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Abstract

Several Rayleigh-Bénard experiments in water are performed with smooth or rough boundaries. We present
new thermal transfer measurements obtained with large roughness elements arranged in a square lattice. The
data are compared to previous ones obtained with smaller elements in the same cell (Tisserand et al., 2011).
Experiments in the same apparatus without roughness are fully presented, as reference results, to allow for
comparison. In the rough case, several regimes of heat transfer are identified : one similar to the smooth case,
an enhanced heat transfer one characterized by a modification of the Nusselt vs Rayleigh numbers relation, and
a third part where the relation can be similar to a smooth one with a corrected prefactor.

1 Introduction

Turbulent Rayleigh-Bénard convection is a model system for natural convection. Theoretically, it consists in a
horizontal infinite layer of fluid inserted between two plates: a hot one at the bottom and a cold one at the top.
The thermal forcing sets the fluid into motion. The intensity of the forcing can be assessed by the Rayleigh number,
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where AT is the temperature drop across the cell, H is the distance between the two plates, « is the expansion
coefficient of the fluid, v its kinematic viscosity, x the thermal diffusivity and g the acceleration due to gravity. The
fluid properties are characterized using the Prandtl number,

Pr= = (2)
which compares the two diffusion mechanisms that impede convection. In this work, the model experiment is a
Rayleigh-Bénard cell where the layer of fluid is inserted into a cylindrical container. The only geometrical parameter
is the aspect ratio I' = D/H, where D is the diameter of the cell, and H its height.

The system response is the thermal heat flux, (), which gets larger than without convection. The non-dimensional
heat flux is the Nusselt number, which compares the global heat flux to the purely conductive one for similar
temperature drop,
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where A is the thermal conduction.
One objective is to be able to predict the thermal heat flux for a given forcing, i.e. to relate the Nusselt number
to the control parameters. Several models derive predictions in the form of a scaling law,

Nu = CRa®Pr®. (4)
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One of the first of such models was proposed by Malkus (1954) and yields a = 1/3, which means that the heat flux
does not depend on the distance between the plates. This is a strong indication that the plates can be described
independently of one another. Many published experimental data are in fair agreement with this scaling, though
there are some deviations. The reader may refer to the review of Chilla & Schumacher (2012) for more details.

An alternative description was proposed by Grossmann & Lohse (2000), where the relation is no longer a simple
scaling law, but rather a superposition of scaling laws. It accounts well for the evolution of the effective scaling
exponent, a, when the Rayleigh number increases. This is why it is used throughout this work to provide estimates
of reference Nusselt numbers in the case of hydrodynamically smooth plates.

For asymptotically large forcings, one may expect the boundary layer to get fully turbulent, which yields a = 1/2
(Kraichnan, 1962; Grossmann & Lohse, 2011). This exponent is also a rigorous upper bound (Goluskin & Doering,
2016), and the corresponding regime is sometimes called ultimate regime of convection, as there could not be a more
efficient regime beyond. Several groups have claimed to observe this regime at very large Rayleigh numbers, using
cryogenic gaseous helium (Chavanne et al., 1997; Roche et al., 2010), or compressed sulphur hexafluoride (He et al.,
2012).

In this paper, we consider the case of a Rayleigh-Bénard cell with rough boundaries. The addition of a controlled
roughness on the boundaries produces an enhancement of the heat transfer beyond a critical Rayleigh number, Ra,,
determined by the roughness size. Indeed, below this critical value, the thermal boundary layer is larger than
the typical roughness size, and the boundary is hydrodynamically smooth. Enhancement is observed when the
boundary layer thickness is the size of the roughness.

In the past, several types of enhancements have been reported. Tisserand et al. (2011), Roche et al. (2001a),
Qiu et al. (2005) and, in some configurations, Wei et al. (2014) observe an increase of the scaling law exponent
a: before the transition to Nusselt enhancement, a is close to 2/7 or 1/3 then it increases and reaches nearly 1/2.
In several other configurations, the exponent a is unchanged but the prefactor C increases (Du & Tong, 1998; Wei
et al., 2014).

In our previous works, we showed that roughness allows to trigger turbulent instabilities in the boundary layers
at moderate Rayleigh numbers (Salort et al., 2014) and enhance the velocity fluctuations (Liot et al., 2017). The
objective is to get insights on the role of turbulence on the thermal transfer, at a given Rayleigh number, hence
without the need of non-conventional working fluids.

Roughness can be added on only one of the horizontal plates (Ciliberto & Laroche, 1999; Tisserand et al., 2011,
Wei et al., 2014), or on both plates (Du & Tong, 1998, 2000; Qiu et al., 2005), or even on the entire cell (Roche et al.,
2001a). Several geometries of structure are used such as square pyramids, Du & Tong (1998), Du & Tong (2000)
for example, pyramidal grooves (Roche et al., 2001a), spheres (Ciliberto & Laroche, 1999) or square structures
(Tisserand et al., 2011). Among these experiments, the one of Ciliberto and Laroche is particular because the
roughness elements are glass spheres coated with copper varnish, so they can be considered as thermally insulating
the plate. Though the details of the roughness geometry is of high interest for optimization purposes (Garcia et al.,
2012), we focus on the effects of roughness-triggered turbulence in general.

