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Abstract In the Western Alps, the Piemont-Ligurian

oceanic domain records blueschist to eclogite metamorphic

conditions during the Alpine orogeny. This domain is

classically divided into two ‘‘zones’’ (Combin and Zermatt-

Saas), with contrasting metamorphic evolution, and sepa-

rated tectonically by the Combin fault. This study presents

new metamorphic and temperature (RSCM thermometry)

data obtained in Piemont-Ligurian metasediments and

proposes a reevaluation of the P–T evolution of this

domain. In the upper unit (or ‘‘Combin zone’’) tempera-

tures are in the range of 420–530 �C, with an increase of

temperature from upper to lower structural levels. Petro-

logical evidences show that these temperatures are related

to the retrograde path and to deformation at greenschist

metamorphic conditions. This highlights heating during

exhumation of HP metamorphic rocks. In the lower unit (or

‘‘Zermatt-Saas zone’’), temperatures are very homoge-

neous in the range of 500–540 �C. This shows almost

continuous downward temperature increase in the Piemont-

Ligurian domain. The observed thermal structure is inter-

preted as the result of the upper and lower unit

juxtaposition along shear zones at a temperature of

*500 �C during the Middle Eocene. This juxtaposition

probably occurred at shallow crustal levels (*15–20 km)

within a subduction channel. We finally propose that the

Piemont-Ligurian Domain should not be viewed as two

distinct ‘‘zones’’, but rather as a stack of several tectonic

slices.

Keywords RSCM thermometry � Zermatt-Saas �

Combin � Cignana � HP and UHP metamorphism

1 Introduction

The northern part of the Western Alps, located between the
Rhoˆne-Simplon and the Aosta-Ranzola faults, represent a
‘‘transition’’ zone where many paleogeographic domains

were continuously accreted within the alpine orogenic
wedge. Within this orogenic wedge, the Piemont-Ligurian

oceanic domain recorded blueschist to eclogite facies

metamorphic conditions during the Alpine orogeny. The
Piemont-Ligurian zone is classically divided, according to
their metamorphic evolution, into a greenschist to blue-
schist facies unit (Combin zone), and an eclogite to UHP
facies unit (Zermatt-Saas zone) (e.g. Bearth 1976; Dal Piaz
1988; Balle`vre and Merle 1993). Much attention has been
paid to the metamorphic evolution of the HP to UHP
Zermatt-Saas zone because of well-preserved eclogite facies
assemblages in metabasites (e.g. Bearth 1967; Ernst and Dal
Piaz 1978; Oberha¨nsli 1980; Barnicoat and Fry 1986;
Bucher et al. 2005), coesite inclusions within garnets in
metaradiolarites (Reinecke 1991) and micro-diamonds in
metamorphosed seafloor Mn nodules (Frezzotti et al. 2011).
The Combin zone contains only few relics of blueschist
facies assemblages in both metabasites (Ayrton
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et al. 1982; Sperlich 1988; Bucher et al. 2004) and meta-

pelites (Pfeifer et al. 1991; Bousquet et al. 2004), which
makes its metamorphic evolution difficult to assess. The
contact between both zones is interpreted as a major con-
tact, known as the Combin fault (Balle`vre and Merle

1993), that played an important role in the exhumation

of HP metamorphic rocks within the orogenic wedge (e.g.
Reddy et al. 1999; Froitzheim et al. 2006). However,
the limit between both zones is sometimes difficult to
define in the field (e.g. Cartwright and Barnicoat 2002;
Bucher et al. 2004).

In order to better constrain the metamorphic evolution of
the Piemont-Ligurian domain, we investigated the tem-

perature record in the oceanic metasediments of the

different units, using Raman spectroscopy of carbonaceous
material (RSCM, Beyssac et al. 2002). This method allows
quantifying the maximum temperature reached during the
metamorphic evolution. As carbonaceous material is

ubiquitous in metasediments in the area of investigation,
this method is particularly suitable for quantifying the
metamorphic evolution. We also analysed the metamorphic

assemblages in metasediments, in order to correlate the
estimated temperatures with P–T evolution of the different
units. Samples were collected in the northern Western Alps
at different structural levels of the Combin zone, across the
Combin fault, and in the Zermatt-Saas zone.

We present in this work a combined petrological and

RSCM study. Results of 62 RSCM temperatures obtained

in the Combin and Zermatt-Saas zones in the northern part

of the Western Alps are compared with new data on the

metamorphic evolution of the Piemont-Ligurian units. The

distribution of temperatures is discussed in the frame of the

nappe structure and the P–T evolution of the Piemont-

Ligurian units in the northern Western Alps.

2 Geological setting

2.1 Regional geology

The study area is located in the northern part of the Wes-

tern Alps. This region is characterised by a nappe-stack of
different protolithic and paleogeographic origin (Fig. 1):

– oceanic derived units: the Sion-Courmayeur zone from

the Valaisan ocean, and the Tsaté and Zermatt-Saas

units from the Piemont-Ligurian ocean.

– continent derived units: the Grand St. Bernard nappe

system and the Monte Rosa nappe from the Briançon-

nais microcontinent, and the Dent Blanche nappe and

the Sesia zone from the Apulian margin.

The Piemont-Ligurian domain, is a structurally com-

posite domain which is classically divided in two ‘‘zones’’

based on stratigraphic, tectonic and metamorphic criteria:
an upper unit, also called ‘‘Combin zone’’, and a lower
unit, the ‘‘Zermatt-Saas zone’’ (e.g. Dal Piaz 1965; Bearth
1967, 1976; Dal Piaz and Ernst 1978; Sartori 1987; Dal
Piaz 1988). In the following we will describe the main

characteristics of both units, mainly on the stratigraphic,
tectonic and metamorphic descriptions available in the
Western Swiss Alps, underlining the correlation of units
with the Italian Alps (Aosta valley).

