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1 Introduction

A novel window in the physics of the strong interactions has been provided recently by the

experimental efforts at RHIC, [1] . The consensus on the existing data is that shortly after

the collision, a ball of quark-gluon plasma (QGP) forms that is at thermal equilibrium, and

subsequently expands until its temperature falls below the QCD transition (or crossover)

where it finally hadronizes. Relativistic hydrodynamics describes very well the QGP [2, 3],

with a shear-viscosity to entropy density ratio close to the universal value suggested by the

holographic formulation of N = 4 SYM, [4].

The QGP is at strong coupling, and it necessitates a treatment beyond perturbative

QCD approaches, [5]. There are several observables that seem to be important in under-

standing measured features of the collisions. They translate into transport properties of

the strongly coupled plasma, and reliable methods for the calculation are in need.

A fist class of transport coefficients are viscosity coefficients.1 A general fluid is char-

acterized by two viscosity coefficients, the shear η and the bulk viscosity ζ. The shear

viscosity in strongly coupled theories described by gravity duals was shown to be univer-

sal, [4]. In particular, the ratio η/s, with s the entropy density, is equal to 1
4π . This is

correlated to the universality of low-energy scattering of gravitons from black-holes. It is

also known that deviations from this value can only be generated by higher curvature terms

that contain the Riemann tensor (as opposed to the Ricci tensor of the scalar curvature). In

QCD, as the theory is strongly coupled in the temperature range Tc ≤ T ≤ 3Tc, we would

expect that η/s ≃ 1
4π . Recent lattice calculations, [7] agree with this expectations although

potential systematic errors in lattice calculations of transport coefficients can be large.

Conformal invariance forces the bulk viscosity to vanish. Therefore the N = 4 SYM

plasma, being a conformal fluid, has vanishing bulk viscosity. QCD on the other hand is

not a conformal theory. The classical theory is however conformally invariant and asymp-

totic freedom implies that conformal invariance is a good approximation in the UV. This

would suggest that the bulk viscosity is negligible at large temperatures. However it is not

expected to be so in the IR: as mentioned earlier lattice data indicate that in the relevant

RHIC range 1 ≤ T
Tc

≤ 3 the QGP seems not to be a fully conformal fluid. Therefore the

bulk viscosity may play a role near the phase transition.

So far there have been two approaches that have calculated the bulk viscosity in

YM/QCD, [8–11] and have both indicated that the bulk viscosity rises near the phase

transition as naive expectation would suggest. The first used the method of sum rules in

conjunction with input from Lattice thermodynamics, [8–10]. It suggested a dramatic rise

of the bulk viscosity near Tc although the absolute normalization of the result is uncer-

tain. The reason is that this method relies on an ansatz for the density associated with

stress-tensor two point functions that are otherwise unknown.

The second method [11] relies on a direct computation of the density at low frequency

of the appropriate stress-tensor two-point function. As this computation is necessarily Eu-

1These are the leading transport coefficients in the derivative expansion. There are subleading coefficients

that have been calculated recently for N = 4 SYM, [6]. However, at the present level of accuracy, they

cannot affect substantially the comparison to experimental data, [2].
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clidean, an analytic continuation is necessary. The values at a finite number of discrete Mat-

subara frequencies are not enough to analytically continue. An ansatz for the continuous

density is also used here, which presents again a potentially large systematic uncertainty.

We will see in the present work that our findings support a rise of the bulk viscosity

near Tc, but the values are much smaller than previously expected. Studies of how this

affects hydrodynamics at RHIC, [13] suggest that this implies a small fall in radial and

elliptic flow.

Another class of interesting experimental observables is associated with quarks, and

comes under the label of “jet quenching”. Central to this is the expectation that an

energetic quark will loose energy very fast in the quark-gluon plasma because of strong

coupling. This has as a side effect that back-to back jets are suppressed. Moreover if a

pair of energetic quarks is generated near the plasma boundary then one will exit fast the

plasma and register as an energetic jet, while the other will thermalize and its identity will

disappear. This has been clearly observed at RHIC and used to study the energy loss of

quarks in the quark-gluon plasma.

Heavy quarks are of extra importance, as their mass masks some low-energy strong

interaction effects, and can be therefore cleaner probes of plasma energy loss. There are

important electron observables at RHIC, [14] that can probe heavy-quark energy loss in

the strongly coupled quark-gluon plasma. Such observables are also expected to play an

important role in LHC [15].

A perturbative QCD approach to calculate the energy loss of a heavy quark in the

plasma has been pursued by calculating radiative energy loss, [16]. However its application

to the RHIC plasma has recently raised problems, based on comparison with data. A

phenomenological coefficient used in such cases is known as the jet quenching coefficient q̂,

and is defined as the rate of change of the average value of transverse momentum square of

a probe. Current fits, [14, 17], indicate that a value of order 10 GeV 2/fm or more is needed

to describe the data while perturbative approaches are trustworthy at much lower values.