Recently, Toppaladoddi et al. (2017) and Zhu et al. (2017) focused on the influence of the density of roughness
structures on the thermal transfer. To do so, they performed several 2D numerical simulations in a Rayleigh-
Bénard system with sinusoidal roughness on both plates. Both studies report the dependency of the exponent a
with A = d/H, the “wavelength” associated to the roughness horizontal dimensions, and the existence of an optimal
wavelength value, A, at which a is maximum. Above A,p:, a recovers the smooth case value. Horizontal spacing
was also identified as an important parameter in studies involving roughness in wind-tunnel such as Perry et al.
(1969).

Recent experiments from Xie & Xia (2017) also evidence this role of roughness geometry. They have varied the
roughness aspect ratio, A, defined as the height of a single roughness element over its base, and found that the
asymptotic scaling law exponents increases with \. However, the roughness density also increases when \ increases,
so it is not yet possible to disentangle the effect of aspect ratio and the effect of roughness density.

They evidence two transitions in the Nu vs. Ra scaling: the first transition occurs when the thermal boundary
layer thickness is the height of the roughness, consistently with other past experiments. They call this regime of
enhanced heat transfer “Regime II”. Then, a second transition occurs when the velocity boundary layer thickness is
the height of the roughness, yielding “Regime II1”. The scaling exponent in Regime III is lower than in Regime II.

In the present paper, new heat-transfer measurements are presented in several rough configurations. We observe
both the regime of enhanced scaling exponent a, and the regime of enhanced prefactor C. Because the roughness
aspect ratio is fixed (hg/d = 0.4), we cannot disentangle the role of roughness height from the role of the roughness
wavelength.

After a description of the experimental apparatus, in section 2, we will detail some reference results obtained in
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Figure 1: Sketch of the I' = 0.5 Rayleigh-Bénard cell. Two aspect ratios can be used : I' = 0.5 corresponding to a
diameter D = 50 cm and a height H = 1m, and I" = 2.5 with D = 50cm and H = 20 cm.

the classical smooth configuration of the cell, section 3. Then, we will present the new results obtained in the rough
cell with larger roughness elements and compare them to other published measurements, section 4. This allows us
to explore the thermal behaviour of the cell when the height of the thermal boundary layer is significantly smaller
than the height of the elements.

2 Experimental apparatus

2.1 The cell

The experimental apparatus consists in a cylindrical Rayleigh-Bénard cell, see figure 1. The diameter D is 0.5 m.
Two sidewalls can be installed, one of height 20 cm, the second of height 1.0m. They are made of 3 mm-thick
stainless steel. Figure 1 sketches the 1-meter-high cell, “Tall Cell” (7C), of aspect ratio I' = 0.5. The smaller
configuration, “Small Cell” (SC), has an aspect ratio I = 2.5.

The cold plate is in copper coated with a thin layer of nickel to prevent chemical attack from the working fluid,
deionised and degassed water. It is thermalised by a water circulation on its top which is controlled by a regulated
bath. The hot plate, is made of aluminium. It is heated by Joule effect using a spiralled resistor of 13 €2 inserted
into the plate.

The cell is covered by a thermal insulator, a 4 cm-thick neoprene foam, and enclosed into a thermal screen made
of copper. The mean temperature of the screen is regulated at the bulk temperature by a water bath to prevent
interaction between the cell and the environment. The entire apparatus is placed on a table whose temperature is
also regulated at the bulk temperature.

2.2 Measurement techniques

Measurements are focused on thermal transfer. To do so, the cell is instrumented with different kinds of ther-
mometers. Six resistance temperature detectors (Pt100 type), three per plates, measure the absolute value of the
temperature of each plates. Six thermocouple junctions measure the temperature at mid height and the tempera-



ture of the bottom plate relative to the top plate with high accuracy. The common reference is then inserted into
the cold plate which provides the relative zero value in the system (7). Another junction is also introduced into
this plate at a different radius. Two junctions are placed into the hot plate, and provide the hot temperature T},.
As the thin lateral walls are in stainless steel, they are thermalised at the bulk temperature Tj,. Two junctions are
then placed onto those walls to access 7. We also measure the temperature of the thermal screen and the table.
The thermocouple junctions are connected to an electronic amplifier with negligible offset. The signal is amplified
2000 times. One measurement consists in averaging over several hours (typically 48h) of recording.