2.2 The upper unit or ‘‘Combin zone’’

Since the work of Argand (1909), who introduced the term
of ‘‘Combin zone’’, several studies related to the stratig-
raphy and the internal structure of this zone have been
published (e.g. Bearth 1976; Marthaler 1984; Sartori 1987;
Dal Piaz 1988; Escher et al. 1993; Sartori and Marthaler

1994). However, there are still different interpretations
regarding the internal structure and the tectonic evolution
of this complex zone. The upper unit (UU) is composed of
several tectonic nappes of different paleogeographic origin.

The Tsate´ nappe (Sartori 1987) mainly consists of oce-
anic rocks: metagabbros, serpentinites, metabasites,

calcschists and marbles of Jurassic-Cretaceous age. The
metabasites and metasediments of the Tsate´ nappe show
few occurrences of mineral assemblages indicating HP
metamorphism. Sodic amphibole (glaucophane or crossite)
and lawsonite relics, sometimes associated with garnet,
have been described locally in metagabbros, metabasalts

and prasinites (Dal Piaz and Ernst 1978; Ayrton et al. 1982;
Sperlich 1988; Vannay and Alleman 1990; Cartwright and
Barnicoat 2002; Bucher et al. 2004). Carpholite pseud-
omorphs have also been described in the calcschists located
NW of the Dent Blanche nappe (Pfeiffer et al. 1991), as
well as relics of garnet, Mg-rich chloritoid and phengite in
the Zermatt area (Bousquet et al. 2004, 2008). Maximum

P–T conditions are however still poorly documented. The
available estimates are in the range of 9–12 kbar and
300–475 �C for metabasites (Reddy et al. 1999; Cartwright 
and Barnicoat 2002) up to 15 kbar and 450 �C in metase-

diments (Bousquet et al. 2008).
At the base of the Tsate´ nappe, or sometimes inter-

mingled inside the Tsate´ nappe, occur discontinuous exotic
sheets: the Cimes Blanches (Pancherot-Cime Bianche unit
in the northern Aosta valley) and Frilihorn nappes (Dal
Piaz 1988; Escher et al. 1993). They mainly consist of
rocks of continental origin: quartzites, schists, marbles,

dolomites and conglomerates of Permian to Cretaceous
age. These nappes are interpreted as exotic decollement

sheets derived from Mesozoic continental cover sequences
of the Brianc¸onnais domain (Marthaler 1984; Sartori 1987;
Dal Piaz 1988; Vannay and Alleman 1990; Escher et al.
1993) that were incorporated during early stages of
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formation of the Piemont-Ligurian accretionary prism 
(Marthaler and Stampfli 1989; Sartori and Marthaler 1994). 
Other studies also propose that the Frilihorn and Cimes 
Blanches nappes are derived from the Mesozoic sedimen-

tary cover of the Sesia-Dent Blanche basement nappes, 
incorporated within the accretionary prism during early 
stages of deformation (Froitzheim et al. 2006; Pleuger et al. 
2007). According to Escher et al. (1993) and Steck et al.
(1999), the Cimes Blanches nappe is considered to repre-
sent the base of the UU, which overlies the Grand St. 
Bernard nappe system to the north and the Zermatt-Saas 
zone to the south. These rocks locally display jadeite-
quartz-phengite mineral assemblages (Bousquet et al.

2004).

2.3 The lower unit or ‘‘Zermatt-Saas zone’’

The lower unit (LU), or Zermatt-Saas zone (ZSZ), consists 
of an ophiolite sequence derived from the Piemont-Liguria 
Ocean and composed of metaperidotites, metagabbros, 
metabasalts and serpentinites (Bearth 1967) of middle 
Jurassic age (Rubatto et al. 1998). An oceanic sedimentary 
cover mainly composed of metapelites, marbles and me-

tacherts of Jurassic-Cretaceous age (Bearth 1967, 1976; 
Bearth and Schwander 1981; Dal Piaz 1965) completes the 
sequence. This zone is considered either as a homogeneous 
unit (Angiboust et al. 2009) or, based on the different

metamorphic evolutions, as an assemblage of several tec-
tonic slices (Bousquet et al. 2008; Groppo et al. 2009).

The typical HP-metamorphic assemblages in metabasalts 
and metagabbros of the ZSZ are composed of garnet-
omphacite-glaucophane ± chloritoid ± talc, first described 
in the Zermatt area (Bearth 1959), documenting maximum 
P–T conditions in the range of 16–20 kbar and 550–600 �C 
(e.g. Ernst and Dal Piaz 1978; Oberha¨nsli 1980; Barnicoat 
and Fry 1986). Despite no new petrological findings, these 
P–T conditions were recently revaluated to upper values
*23–27 kbar and*550–600 �C on the basis of new ther-

mobarometric calculations (Bucher et al. 2005; Angiboust 
et al. 2009). Furthermore, the discovery of coesite inclusions 
within garnet in metasediments at Lago di Cignana, indicate 
locally UHP conditions of 27–32 kbar and 590–630 �C 
(Reinecke 1991, 1998; Groppo et al. 2009). More recently, 
microdiamonds were discovered in some garnets of the Lago 
di Cignana UHP unit, indicating pressures over 32 kbar 
(Frezzotti et al. 2011). The UHP Cignana unit, composed of 
large boudins of metabasalts and metagabbros embedded in 
metasediments, is located in the upper part of the LU (For-
ster et al. 2004; Groppo et al. 2009).

