIs: (1) to comparethe linearfluxsolutionwith
edge temperatureIncreases.Thus, to obtaina realistic the conventionalfinite element solutionfor a three-
leading edge temperature response, the specified dimensional problem, (2) to demonstrate the



computationaltime saving,and (3) to predicta more Appendix
realisticloadingedgeaxialstross.

The linearfluxapproachis appliedto prodictthe CIosodFormFiniteEIomontMatrices
leading edge structural rosponse using the three-
dimensionalmodelshownin Fig. 12. The meshon tho The closedformexpressionsofthe finiteelement
leadingedgecross-section(x-yplane)is identicalto the matrices for two-dimenslonalquadrilateralelement,
two-dimensional model described in the previous suchastho [Dx]matrix,shownin Eq. (7),are
example. The meshisextendedwitha totalof 10 layers
in the z-direction.The aerothermalloadsconsistof the Dx( 1 , 1 ) = - Dx( 3,3 ) = - (Y4-Y2)/ 6
temperaturedistribution(Fig. 9) and the aerodynamic Dx(2,2) = -Dx(4,4) = -(yl-y3)/6
pressure(Fig.10) whicharetakento beuniforminthez- Dx(1,3) = -Dx(3,1) = -(y4-Y2)/12direction.

The predictedaxialstresscontourssuperimposed Dx( 2,4 ) = - Dx( 4,2 ) = - (Yl - Y3)/ 12
on the deformed leading edge along the midsection
(sectionz=0.75 in.) are shown in Fig. 13. This figure Dx(1 ,2) = - ( Y4 + Y3 - 2 y2)/12
showsa more realisticaxial stressdistributionwhich Dx(_1, 4 ) = - (2 Y4 Y3 Y2)/12
resembles the temperature distribution. The peak Dx( 2, I ) = ( Y4 + Y3 2 Yl) / 12
compressivestressof approximately20 ksl(compared Dx(2,3) = - ( Y4 2 Y3 + Yl)/12
to 150 ksi for 2-D model)occursat the nose of the Dx(3,2) = ( Y4 2y2 yl)/12
leadingedge wherethe temperatureIs maximum.This Dx( 3,4 ) = (2 Y4 Y2 Yl) / 12
significantreductionoccursbecausethere Is no axial Dx(4,1 ) = - ( Y_ + Y2 2 yi)/12
constraint as the two-dimensional case. The Dx(4,3) = -(2 Y3 Y2 yl)/12
conventionalfinite elementanalysissolutionis nearly
identicalwith a maximumdifferenceinthe deflectionat wherexi andYi,i=1.....4 are nodalcoordinatesof
the leadingedgenoseof lessthan0.5%. Thelinearflux the element based on the element node numbering
approachshows a computationaltime savingof 78% schemeshownInFig.1.
over the conventionalfinite element approachin the Theelement flux variationand theelementnodal
evaluationof the hoxahedralelementstiffnessmatrix, variablesare relatedthroughthe matrices[Px]and[Py]
Such a significantcomputationaltime savingIs due to given in Eq. (11). Tho matrix,[Px],as an example,]s
the use of closedformalgebraicexpressionsinsteadof givenby
the 8-Gauss point numericalintegration. Of course,

fewer Gauss point Integrationcould be used at the Px(1 1 ) = (Y2"Y4)/4V1
expenseof accuracy. Px( 1 2 ) = (Y4-Yt)/4 V1

ConcludingRemarks Px( 1 4 ) = (Yl "Y2)/ 4 V1
Px(2 1) = (Y2"Y3)/4V2

A linearfluxapproachfor finiteelementthermal- Px( 2 2 ) = (Y3"Yl)/ 4 V2
structural analysis was presented. The approach Px(2 3) = (Yl-Y2)/4V 2
employsthe assumptionthatthe fluxesvary linearlyas Px( 3 2 ) = (Y3"Y4)/ 4 V3
the dependentvariables over the element. Such an
assumption is widely used in computational fluid Px(3 3) = (Y4-Y2)/4V 3
dynamics. The finiteelementequationsforsteady-state Px( 3 4 ) = (Y2"Y3)/ 4 V3
thermaland structuralanalysesare derived. The finite Px(4,1) = (Y3"Y4)/4 V4
elementequationsconsistof the finiteelementmatrices Px( 4,3 ) = (Y4"Yl) / 4 V4
in integralformwhichare differentfromthoseappearing Px( 4,4 ) = (Yl"Y3)/ 4 V4
inthe conventionalfiniteelementformulation.A method Px( 1 , 3 ) = Px( 2,4 ) = Px( 3,1 ) =Px( 4,2 ) = 0
wasdevelopedto derivethesefiniteelementmatricesin
closed form and the details of the derivation was whereVI, I=1.....4 are the constantsshownIn Eq. (22),
described. The use of the closed form algebraic andaregivenby,
expressionsfor evaluatingthe finite elementmatrices

reduces the computationaltime by 39% for the 2D V1 = [(x2-xl)Y4 + (xt" x4)Y2+ (x4"x2)Yl]/4problemsand 78% for the 3D problemscomparedto
numericalIntegration. The linearflux formulationalso V2 = [(x2-xl) Y3 + (xl "x3)Y2 + (x3"x2)Yl]/4
yieldsslightlyhigheraccurateresultscomparedto the V3 = [(x3-x2)Y4 + (x2-x4)Y3+ (x4"x3)Y2]/4
conventionalfinite elementformulation. V4 = [(x3- xl) Y4+ (x.1"x4)Y3+ (x4"x3)Yl]I4

Four thermal and structural problems were
analyzed, and the results compare favorably with
available analytical and conventional finite element
results. The examples have demonstratedthe viability
of the approach to Improve the disciplinary analysis
efficiency for practical steady-state thermal-structural
problems.
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