By varying the bulk temperature of the fluid, we induce variations of the fluid properties and consequently of the
Prandtl number. We perform measurements at fixed Prandtl number by keeping the bulk temperature constant.
This allows us to check the potential influence of the Prandtl number in a range of values between 2.5 and 6.5.

2.3 Non-Boussinesq and lateral walls corrections

Since our experimental procedure is similar to the one used by Tisserand et al. (2011), we will use the same
corrections as reminded below. First, we take care of the Non-Boussinesq (NOB) effects and we show that they
are negligible in our case. The Boussinesq approximation assumes that all the physical properties of the fluid
are independent of the temperature except the density p in the buoyancy term, which can be approximated as
p = po(l — aAT), where pg is the density of water at the temperature T,. Experiments performed by Ahlers & et
al (2006) suggest that, in water, the main source of NOB effects comes from the variation of kinematic viscosity v
and thermal diffusivity « only. In liquid water, the second one is nearly constant which leaves only the effects of v.
Ahlers & et al (2006) define a parameter y, as previously done by Wu & Libchaber (1991), corresponding to the
dissymmetry of the system,

Ty =T

XTI

Tisserand et al. (2011) used a logarithmic dependence of ¢y in Prandtl number but no dependence in Rayleigh
number.

=1- CgAT. (5)

dl
ey = —0.061Pr0-25% (6)

This results in corrective prefactors on the Nusselt number such as Nu¢®" = (1 + ¢2ATs/2)Nus. The deviation
remains smaller than 1% in all our experimental conditions, and thus can be neglected. This was also suggested by
Ahlers & et al (2006). In their study, they performed thermal transfer measurements in water, reaching difference
of temperature of nearly 40 K, and found only small deviation of the Nusselt number from the Oberbeck-Boussinesq
case. In the experiment presented here, the largest temperature difference is 20 K and the highest Rayleigh number
we can attain is 1.5 - 10'2. We, then, do not expect NOB corrections to be large in those conditions.

The second effect we have to consider is the spurious heat conduction in the sidewalls, see Roche et al. (20015)
and Ahlers (2000). The thermal conductivity of those walls has to be taken into account. It behaves as if the effective
surface, Seg, of the horizontal plates was larger than the real one S. Seg can be related to S by Seg = (14 f(W))S,
where W balances the heat conductivity of the sidewalls to the water one and is close to 0.5, and the corrected
Nusselt number is

Nu®" = Nu™ (14 f(W))~L, (7)

It yields to corrective prefactors shown in figure 2 for a smooth plate. The corrections for the rough plate are
expressed in Tisserand et al. (2011), and we shall use the same here.

3 Reference smooth cell

Before presentation of the results obtained in the asymmetric rough cell, we shall discuss the behaviour of 7C in
the classical configuration where all boundaries are smooth. Indeed, those results were briefly discussed only in the
review Chilla & Schumacher (2012), but no detailed presentation is available in literature. The reference case will
be referred to as "RSC’ case for 'Reference Smooth Cell” in the following.

The experimental apparatus is the same as the one described in section 2 except that the two plates are smooth,
made of copper and coated with a thin layer of nickel. Results are presented in figures 3(a) and 3(b). Figure 3(a)
shows the Nusselt number compensated by the Rayleigh number as

Nu
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Figure 2: Corrective prefactors induced by sidewalls effects for a smooth plate (for more details on the definitions
of Nus and Ras see expressions 11). Circles are for 7C cell and triangles are for SC. Red refers to series at mean
temperature 60 °C, green is for 40 °C and blue for 30 °C.
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Figure 3: (a) : compensated Nusselt number as a function of the Rayleigh number. The symbols are the same as
in figure 3(b). The continuous black line is the Grossmann-Lohse model with Pr = 3.7. The present points are
represented by the full black diamond. (b) : Prandtl number as a function of Rayleigh number.



Pr Ra Nu Pr Ra Nu

9.48 8.10 - 10° 129 2.97 1.37-10"2 601
9.35 1.27- 1010 145 3.31 1.04 - 1012 547
9.09 2.46 - 1010 173 3.70 7.61- 101 481
7.91 3.70 - 1010 194 3.72 2.38 - 1012 342
6.94 2.82 - 1010 181 3.86 4.79 - 101 426
6.82 1.34 - 1011 283 2.46 2.09 - 1012 692
6.86 9.93- 1010 258 2.95 1.37-10"2 607
3.70 7.58 .10 494 3.30 1.03 - 102 555
3.74 5.01 - 10" 433 2.87 2.24 - 102 716
3.71 2.53 . 101t 345 2.31 3.71- 102 846
3.85 1.30 - 10! 288 2.79 2.32.1012 722
2.70 1.88-10!2 661 2.40 3.01-10%2 791

Table 1: Values of Nusselt, Rayleigh and Prandtl numbers obtained in the Reference Symmetric Cell (RSC), with
smooth boundaries.