2.4 Structure of the Piemont-Ligurian nappe stack

The difference in metamorphic record between the UU and

the LU led some authors to propose the existence of a

25 km

Aosta-Ranzolla Fault

Rhône-Simplon line

Aar
M

o
n
t 
B

la
n
c

A
ig

u
ill

es
 r
o
u
g
es

Dent
Blanche

Sesia

Gran 
Paradiso

Monte 
Rosa

Grand St. Bernard

In
s
u

b
ri

c
 l
in

e

Pre
A
lp

s

Fig. 2

650
8°00’E

46°00’N

600550

50

100

150

Upper Penninic
(Piemont-Liguria ocean)

Middle Penninic (Briançonnais)

Zone Houillère

Sedimentary cover

Basement nappes

Lower Penninic (Valais ocean)

Sub-Penninic (european margin)

Sedimentary cover

Basement nappes

European basement

European sediments

Austroalpine

Southern Alps
N

Fig. 1 Tectonic map of the northern Western Alps, modified after Bousquet et al. (2012b)

3



major tectonic contact in between, known as the Combin 
fault (Balle`vre and Merle 1993) or Gressoney Shear 
Zone in the Aosta valley (Reddy et al. 1999). The nature 
of this contact (i.e. extensional and/or compressional), the 
amount of displacement and its role in the exhumation 
of HP Piemont-Ligurian units is still widely debated 
(Reddy et al. 1999, 2003; Froitzheim et al. 2006; Pleuger 
et al. 2007). Studies realised in the vicinity of this contact 
underline that a distinction of both units is difficult to 
assess due to per-vasive retrogression and deformation 
(Cartwright and Barnicoat 2002; Groppo et al. 2009). 
Most of the authors locate the limit between the UU 
and the LU (i.e. the Combin fault) at the base of the 
Cimes Blanches nappes (Escher et al. 1993; Balle`vre and 
Merle 1993; Reddy et al. 2003; Pleuger et al. 2007). 
However other studies locate the contact lower than the 
base the Cimes blanches nappe (or Pancherot-Cime 
Bianche unit) in the Zermatt region and the northern 
Aosta valley (Compagnoni and Rolfo 2003; Bucher et al. 
2004; Forster et al. 2004). In addition to lithological 
differences, the distinction between the UU and the LU is 
frequently based on the estimated metamorphic record in 
metabasites. Most of the studies distinct the two units by 
the presence or absence of eclogite facies mineral 
assemblages (Balle`vre and Merle 1993; Ring 1995; 
Reddy et al. 1999, 2003; Pleuger et al. 2007; Beltrando 
et al. 2008). The UU is considered to be greenschist 
(Balle`vre and Merle 1993; Reddy et al. 1999) to 
blueschist facies (Bousquet 2008; Bousquet et al. 2012a).

3 Methodology

During diagenesis and metamorphism, carbonaceous 
material (CM) present in the initial sedimentary rock is 
progressively transformed into graphite (graphitization). 
Because of the irreversible character of graphitization, CM 
structure primarily depends on the maximum temperature 
reached during the metamorphic cycle, and is therefore not 
sensible to retrograde or subsequent evolution at lower 
temperature (Wopenka and Pasteris 1993; Beyssac et al. 
2002). A linear correlation between the structural organi-
sation of CM, measured by Raman spectroscopy, and the 
metamorphic temperature has been calibrated (RSCM 
method—Beyssac et al. 2002). The calibration was made 
using samples from different regional metamorphic belts 
with well-known P–T conditions, and allows the determi-

nation of temperatures in the range of 330–650 �C with a 
calibration accuracy estimated to ±50 � C. The 
relative uncertainties on temperature are much smaller, 
allowing high resolution field mapping of temperatures 
(Negro et al. 2006; Wiederkehr et al. 2011). Other 
calibrations have also been published to extend this 
temperature range below 330 � C (Rahl et al. 2005; 
Lahfid et al. 2010) or for rocks

affected by regional metamorphism (Aoya et al. 2010). 
These other calibrations were done on different Raman 
spectrometers with different laser wavelength. This may 
significantly affect the estimated temperatures (Aoya et al. 
2010). We only used the original calibration and analytical 
setup of Beyssac et al. (2002) in this study.

Raman spectra were performed on a Renishaw InVIA 
reflex microspectrometer (Laboratoire de Ge´ologie, 
ENS Paris, and IMPMC Paris, France) equipped with a 
514 nm Spectra Physics (20 mW) argon laser. Laser 
beam was focused on the sample using a DMLM Leica 
microscope with a 100 9 objective (NA = 0.90), with 
laser power at sample surface of *1 mW. The signal was 
filtered by edge filters and dispersed with a 1,800g/mm 
grating to be ana-lysed by a Peltier cooled RENCAM 
CCD detector. Before each session the spectrometer was 
calibrated with a silicon standard. Because Raman 
spectroscopy of CM can be affected by several 
analytical mismatches, we followed closely the 
analytical and fitting procedures described by Beyssac et 
al. (2002, 2003). Measurements were only performed 
below transparent minerals, generally quartz, to avoid any 
effect of polishing on the structure of CM (Beyssac et 
al. 2003). For each sample, 10–24 spectra were recorded in 
order to smooth out the within-sample struc-tural 
heterogeneity. Spectra were processed using the 
Peakfit software following the procedure described in 
Beyssac et al. (2003).

4 RSCM temperatures in the Piemont-Ligurian units

The 62 samples were collected in the Piemont-Ligurian 
domain in 3 different areas (Fig. 2): North of the Dent 
Blanche nappe, in the Zermatt area and in the Lago di 
Cignana area. Among these samples, 50 were collected in 
the UU, and 12 in the LU, in order to highlight thermal 
structure of the Piemont-Ligurian nappe stack. For each 
sample, we also described the observed mineral assem-

blage in order to give a comparison with our estimated 
temperature (Figs. 2, 3, 6; Table 1).

4.1 Zermatt area

Samples were collected along different profiles in the 
Zermatt area across the two units (Fig. 3). A subset of 
representative spectra is depicted in Fig. 4.

4.1.1 Upper unit

The Raman spectra in the metasediments of the UU show

significant variation in the CM structural organisation

4



(Fig. 4). The degree of organization increases from upper 
to lowermost levels, with a variation of the R2 ratio from 
0.50 to 0.25 (Table 1).

Along the profile below the Matterhorn, from 
Ho¨rnli-hu¨tte to Schwarzsee, temperature increases from 
*450 � C at the contact with the Matterhorn Austro-
Alpine units to 500–530 � C near the contact with the 
LU (Figs. 3, 5a). However, temperatures are mainly 
in the range 450–475 � C along this profile. The 
profile located from Trift to Zermatt shows very 
homogeneous temperature record in the range of 480–500 �
C, except for one sample that shows a temperature of 420 �
C (Figs. 3, 5b). Samples collected in the Oberrothorn area 
also show homogeneous temperature record ranging from 
500 to 520 � C, similar to the Ho¨rnlihu¨tte-Schwarzsee 
and Trift-Zermatt profiles (Fig. 3).

4.1.2 Lower unit

The spectra obtained in the LU are very homogeneous, with 
an R2 ratio in the range 0.22–0.33 indicating that the CM is 
generally well-ordered in this unit (Fig. 4; Table 1).

Estimated temperatures are always in the range of

*500–540 �Cacross thewhole area, showing homogeneous

peak T record in the metasediments of this unit (Fig. 3).

4.2 Lago di Cignana

Samples were collected along a NW–SE transect across the 
UU, and across the contact between the two units (Fig. 6). 
The Raman spectra are very similar to the Zermatt area, 
with relatively well ordered CM and R2 ratios in the range 
0.25–0.42 (Table 1).

Along the NNW-SSE profile passing through Mt. Panch-
erot, temperature increases from *460–470 �C in uppermost 
sampled levels of the UU, to *530 �C at the contact with the 
underlying LU (Fig. 6b). A single sample collected north of 
the Lago di Cignana shows temperature of *475 �C similar 
to the ones observed along the profile (Fig. 6a). Samples 
collected near the contact, W of Lago di Cignana, show 
similar temperatures of *510–520 �C i n b o t h t h e  U U 
a n d  t h e  LU. Finally, one sample collected in the LU 
shows temper-ature of *540 � C, very similar to the 
temperatures observed near the contact further north (Fig. 6a).
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4.3 North of the Dent Blanche nappe

Samples were collected in the metasediments of the UU in 
different N–S valleys and around barriers lakes (Fig. 2). 
The Raman spectra are very similar to those observed 
within the UU in the Zermatt and Lago di Cignana areas, 
with relatively well ordered CM and R2 ratios in the range 
0.33–0.50 (Table 1). Temperatures are slightly lower in the 
Evole`ne-Zinal area, in the range 420–450 �C, compared 
to the Mauvoisin lake area where they are in the 
range 460–500 � C. However these temperatures are in 
good agreement with those observed SE of the Dent 
Blanche massif, showing spatially coherent distribution of 
temper-atures in the whole UU.

4.4 RSCM temperatures and Piemont-Ligurian nappe

structure

We have reported the range of estimated RSCM tem-

peratures on a simplified geological cross section of the 
studied area (Fig. 7) in order to assess the relation

between the estimated temperatures and the Piemont-

Ligurian nappe structure. These temperature ranges cor-

respond to a synthesis of observations in the three studied

areas, and have been projected on the cross section

according to the structural position of the samples in the

UU.

The RSCM temperatures in the UU show coherent dis-
tribution (Fig. 7). In the upper structural levels of the UU 
temperatures are in the range of 420–470 � C, 
observed below the contact with the Dent Blanche nappe. 
Interme-diate levels, which have been intensely 
folded, as underlined by the position and the structure of 
the Frilihorn nappe, show temperatures in the range of 
470–500 � C. In the lower structural levels of the UU, 
close to the contact with the LU, temperatures are in the 
range of 500–530 � C. These latter temperatures are 
quite similar to those observed in the underlying 
LU, in the range of 500–540 � C. The temperatures 
observed north of the Dent Blanche nappe, in contact 
with the underlying Grand St. Bernard nappe system, are 
slightly lower, in the range of 470–500 �C.
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Table 1 Samples from the Piemont-Ligurian units with coordinates (CH1903) and elevation, observed mineral assemblages, number of Raman

spectra (Sp.), R2 ratio (mean value and standard deviation) and RSCM temperature (mean value and 1-r uncertainty)

Coord. (CH1903) R2 ratio Temperature (�C)