The RSC points are shown as full black diamonds in this figure. This presentation allows to evaluate the potential
departure from a Ra'/? behaviour. Other results obtained in other cells are also shown for comparison. The open
triangles are for Chavanne et al. (2001), a cylindrical cell of gaseous cryogenic helium. Green open diamonds and
half-diamonds are for Niemela et al. (2000), in a cylindrical cell filled with gaseous helium. Violet crosses and circles
are for the smooth/smooth values of Du & Tong (2000), in cylindrical cell filled with water at ambient temperature.
Finally, blue stars are for Urban et al. (2011), in a cylindrical cell filled with gaseous cryogenic helium. The black
line is the Grossmann-Lohse model (GL-model in the following) fitted for Pr = 3.7. The present evaluation of
Nugy is performed using the updated prefactors proposed by Stevens et al. (2013), as it will be in the entire paper.
Comparison with other experiments also shows a global collapse of all the cells. Some points from the Chavanne’s
experiment exhibit a departure from other experiments at Ra > 10'2. The present experiment does not exhibit
such a departure even at similar Rayleigh and Prandtl numbers.

Figure 3(b) shows the same experiments in a (Ra, Pr) phase diagram. Several points of RSC have no overlap
with previous measurements in this (Ra, Pr) plane, and thus extend the explored parameter space. Though not
all published data are shown, to our knowledge, the RSC data are the only ones which range from Ra = 10'° to
Ra = 10'! and Pr > 6. The corresponding values of Nusselt, Rayleigh and Prandtl numbers are given in table 1.

As the GL-model is in fair agreement with all the smooth experiments, and then well captures the changes of
behaviour in these range of Rayleigh number, we shall use its evaluated Nusselt number to normalise our results in
the following and then allow for comparison.

4 Convection cell with rough boundaries

In this section, we consider a rough cell, where roughness is added on the bottom plate only. The top plate and
the lateral walls are smooth. The smooth plate is the same used for the RSC case previously mentioned. The
symmetry is broken, the thermal impedance at the top and bottom boundaries are no longer identical, even within
the Boussinesq approximation. This allows in-situ comparison of rough and smooth boundary layers.

The roughness elements consists in cubic square studs, arranged in a lattice, as shown in figure 4. The height
of the roughness elements is hyp = 4 mm, their width is d = 10 mm. The periodicity of the pattern is 2d. They are
machined directly into the plate to preserve the thermal properties of the material. This configuration is similar to
the one of Tisserand et al. (2011), but with larger roughness elements. They used elements with hg = 2mm and
d = 5mm arranged in the same way, so there is a scaling factor of 2 between the two roughness sizes. The present
results will be compared with those obtained in this previous study.

It is always formally possible to define global Rayleigh and Nusselt numbers in this cell. As shown in figure 5,
the global Nusselt number is larger than in the case of smooth boundaries, and the scaling exponent is modified.
However, due to the mixed nature of the boundaries, and the broken symmetry, it is hard to draw more precise
conclusions from these quantities.



Figure 4: Sketch of the roughness pattern. In the present paper, results are obtained using hg = 4mm, d = 10 mm
with a periodicity 2d = 5hg. In Tisserand et al. (2011), hg = 2mm and d = 5mm.
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Figure 5: Global heat transfer measurements in asymmetric cells with a rough bottom plate and a smooth top plate.
Colours refer to the bulk temperature Ty, blue is 25 °C or 30°C, green is 40 °C, red 60 °C and brown 70 °C. Open
symbols refer to the hg = 2 mm of Tisserand et al. (2011), full symbols to the current hy = 4 mm elements. Triangles

are for the SC, circles for the large one 7C. Solid line: Grossmann-Lohse model for symmetric Rayleigh-Bénard
cells with smooth boundaries.