Zone/Unit Sample X Y Elev. (m) Mineral assemblage Sp Mean SD Mean 1 s

N Dent Blanche

Upper unit CO0701 615,058 107,391 1,710 Ph-Chl-Pl-Cal-Qz 10 0.43 0.02 448 3

CO0702 615,330 106,064 1,741 Grt-Tr-Phg – – – – –

CO0703 611,196 105,737 2,298 Ep-Ph-Cal-Qtz – – – – –

CO0705 61,0368 10,7249 2,308 Ph-Cal-Qz 12 0.42 0.04 454 5

CO0706 61,0668 10,9121 2,266 Ph-Chl-Cal-Qz 12 0.43 0.03 451 5

CO0708 595,613 88,050 2,599 Ph-Chl-Pl-Cal-Qz 11 0.41 0.03 461 4

CO0709 595,611 88,037 2,581 Ph-Chl-Pl-Cal-Qz 12 0.37 0.04 478 5

CO0710 595,453 86,667 2,321 Ph-Chl-Pl-Cal-Qz 19 0.37 0.07 477 7

CO0711 592,929 93,290 2,059 Ph-Chl-Cal-Qz 12 0.33 0.06 492 8

CO0712 592,460 94,576 1,849 Ph-Chl-Pl-Cal-Qz 24 0.33 0.07 494 7

CO0901 603,724 99,591 1,823 Ep-Ph-Chl-Pl-Qz – – – – –

CO0902 604,401 103,221 1,769 Czo/Ep-Pl-Ph-Chl-Cal-Qz 12 0.45 0.03 439 4

CO0904 615,111 105,507 1,890 Ep-Ph-Chl-Pl-Qz – – – – –

CO0906 611,996 105,029 2,596 Ph-Chl-Pl-Cal-Qz – – – – –

CO0907 61,1436 105,801 2,499 Ph-Chl-Pl-Cal-Qz 10 0.50 0.03 418 4

Zermatt

Upper unit SZ084 619,963 93,124 2,787 Ph-Chl-Cal-Qz 11 0.29 0.05 514 7

SZ085 618,593 92,337 3,171 Ph-Chl-Cal-Qz 15 0.37 0.04 475 4

SZ087 618,409 92,325 3,257 Czo/Ep-Ph-Chl-Pl-Qz 12 0.40 0.02 462 3

SZ088 618,351 92,305 3,262 Ph-Cal-Qz 15 0.41 0.04 460 5

SZ089 618,259 92,231 3,254 Ph-Cal-Qz 11 0.42 0.06 453 7

SZ0810 619,888 93,013 2,870 Ph-Cal-Qz 10 0.32 0.06 499 8

SZ0811 619,390 92,963 2,940 Ep-Chl-Ph-Pl-Cal-Qz 12 0.38 0.03 473 4

SZ0812 619,720 92,981 2,865 Grt-Ep-Chl-Ph-Qz 10 0.25 0.07 530 9

SZ0814 618,904 92,560 3,000 Ep-Chl-Ph-Pl-Cal-Qz 12 0.38 0.03 470 4

SZ0815 618,874 92,492 3,100 Grt-Cld-Ep-Ph-Pl-Cal-Qz 12 0.43 0.03 451 4

SZ0816 618,852 92,502 3,200 Grt-Ep-Ph-Pl-Qz 15 0.42 0.04 457 5

HB081 623,465 96,914 1,800 Ph-Pl-Cal-Qtz – – – – –

HB083 622,817 96,313 2,095 Czo/Ep-Ph-Chl-Cal-Qz 10 0.30 0.04 508 5

HB088 621,969 96,148 2,480 Ph-Cal-Qz 10 0.30 0.04 510 5

HB0811 621,000 96,335 2,786 Ph-Cal-Qz 12 0.31 0.07 501 8

TRIF081 623,224 96,832 1,895 Ep-Ph-Chl-Pl-Cal-Qtz 11 0.36 0.03 481 4

TRIF082 622,921 97,067 1,974 Ep-Ph-Chl-Pl-Cal-Qtz – – – – –

TRIF084 622,781 97,082 2,028 Ph-Cal-Qz 12 0.34 0.05 488 6

TRIF085 622,163 97,333 2,268 Gt-Ep-Chl-Ph-Pl-Qz 10 0.33 0.04 494 6

TRIF086 621,600 97,846 2,375 Ph-Pl-Cal-Qz 10 0.37 0.02 476 3

TRIF087 621,650 97,283 2,478 Ep-Ph-Pl-Qz 14 0.50 0.03 421 4

TRIF088 622,138 96,831 2,554 Ep-Ph-Pl-Cal-Qz – – – – –

TRIF0811 622,144 97,371 2,251 Ep-Ph-Cal-Qz 10 0.31 0.05 503 8

TRIF0812 622,032 97,573 2,293 Ep-Ph-Cal-Qz 14 0.35 0.05 485 5

Z081 624,087 97,455 1,886 Ep-Ph-Cal-Qz 10 0.36 0.05 480 8

JES46 627,779 96,799 3,066 Grt-Pl-Chl-Ph-Cal-Qz 12 0.27 0.06 523 7

JES59 628,577 96,163 2,719 Grt-Cld-Ph-Chl-Cal-Qtz – – – – –

JES142 628,356 96,945 2,956 Ep-Pl-Chl-Ph-Cal-Qz 16 0.31 0.07 504 8

JES149 628,295 97,117 2,944 Pl-Chl-Ph-Qz 11 0.32 0.07 498 8

JES218 627,415 97,583 2,892 Pl-Chl-Ph-Qz 19 0.31 0.08 503 8

JES150a 628,579 96,172 2,715 Grt-Cld-Pl-Chl-Ph-Cal-Qz 12 0.29 0.04 511 5

JES152_1 629,344 97,073 3,221 Grt-Ph-Chl-Qz 15 0.28 0.08 516 9

JES246 628,164 97,656 2,871 Grt-Cld-Ph-Chl-Qtz – – – – –
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5 New metamorphic data in the Piemont-Ligurian

metasediments

In addition to the estimation of peak T by the RSCM 
method, we studied systematically the mineral assemblage 
of each sample analysed. We also included some additional 
samples in order to complete the regional distribution of 
mineral assemblages (Figs. 2, 3 and 6). The mineral 
assemblages for all these samples are given in Table 1. 
Electron microprobe analysis of the most significant min-

erals assemblages were also performed using JEOL 
JXA8200 (University of Bern) and JEOL JXA8600 (Uni-
versity of Basel) using standard conditions (15 kV, 10 nA). 
Representative analyses of mineral assemblages in 
metasediments are given in Table 2.

5.1 Spatial distribution of mineral assemblages

Occurrence of mineral assemblages representative of HP 
conditions is scarce in metasediments of both units. Most 
of these metasediments are composed of quartz, calcite, 
phengite, with variable amounts of epidote, clinozoisite 
and plagioclase (Figs. 2, 3, 6; Table 1). In the area located 
north of the Dent Blanche nappe, relic garnet was only 
found in one sample from a metabasite south of Zinal 
(Fig. 2). In the Zermatt and Lago di Cignana areas, some 
samples depict a well preserved mineralogy, with garnet-
chloritoid-phengite assemblage (Figs. 3, 6, 8a and b). This 
mineral assemblage is only observed locally, below the 
Ho¨rnlihu¨tte along the Matterhorn-Schwarwee 
profile (Fig. 3), in the Oberrothorn area (Fig. 3), and in 
the lower

Table 1 continued

Coord. (CH1903) R2 ratio Temperature (�C)

Zone/Unit Sample X Y Elev. (m) Mineral assemblage Sp Mean SD Mean 1 s

Lower unit SZ081 620,628 93,185 2,600 Grt-Ep-Ph-Cal-Qz 12 0.25 0.05 528 6

SZ083 620,326 93,193 2,680 Ep-Ph-Pl-Qz 10 0.33 0.06 495 8

FU082 622,437 94,509 1,895 Grt-Cld-Ph-Ep/Czo-Pl-Cal-Qtz – – – – –

FU084 622,281 94,394 1,965 Grt-Ep-Chl-Ph-Cal-Qz 12 0.24 0.03 535 4

FU085 622,208 94,344 1,998 Grt-Cld-Ph-Czo-Cal-Qtz – – – – –

TS081 622,319 91,200 2,852 Grt-Ep-Chl-Ph-Qz 10 0.29 0.05 510 7

TS082 622,046 91,868 2,684 Grt-Gln-Ep-Tr-Ph-Qz 12 0.24 0.06 536 8

GOL081 626,848 92,474 3,128 Ph-Cal-Qz 10 0.27 0.05 521 7

GOL087 625,198 92,638 2,797 Grt-Cld-Ph-Cal-Qz 10 0.25 0.06 531 9

GOL088 625,067 92,780 2,770 Grt-Cld-Ph-Czo/Ep-Cal-Qtz – – – – –

GOL089 624,949 92,882 2,738 Grt-Ph-Cal-Qz 11 0.26 0.06 526 8

GOL0812 624,653 93,581 2,612 Grt-Cld-Ph-Pl-Cal-Qz 12 0.22 0.05 543 7

GOL0813 624,888 93,731 2,609 Grt-Ph-Chl-Ep/Czo-Pl-Cal-Qtz – – – – –

JES138 626,395 96,072 2,370 Grt-Pl-Chl-Ph 14 0.23 0.06 539 9

Lago di Cignana

Upper unit CIG0901 612885 80869 2279 Gt-Cld-Chl-Ph-Czo/Ep-Qz 12 0.25 0.04 532 6

CIG0902 612868 80970 2358 Gt-Chl-Ph-Qz 15 0.34 0.07 498 5

CIG0903 612865 80994 2385 Gt-Cld-Chl-Ph-Czo/Ep-Qz 15 0.31 0.04 504 5

CIG0904 611516 80766 2160 Cld-Chl-Ph-Czo/Ep-Qz 10 0.30 0.05 506 8

CIG0907 612379 82341 2504 Chl-Ph-Czo/Ep-Qz 9 0.37 0.03 475 5

CIG0908 612340 82232 2465 Ph-Chl-Pl-Qz 15 0.39 0.04 466 5

CIG0909 612312 82173 2465 Czo-Ph-Chl-Pl – – – – –

CIG0912 612576 81398 2590 Ph-Chl-Pl-Qz 13 0.30 0.06 508 8

CIG0913 612310 81753 2523 Ph-Chl-Pl-Qz 12 0.39 0.03 469 4

CIG0914 612283 81884 2493 Czo-Ph-Chl-Pl-Qz 14 0.42 0.03 455 4

CIG0915 612314 82025 2468 Czo-Ph-Chl-Pl-Qz – – – – –

CIG0916 612295 82120 2449 Ph-Chl-Pl-Qz 10 0.37 0.04 474 6

CIG0917 611195 81822 2170 Czo-Ph-Chl-Pl-Cal-Qz 13 0.38 0.03 474 4

CIG1001 611516 80766 2160 Cld-Ep/Czo-Chl-Ph-Cal-Qz 15 0.29 0.06 513 7

Lower unit CIG1002 611516 80766 2160 Czo-Ph-Chl-Cal-Qz 14 0.27 0.05 522 6

CIG1003 613102 80146 1790 Czo-Ph-Chl-Cal-Qz 15 0.22 0.05 541 6

The absolute uncertainty on RSCM temperature is ±50 �C. Mineral abbreviations after Whitney and Evans (2010)
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part of the Lago di Cignana profile (Fig. 6a-b). This min-

eral assemblage has been found both in the LU associated 
to eclogites and in the UU without eclogites (Figs. 3, 8a–c). 
The most common mineral assemblage in the UU is Ph-
Chl-Cal-Qz ± Ep/Czo ± Plg (Figs. 2, 3, 6 and Table 1) 
typical of greenschist facies metamorphic conditions. At 
the regional scale, field occurrences of mineral assem-

blages evidencing HP metamorphism are decreasing 
toward the west, where the overprinting seems to be pre-
dominant (Figs. 2, 3). They can be only found as relic 
garnet or sometimes chloritoid inclusions in albite por-
phyroblasts (Fig. 8e).

5.2 Mineral compositions and textural relationships

The main foliation in metapelites is defined by the align-
ment of phengite within a calcite-quartz matrix. 
Plagioclase frequently occurs as sheared porphyroblasts 
within the main foliation together with epidote and/or cli-
nozoisite (Fig. 8f). Chloritoid is found as inclusion in big 
garnet pseudomorphs (Fig. 8a) together with phengite and 
chlorite, or within the main phengite foliation (Fig. 8b). 
The chloritoid compositions are homogeneous with an XMg 
in the range of 0.14–0.17 (Table 2). Different types of 
garnet have been observed in the UU samples, with

regional consistency from Zermatt to Lago di Cignana 
(Figs. 3, 6; Table 2). Garnet porphyroblasts (type I) occur 
within the main foliation and show compositional zoning 
(Fig. 8b). The spessartine component is higher and the 
almandine component lower in the core of these garnets, 
compared to their rim (Table 2). Such kind of variation has 
been interpreted as a growth of garnet under increasing 
temperature conditions (Spear and Markussen 1997; Enami 
1998; Tinkham and Ghent 2005). Smaller garnets (type II) 
occur within the main foliation (Fig. 8b) and their com-

position is similar to the rim of type I garnets (Table 2). 
Phengite associated with chloritoid and garnet within gar-
net pseudomorphs (Fig. 8a) or in garnet crystallization tail 
(Fig. 8b) show Si content in the range 3.38–3.46 (Table 2). 
Chlorite is found associated with chloritoid and phengite 
garnet within garnet pseudomorphs (Fig. 8a), in garnet 
crystallization tails (Fig. 8b, d–f), or within the main foli-
ation, and show compositions with XMg in the range 
0.43–0.46 (Table 2). Garnets partially (Fig. 8d) or almost 
totally (Fig. 8e) replaced by chlorite and plagioclase, are 
observed in some sample showing distinctive stages of 
retrograde evolution. Figure 8f depicts the most common 
assemblage and textural relationships observed in the UU 
samples.