H [m] Pr Ragiobal Nuglobal Ra, Nug Ra, Nu,

1.0  5.32 1.34 x 10" 3.76 x 10° 1.54 x 101 3.26 x 102 1.15 x 101 4.44 x 102
1.0 5.44 7.46 x 100 3.11 x 102 847 x 1010 2.72 x 102 6.44 x 10°  3.63 x 102
1.0 545 444 x10'° 260 x 10> 4.98 x 101° 2.30 x 10> 3.90 x 1019 2.99 x 102
1.0 545 267 x 100 2.17x10%2 2.94x 1019 1.96 x 10> 2.40 x 1010 2.43 x 102
1.0 546 1.64 x 10 1.80x 10> 1.76 x 10'° 1.66 x 10> 1.51 x 100 1.96 x 102
1.0 545 9.76 x 10° 1.44 x 10° 1.03 x 1010 1.36 x 102 9.22 x 10° 1.54 x 102
1.0 5.36 2.26x 10" 443 x 102 2.61 x 1011 3.80 x 102 1.91 x 10  5.30 x 102
1.0 4.37 1.74 x 10" 4.10 x 10> 2.00 x 10''  3.53 x 10> 1.47 x 10''  4.88 x 102
1.0 4.37 9.88x 100 341 x10%2 1.13x 10" 2.96 x 102 8.47 x 10° 4.03 x 102
1.0 436 5.84 x 10 2.86 x 102 6.63 x 10'1° 2.50 x 10> 5.06 x 1010 3.34 x 102
1.0  4.37 344 x100 239 x10% 3.85x 1010 212 x10%2 3.03 x 109 2.74 x 102
1.0 4.38 2.05x 100 1.96 x10% 2.29 x 1010 1.74 x 102 1.81 x 109 2.24 x 102
1.0 4.35 296 x 101 4.87 x 10° 3.41 x 10''  4.19 x 102 2.50 x 10'*  5.81 x 102
1.0 431 5.10x 10" 576 x 10> 5.93 x 1011 4.92 x 102 4.27 x 101 6.95 x 102
1.0 298 4.56 x 101 5.54 x 102 5.20 x 10"  4.83 x 10> 3.92 x 10''  6.50 x 102
1.0 297 2.72x 10" 4.63 x 10> 3.08 x 10" 4.07 x 10> 2.36 x 10'*  5.38 x 102
1.0 298 1.56 x 10" 3.83 x 102 1.77 x 10''  3.36 x 102 1.36 x 10'*  4.44 x 102
1.0 296 9.34x 100 3.20x 102 1.04x 10" 2.85 x 102 8.28 x 101° 3.64 x 102
1.0 296 5.56x 100 2.65x 102 6.15 x 1019 2.38 x 102 4.98 x 10'° 2.98 x 102
1.0 296 3.32x100 218 x10% 3.56 x 100 2.02 x 10> 3.08 x 10'° 2.37 x 102
1.0 294 1.26x 10" 3.60x 102 1.40 x 10" 3.23x10% 1.13 x 10'* 4.06 x 102
1.0 296 7.83x 10" 6.55 x 10> 8.88 x 10" 5.75 x 10> 6.78 x 10" 7.61 x 102
1.0 296 1.34x102 7.83x10%2 1.52x 102 6.83x 102 1.15x 102 9.16 x 102

0.2 436 1.32x10° 871 x10' 157x10° 7.30x 10" 1.07 x10° 1.08 x 102
0.2 437 758x10% 7.24x10' 895x10% 6.10 x 101 6.21 x 10® 8.90 x 10*
0.2 437 449x10% 6.04 x 10" 527x10® 5.10 x 101 3.71 x 108 7.40 x 10'
0.2 438 266 x10% 5.08x 10" 3.06 x 108 4.40 x 101  2.26 x 10®  6.00 x 10!
0.2 439 1.60x10% 4.19x10' 1.84x10% 3.60x 10! 1.36 x 10®° 5.00 x 10!
0.2 440 222x10° 1.02x 102 266 x10° 850x 10" 1.79x10° 1.28 x 102
0.2 440 3.78x10° 1.21x10%2 4.54x10° 1.00x 102 3.02x10° 1.52x 102
0.2 3.03 201x10° 9.78x 10" 237x10° 8.20x10' 1.65x10° 1.21 x 102
0.2 3.06 3.36x10° 1.16 x 102 3.99 x 10° 9.70 x 10}  2.73 x 10° 1.44 x 102
02 304 5.73x10° 1.38x10> 6.80x10° 1.16x 10> 4.66 x 10° 1.71 x 102
0.2  3.07 9.56x10° 1.64x10%2 1.14x 10 1.36x 102 7.71 x10° 2.05 x 102
0.2 298 9.86x10° 1.66x 102 1.17x 10 1.39x10%2 8.02x10° 2.05 x 102
0.2 293 6.05x10° 1.37x10%2 7.34x10° 1.12x10%> 4.76x10° 1.77 x 102
0.2 295 3.54x10% 1.16x 102 4.27x10° 9.50x 101 2.80 x 10° 1.48 x 102
0.2 3.00 2.05x10° 9.80x 10" 246 x10° 8.10x 10" 1.64 x 10° 1.24 x 102
0.2 296 1.18x10° 813x 10" 1.40x10° 6.80x 10" 9.63 x 108 1.01 x 102
0.2 297 6.98x10% 6.83x10' 8.18x10% 5.80x 10" 5.77x10%8 8.30 x 10*
0.2 298 4.16x10% 563 x 10" 4.84 x10% 4.80 x 10! 3.47 x 10® 6.80 x 10!
0.2 299 588x10° 1.37x10%2 7.19x10° 1.12x10%> 4.58x10° 1.78 x 102
0.2 298 3.50x10% 1.15x10%2 4.23x10° 9.50x 101 2.77 x 10° 1.47 x 102
0.2 3.01 2.06x10° 9.66x 10" 2.46x10° 8.00x 10' 1.65 x 10° 1.22 x 102
0.2 3.00 1.18x10° 8.02x10" 1.40x10° 6.70x 10" 9.61 x 108  1.00 x 102
0.2 3.03 6.98x10% 6.76 x 10" 8.25 x 108 5.70x 10" 5.72 x 108  8.30 x 10*
0.2 3.01 4.13x10% 5.62x10" 4.70x10® 4.90 x 101  3.56 x 108  6.60 x 10*
0.2 3.04 250x10% 4.70x 10" 283 x10% 4.10x 10! 2.18 x 10® 5.50 x 10!

Table 2: Heat transfer data in the asymmetric cells with rough bottom plate and smooth top plate.
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Figure 6: Separation of plates. (a) is the asymmetric cell we use, (b) is the symmetric cell based on the hot plate,
(c) the symmetric cell based on the cold plate.

4.1 Separation of plates

Following the approach of Tisserand et al. (2011), the asymmetric cell can be divided into two symmetric half-cells,
under the assumption that the plates are independent. This procedure is justified only by the broken symmetry of
cell geometry. Indeed, though this has recently triggered some discussion (Skrbek & Urban, 2015; Shishkina et al.,
2016), its relevance as a means to recover from non-Boussinesq effect is not discussed in this paper, because our
working conditions are all chosen in a range where the Boussinesq approximation holds. The bulk temperature is
not equal to (Th, + T¢)/2 due to the impedance adaptation of the flow induced by the introduction of roughness
on only one plate of the cell. The heat flux is imposed at the hot plate and the cold one is temperature-regulated
which allows the bulk and hot temperatures to stabilize at free values corresponding to the stationary state of the
operating point. The asymmetric cell with roughness on the bottom and without roughness on the top is sketched
as case (a) of figure 6. We measure T,, T, and Tj,. If we focus on the hot/rough plate and its corresponding
half-cell, we can construct the symmetrical part by considering that, with respect to the Boussinesq approximation,
the corresponding cold plate should be at the temperature T}, — 2(T}, — 1), case (b). This can be done also for the
cold plate, resulting in case (c). We then compute a difference of temperature corresponding to cases (b) and (c),

AT, =2(Ty, - Ty) AT, =2(T, — T.), (9)

and the Rayleigh and Nusselt numbers for the rough half-cell, Ra, and Nu,., and for the smooth half-cell, Ras and
Nus,

B agAT, H? _ QH

Rar - Uk 9 Nu’l“ - )\ATT ) (10)
B agAT, H3  QH

Ra, = VK » Nug = AT, (11)

This way, the behaviour of each plates can be characterized separately.

4.1.1 Smooth plate case

Let us first consider the smooth plate. In our previous work (Tisserand et al., 2011), the thermal transfer of the
smooth plate was not modified by the presence of the roughness on the hot plate. To verify that this still holds in
the case of larger roughness elements, the Nusselt number of the smooth half-cell is plotted in figure 7.

Four sets of points are presented, obtained in the Tall and Small Cells, and each with two roughness sizes.
These four experimental configurations are compared to the RSC configuration previously discussed in section 3
(black open diamonds on figure 7). We then can discuss four different experimental configurations compared to the
reference points. Open triangles and circles correspond to Tisserand et al. (2011), for aspect ratios I' = 2.5 and
I’ = 1/2 respectively, colours are Prandtl number series : blue for T, = 25°C, green for T, = 40°C and brown for
T, = 70 °C corresponding to a Prandtl number of 6.1, 4.3 and 2.5. Full symbols are the new results presented here,
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Figure 7: Thermal transfer of the smooth plate: Nug normalised by the Grossmann-Lohse model computed with
respect to the experimental Prandtl number as a function of Ras. Colours refer to the bulk temperature Tj, blue
is 25°C or 30°C, green is 40°C, red 60°C and brown 70°C. Open symbols refer to the hg = 2mm of Tisserand
et al. (2011), full symbols to the current hg = 4mm elements. Triangles are for the SC, circles for the large one
TC. Black diamonds are for the reference smooth/smooth cell presented in section 3.

blue is for T = 30°C, red for T, = 60 °C. The ordinate have been extended in order to range the same values than
those of figure 8 for comparison. The Nusselt numbers of the smooth half-cells and those of the reference smooth
cell collapse on a single horizontal line when compensated by the prediction from the GL model. The dispersion
around the horizontal line is less than 10 %.

The thermal efficiency of the smooth/cold plate is not modified by the presence of roughness on the opposite
hot plate and it is in good agreement with the reference results obtained in the fully smooth cell. This backs up
the independence of plates. Similar observations were also done by Wei et al. (2014) in asymmetrical cell. The
behaviour of the smooth plate was not changed by the introduction of roughness elements on the opposite plate.
This was tested with roughness either on the bottom or the top plate. It suggests that the independence of plates is
a robust result in the range of Rayleigh number explored here (Ra larger than 10%). However, some recent Particle
Image Velocimetry (PIV) measurements, Liot et al. (2017), performed in asymmetric rough cell, seem to show a
major increase of the root mean square of the velocity close to the smooth plate at nearly constant Rayleigh number.
Though the introduction of roughness on one plate yields larger fluctuations in the bulk, it does not change the
efficiency of the smooth plate.