6 Discussion

6.1 Metamorphic evolution of Piemont-Ligurian

metasediments

The new petrological data on metasediments and their 
metamorphic record allow us to discuss the metamorphic 
evolution of the Piemont-Ligurian domain. The garnet-
chloritoid-phengite assemblages, and their mineral com-

positions, are characteristic of blueschist facies 
metamorphic conditions in metasediments (Bousquet et al. 
2008; Bucher and Grapes 2011). Peak P–T conditions of
*12–15 kbar and *450 �C were estimated for the UU in

the area of Zermatt in metabasites and metapelites (Cart-
wright and Barnicoat 2002; Bousquet et al. 2008). We 
therefore use these maximum P–T conditions (Fig. 9). 
Metasediments of the Piemont-Ligurian domain towards 
the south, north of the Gran Paradiso massif (Fig. 1), show 
similar petrological and metamorphic features. Indeed, the 
mineral assemblages, the mineral compositions and the 
textural relationships are very similar to our study (Bous-
quet 2008). Two distinct metamorphic stages, a LT-HP 
followed by heating during decompression have been 
identified. The P–T conditions are estimated for the first 
stage at 14 kbar and 450 � C for primary garnet 
core associated with chloritoid and primary phengite and 
for the second one at 7–8 kbar and 530 �C for secondary 
garnet

1000 1200 1400 1600 1800 2000

L
o
w

e
r 

U
n
it

U
p
p
e
r 

U
n
it

Raman shift (cm-1)

R2=0.50T=420°C

Tr if087

R2=0.43T=448°C
Sz0815

R2=0.37T=474°C

Tr if086

R2=0.28T=516°C

Sz084

R2=0.27
T=521°C

Gol081

R2=0.24
T=535°C

Fu084

Fig. 4 Representative Raman spectra obtained from samples col-
lected in the upper and lower units of the Piemont-Ligurian domain. 
The R2 ratio value and corresponding temperature are given for each 
spectra. Location of the samples in Fig. 3 and Table 1
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associated with clinozoisite, chlorite and secondary 
phengite. On the basis of these data and our own investi-
gations, we propose a P–T evolution for metasediments 
similar to the Zermatt area (Fig. 9). This will serve as a 
basis to discuss and interpret the observed thermal 
structure.

6.2 RSCM temperatures and metamorphic evolution

In the lower levels of the UU, estimated temperatures are

very consistent in the range of 500–530 �C. On the basis of

the textural relationships and garnet compositional zoning,

we relate these RSCM temperatures to the growth of
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Matterhorn showing the distribution of RSCM temperatures upper 
and lower units of the Piemont-Ligurian domain (modified after 
Bucher et al. 2004). b Simplified geological cross-section between

Unter Gabelhorn and Gornergrat showing the distribution of RSCM 
temperatures in the upper and lower units of the Piemont-Ligurian 
domain (modified after Bearth 1953). The cross-sections are located 
in Fig. 3. The absolute uncertainty on RSCM temperatures is ±50 �C
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Table 2 Representative electron microprobe analysis of mineral assemblages in the upper unit

Sample CIG0901 CIG0903 Jes59

Mineral Grt Cld Ph Chl Grt I (core) Grt I (rim) Grt II Cld Ph Chl Grt (core) Grt (rim) Cld Ph

SiO2 37.99 24.82 50.88 24.58 37.55 37.95 37.11 24.75 50.20 24.84 37.08 37.31 24.55 51.24

TiO2 0.00 0.00 0.18 0.06 0.13 0.06 0.05 0.00 0.20 0.03 0.16 0.00 0.00 0.20

Al2O3 21.01 42.14 28.28 23.34 20.89 21.15 21.29 41.77 27.86 23.63 20.40 20.36 38.42 25.89

FeO 29.40 24.90 2.47 28.55 13.53 27.94 27.18 22.89 2.58 26.65 24.17 30.52 25.34 2.62

MnO 0.81 0.38 0.00 0.07 19.30 3.72 6.21 1.39 0.03 0.80 12.02 5.78 0.76 0.01

MgO 1.20 2.29 2.92 12.32 0.42 1.07 1.26 2.74 2.86 13.06 0.87 1.27 2.68 3.25

CaO 9.94 0.00 0.00 0.02 8.02 8.93 6.81 0.00 0.01 0.01 6.08 5.64 0.02 0.00

Na2O 0.04 0.00 0.36 0.01 0.03 0.04 0.01 0.01 0.35 0.02 0.07 0.02 0.02 0.26

K2O 0.00 0.00 10.39 0.07 0.00 0.00 0.00 0.00 9.92 0.05 0.00 0.00 0.00 10.95

Total 100.39 94.53 95.48 89.02 99.87 100.86 99.92 93.55 94.01 89.09 100.85 100.90 91.79 94.42

Structural formula

Si 3.02 2.00 3.38 2.59 3.03 3.02 2.99 2.01 3.39 2.60 2.99 3.01 2.06 3.46

Ti 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01

Al 1.97 4.01 2.22 2.90 1.99 1.98 2.02 4.00 2.21 2.91 1.94 1.93 3.80 2.06

Fe2? 1.96 1.68 0.14 2.52 0.91 1.86 1.83 1.55 0.15 2.33 1.63 2.06 1.58 0.15

Mn 0.05 0.03 0.00 0.01 1.32 0.25 0.42 0.10 0.00 0.07 0.82 0.39 0.05 0.00

Mg 0.14 0.28 0.29 1.94 0.05 0.13 0.15 0.33 0.29 2.03 0.10 0.15 0.34 0.33

Ca 0.85 0.00 0.00 0.00 0.69 0.76 0.59 0.00 0.00 0.00 0.53 0.49 0.00 0.00

Na 0.01 0.00 0.05 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.03

K 0.00 0.00 0.88 0.01 0.00 0.00 0.00 0.00 0.85 0.01 0.00 0.00 0.00 0.94

XMg 0.14 0.43 0.17 0.46 0.17

XPrp 0.05 0.02 0.04 0.05 0.03 0.05

XAlm 0.65 0.31 0.62 0.61 0.53 0.67

XGrs 0.28 0.23 0.25 0.20 0.17 0.16

XSps 0.02 0.44 0.08 0.14 0.27 0.13

Samples are located in Figs. 3 and 6
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secondary garnet within the main foliation. This interpre-
tation is also in agreement with temperatures estimated by 
classical thermobarometry by Bousquet (2008). We there-
fore propose that the estimated RSCM temperatures in the 
range of 500–530 � C, observed at the base of the 
UU, likely correspond to heating during exhumation 
of metasediments (Fig. 9).

In the upper levels of the UU, at first sight, mineral 
assemblages are documenting greenschist facies condi-
tions, and RSCM temperatures ranging between 420 and 
500 �C are indicating similar T-conditions (Figs. 3, 5a, b). 
Along the Zermatt-Trift profile (Fig. 5b), the Tsate´ 
and

Frilihorn nappes are intensely deformed and folded (Bearth 
1967; Mazurek 1986; Sartori 1987) and the temperature is 
very homogenous along this profile (480–500 � C). 
The temperature range of 480–500 � C also 
corresponds to temperature estimated in sheared 
calcschists in the Ta¨s-chalp region for a pressure of 
*5 kbar (Cartwright and Barnicoat 2002). Based on 
HP-relics in plagioclase, we therefore interpret RSCM 
temperatures as documenting the reheating during 
decompression. The more pervasive greenschist 
retrogression in this area (Figs. 3, 8e) was also favoured 
by more intensive deformation during 
exhumation.
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Fig. 8 Photomicrographs of the metamorphic assemblages observed 
in the metasediments of the upper and lower units of the Piemont-

Ligurian domain. Samples are located in Figs. 3 and 6 and Table 1. 
a Garnet relic with chloritoid and chlorite inclusion in the CIG0901 
sample at Lago di Cignana (plane polarized light). b Garnet-
chloritoid-phengite assemblage in the CIG0903 sample at Lago di 
Cignana (plane polarized light). c Garnet chloritoid-phengite

assemblage in the GOL0812 sample at Gornergrat (plane polarized 
light). d Garnet partially replaced by chlorite and albite in the SZ0816 
sample near Ho¨rnlihu¨tte (plane polarized light). e Relic garnet 
within albite porphyroblasts in the TRIF0805 sample near Trift 
(plane polarized light). f Sheared albite porphyroblast in the 
chlorite-phengite foliation in the CIG0915 sample at Lago di Cignana 
(crossed polars). Mineral abbreviations after Whitney and Evans 
(2010)
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6.3 Thermal structure and exhumation history

of the Piemont-Ligurian units

The RSCM temperatures obtained for the LU are slightly 
lower but in good agreement with previous P–T estimates 
obtained with geothermobarometry (Bucher et al. 2005). 
According to Angiboust et al. (2009) the LU underwent 
nearly isothermal decompression from 24 to *6–8 kbar at 
a temperature of *550 � C. The RSCM 
temperatures therefore correspond to near peak P–T 
conditions. According to the P–T paths (Fig. 9), the 
different units were juxtaposed at a shallow crustal level 
within a sub-duction channel. This P–T evolution 
suggests that the UU and the LU were put together at a 
depth of *15–20 km and a temperature of *500 �C. This 
juxtaposition occurred along several shear zones (limits of 
the different units), that were active during the Middle 
Eocene (*40–35 Ma; Reddy et al. 1999; Cartwright 
and Barnicoat 2002). The difference in thermal 
overprint during exhumation may also evidence a 
change of the thermal gradient during nappe stacking 
in this period. Our study, associated with the diamond 
discovery in the Lago di Cignana UHP unit

(Frezzotti et al. 2011), clearly shows that the different units 
of the Piemont-Ligurian domain in the northern Western 
Alps cannot longer be viewed as a juxtaposition of only 
two distinct ‘‘zones’’. Finally, considering similar obser-
vation in the Graian Alps (Bousquet 2008) and in the 
Cottian Alps (Agard et al. 2001), we propose that the entire 
Piemont-Ligurian domain of the Western Alps is a stack of 
several tectonics slices with distinctive prograde and ret-
rograde metamorphic evolution.

7 Conclusion

The results of this study based on a combined petrological

and RCSM study provide new constraints on the meta-

morphic evolution of the Piemont-Ligurian domain in the

northern Western Alps. The RSCM temperature distribu-

tion is coherent at a regional scale in the Piemont-Ligurian

domain. The metasediments of the upper unit, or ‘‘Combin

zone’’, show variable peak temperatures in the range of

420–530 �C, with an increase in temperature from upper to

lower structural levels. This temperature is related to

greenschist metamorphic conditions and deformation dur-

ing exhumation. Metamorphic data highlight an increase in

temperature during retrograde evolution from blueschist to

greenschist facies metamorphic conditions. The tempera-

tures observed in the lower unit, or ‘‘Zermatt-Saas zone’’,

are in the range of 500–540 �C, showing almost continuous

temperature record in the upper and lower units of the

Piemont-Ligurian domain. We interpret the observed

thermal structure as the result of juxtaposition of the upper

and lower units along shear zones at a temperature of

*500 �C during the Middle Eocene. According to the

proposed P–T paths for the different units, this juxtaposi-

tion occurred at shallow crustal levels within a subduction

channel. At a larger scale, we propose that the Piemont-

Ligurian Domain is not only composed of two units, sep-

arated by a major contact, but represents a stack of several

tectonic slices with their own metamorphic history accreted

together during the subduction.

Acknowledgments The French-Swiss program ‘‘Germaine de

Stael’’ is thanked for financial support during field and laboratory

work. We warmly thank O. Beyssac (IMPMC, Paris), C. Chopin
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(1982). Géologie du front de la nappe de la Dent Blanche dans la

région des Monts Dolins, Valais. Eclogae Geologicae Helvetiae,

75(2), 269–286.
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