4.1.2 Rough plate case

The heat transfer measurements of the rough half-cell are presented in figure 8. or The four sets of points are
clearly disjoined and correspond to the SC (low Rayleigh numbers) and 7C (large Rayleigh numbers) and to the
two sizes of roughness elements: the small one used by Tisserand et al. (2011) and the large one presented here.
The comparison between those two plots gives another argument for the independence of plates: the scaling law
behaviour of one plate may significantly differ from the other.

The open symbols are the previous points from Tisserand et al. (2011), with a roughness size hg = 2mm. The
full symbols are the new measurements obtained with hy = 4 mm. Both exhibit a regime of enhanced heat transfer,
with a scaling exponent a higher than the smooth case which starts when the height of the thermal boundary layer,

597
H

2Nu,’
gets smaller than the roughness height, hg, i.e. when the plate is hydrodynamically rough. That is why the Rayleigh
number threshold differs for the four values of ho/H (0.02, 0.01, 0.004, 0.002 from left to right in figure 8).

The effective scaling exponent is close to 1/2 and the prefactor fairly agrees with roughness-induced turbulent
structure of the boundary layer described by Salort et al. (2014). The lines shown in figure 8 are estimates from

S (12)

10



NUT/NUGL

lOglO (Rar)

Figure 8: Thermal transfer of the rough plate: Nu, normalised by the Grossmann-Lohse model computed with
respect to the experimental Prandtl number as a function of Ra,. Symbol and colour choices are the same as figure
7. Lines stand for expression 13 : blue lines are SC, black lines are 7C, full lines are for hy = 4mm and dashed
lines for hg = 2mm.

Eq. 23 of Salort et al. (2014),

25)3/2 1/2
Ny = "2) <};{0> Ra/2. (13)
where N
Ue
Rac

and Nu. and Ra,. are the critical value of Nu, and Ra, at the transition. Because this transition is controlled by
the height of the thermal boundary layer, one can write

H
Nu, = Shg” (15)
The range of Rayleigh numbers is wider than was considered by Salort et al. (2014), therefore it is not possible
to choose one single value for o: typically ¢ = 0.06 for Ra > 10! where the scaling exponent is 1/3. For lower
Rayleigh numbers, the effective value of ¢ is larger. One way to estimate its value is to use the GL model which is
well suited to yield estimates of the Nusselt number as long as the plate is hydrodynamically smooth.
Let fgr be the function that gives the Nusselt number for a given Rayleigh number in the GL model, i.e.

NUGL = fGL(Ra). (16)

Then the critical Rayleigh number, Ra., beyond which the plate gets hydrodynamically rough can be estimated as

H
Rao = f51 (%) , (17)

and therefore
H

T ShofGL(H/(2ho))’

The values of o are shown in table 3. The prediction (Eq. 13) has no free parameters, it is fully determined by
two geometrical parameters: hg and H. As shown in figure 9, this estimate allows to fairly collapse the 4 datasets
into one master curve. There are however still some dispersion left. That could be caused by the effect of the
Prandt]l number which is not taken into account in this description. Recent experiments of Xie & Xia (2017) also
suggest that the heat transfer efficiency in the case of rough boundaries gets larger when the Prandtl number is

(18)
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o H ho

0.0607 1m 4mm
0.0579 Im 2mm
0.0740 0.2m 4mm
0.0667 0.2m 2mm

Table 3: Values of the parameter o.

increased. They evidence such increase only for larger Prandtl numbers than we do, but the geometry of the cells
and roughness significantly differ. Our results are consistent with theirs in the sense that the Nusselt number tends
to increase with the Prandtl number in the rough configuration only. As long as the boundary is hydrodynamically
smooth, the Nusselt number does not significantly depend on the Prandtl number. However, it is possible that the
velocity boundary layer thickness also plays a role near the threshold, and therefore the critical Rayleigh number
may depend on the Prandtl number.

For Rayleigh numbers lower than Ra., the plate is hydrodynamically smooth, and the scaling exponent is similar
to a smooth plate. However, several Nusselt numbers are lower than predicted by the GL model. This indicates that
the thermal transfer is less efficient than in the classical smooth case. The interpretation proposed by Tisserand
et al. (2011) was that it is caused by the additional thermal impedance of the fluid which fills the space around the
roughness elements and locally thickens the boundary layer.

In the high Rayleigh number limit, the data exhibits a second transition, both for the Tall and Small cells. In
this range, the heat transfer is still larger than the smooth case, and larger than effective surface increase (40 %),
but the scaling exponent a is less than 1/2. It may be related to other published works which have reported an
increase of the prefactor C' caused by enhanced plume emissions, rather than an increase of the exponent a due to
a change in the structure of the boundary layer. It seems consistent, in particular, to the recent results of Xie &
Xia (2017) in their symmetric rough cell where both plates have pyramid-shaped roughness elements.

To the best of our knowledge, there are only two other published datasets in asymmetric Rayleigh-Bénard cells:
Wei et al. (2014) and Salort et al. (2014). The former performed experiments in a cylinder of aspect ratio close
to 1. They used pyramidal elements as roughness, sketched in figure 10. The base length d is equal to 2hy. The
surface increase induced was of 41%. The latter uses similar square-studs roughness but within a rectangular cell
with vertical aspect ratio width/height = 1 and horizontal aspect ratio depth/width = 0.25.

These datasets are shown in figure 9. As could be expected, the points do not exactly collapse. Indeed, the
details of the geometry may change prefactors in the Nusselt numbers. However, the observations of the three
regimes hold, the Rayleigh number thresholds are all consistent and the enhancement goes beyond the increase
solely yielded by the increase of the effective surface area.

5 Discussion

Thermal transfer measurements have been carried out in a cylindrical Rayleigh-Bénard cell with square roughness
on the bottom plate for two different cell aspect ratios. The results have been compared to previous studies, with
different roughness shapes and dimensions. The Grossmann-Lohse model is used to estimate the Nusselt numbers
when the boundaries are smooth.

We have shown that both plates are independent, at least when the thermal impedance is considered. The
impedance of the smooth boundary is fully determined by its temperature difference to the bulk, and the classical
scaling law is fully recovered when the Rayleigh number of the smooth half-cell is considered. Beyond a critical
Rayleigh number corresponding to the thermal boundary layer smaller than the typical roughness size, the thermal
impedance of the rough boundary is smaller than the smooth case, and is well described by a turbulent destabilization
of the boundary layer.

Such destabilization was confirmed directly by the work of Liot et al. (2016) where PIV measurements have
exhibited a turbulent velocity profile in the boundary layer. However, other enhancement mechanisms were also
proposed in the past. In particular, Du & Tong (2000) used thermochromic liquid crystals to measure temperature
fields close to a rough plate. Tips of roughness elements seemed to be preferential points of nucleation of thermal
plumes. Following this hypothesis, we can assume that a cube can induce a higher increase of the thermal transfer
than a pyramid since a cube is formed of four singularities (i.e. : corners) interacting with the fluid whereas a
pyramid is only exhibiting one singularity. The details of the shape of the roughness elements, such as sharp edges
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Figure 9: (a) Rough half-cell heat transfer measurements with Ra'/3 compensation. Circles and triangles are data

from the present work with the same conventions as in figure 7. (b) Rough half-cell heat transfer enhancement
Nu,/Nugy, versus compensated Rayleigh number Ra,/Ra.. The collapse is better because the use of GL model
accounts for variation of the effective exponent. Black solid line: roughness-triggered turbulent model from Eq. 13.
(c) compilation of several cell geometries. Black symbols are from the cylindrical asymmetric cell from Wei, et al..
Stars are hg = 8 mm R/S, +-circles are hy = 8mm S/R and x-circles are hg = 3mm R/S. Squares are from the
rectangular Rayleigh-Bénard cell from Salort et al.
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Figure 10: Sketch of the pyramidal roughness used by Wei et al. (2014).

and vertical surfaces, surely bear some importance and may be investigated further. As can be seen in figure 9,
the curves obtained with cubic roughness elements are above the ones obtained with pyramids, which backs up the
idea that more plumes are induced by cubes than pyramids.

At lower Rayleigh numbers, Nu,./Nugy, is lower than 1 for several experiments, Tisserand et al. (2011) and Wei
et al. (2014). This could be caused by an additional thermal resistance induced by motionless fluid between the
roughness elements, as was suggested by PIV measurements (Liot et al., 2016).

Though the actual Nusselt numbers depend on the details of the geometry, several observations hold for all
known setups, regardless of the roughness or cell geometry. Like Xie & Xia (2017), three regimes can be consistently
exhibited: (i) below Ra., Nu,/fqr(Ra,) are horizontal lines, meaning that the behavior is similar to a smooth
plate, and consistent with the GL model within £20 %. (ii) a regime of increased scaling exponent occurs beyond
Ra,, fairly compatible with a = 1/2; and more precisely with Eq. 13, which suggests roughness-triggered turbulent
boundary layer structure. (iii) a third regime, where the heat transfer is enhanced, more than the increase of
effective surface area, but the scaling exponent is lower than in the second regime, which suggests that turbulent
destabilization of the boundary layer may no longer be the dominant enhancement mechanism.
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