Several attempts were made to compute quark energy loss in the holographic context,

relevant for N = 4 SYM.2 In some of them [19, 20] the jet-quenching coefficient q̂ was

calculated via its relationship to a light-like Wilson loop. Holography was then used to

calculate the appropriate Wilson loop. The q̂ obtained scales as
√

λ and as the third power

of the temperature,

q̂conformal =
Γ

[

3
4

]

Γ
[

5
4

]

√
2λ π

3
2 T 3 (1.1)

A different approach chooses to compute the drag force acting a string whose UV

end-point (representing an infinitely heavy quark) is forced to move with constant velocity

v, [21–23], in the context of N = 4 SYM plasma. The result for the drag force is

Fconformal =
π

2

√
λ T 2 v√

1 − v2
(1.2)

and is calculated by first studying the equilibrium configuration of the appropriate string

world-sheet string and then calculating the momentum flowing down the string. This can

2Most are reviewed in [18].
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be the starting point of a Langevin evolution system, as the process of energy loss has a

stochastic character, as was first pointed out in [24] and more recently pursued in [25]–[31].

Such a system involves a classical force, that in this case is the drag force, and a

stochastic noise that is taken to be Gaussian and which is characterized by a diffusion

coefficient. There are two ingredients here that are novel. The first is that the Langevin

evolution must be relativistic, as the quarks can be very energetic. Such relativistic systems

have been described in the mathematical physics literature, [32] and have been used in phe-

nomenological analyses of heavy-ion data, [17]. They are known however to have peculiar

behavior, since demanding an equilibrium relativistic Boltzmann distribution, provides an

Einstein relation that is pathological at large temperatures. Second, the transverse and

longitudinal diffusion coefficients are not the same, [28]. A first derivation of such Langevin

dynamics from holography was given in [28]. This has been extended in in [31] where the

thermal-like noise was associated and interpreted in terms of the world-sheet horizon that

develops on the probe string.

Most of the transport properties mentioned above have been successfully computed in

N = 4 SYM and a lot of debate is still waged as to how they can be applied to QCD in

the appropriate temperature range, [33–35]. A holographic description of QCD has been

elusive, and the best we have so far have been simple bottom up models.

In the simplest bottom-up holographic model known as AdS/QCD [36], the bulk vis-

cosity is zero as conformal invariance is essentially not broken (the stress tensor is traceless),

and the drag force and jet quenching essentially retain their conformal values.

In the soft-wall model [37], no reliable calculation can be done for glue correlators

and therefore transport coefficients are ill-defined, as bulk equations of motion are not

respected. Similar remarks hold for other phenomenologically interesting observables as

the drag force and the jet quenching parameter.

A hybrid approach has been advocated in [38–40] combining features of bottom-up

and top-down (string theory) models. Such an approach is essentially a five-dimensional

dilaton-gravity system with a non-trivial dilaton potential. Flavor can be eventually added

in the form of Nf space-time filling D4 − D4 brane pairs, supporting U(Nf )L × U(Nf )R
gauge fields and a bi-fundamental scalar [41].3

The UV asymptotics of the potential are fixed by QCD perturbation theory, while the

IR asymptotics of the potential can be fixed by confinement and linear glueball asymptotics.

An analysis of the finite temperature behavior [44, 45] has shown that the phase

structure is exactly what one would expect from large-Nc YM.4 Einstein-dilaton gravity

with a strictly monotonic dilaton potential that grows sufficiently fast, generically shares

the same phase structure and thermodynamics of finite-temperature pure Yang-Mills theory

at large Nc. There is a deconfinement phase transition (dual to a Hawking-Page phase

transition between a black-hole and thermal gas background on the gravity side), which is

generically first order. The latent heat scales as N2
c . In the deconfined gluon-plasma phase,

the free energy slowly approaches that of a free gluon gas at high temperature, and the

3D4−D4 brane pairs for flavor where first suggested in [42] and the finite temperature solutions studied

in [43].
4Similar results, but with somewhat different potentials were also obtained in [46, 47].
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speed of sound starts from a small value at Tc and approaches the conformal value c2
s = 1/3

as the temperature increases. The deviation from conformal invariance is strongest at Tc,

and is signaled by the presence of a non-trivial gluon condensate, which on the gravity side

emerges as a deviation of the scalar solution that behaves asymptotically as r4 close to

the UV boundary. In the CP-violating sector, the topological vacuum density tr F F̃ has

zero expectation value in the deconfined phase, in agreement with lattice results [48] and

large-Nc expectations.

The analysis performed in [45] was completely general and did not rely on any specific

form of the dilaton potential V (λ). A potential with two parameters, was subsequently

chosen to describe YM data, [49]. The (dimensionless) free energy, entropy density, latent

heat and speed of sound, obtained on the gravity side by numerical integration of the 5D

field equations, were compared with the corresponding quantities, calculated on the lattice

for pure Yang-Mills at finite-T , resulting in excellent agreement, for the temperature range

that is accessible by lattice techniques. The same model also shows a good agreement with

the lattice calculation of glueball mass ratios at zero temperature. Moreover the value of

the deconfining critical temperature (in units of the lowest glueball mass) was also in good

agreement with the lattice results.

In short, the model, named Improved Holographic QCD, (or IHQCD for short), gives a

good phenomenological (holographic) description of most static properties (spectrum and

equilibrium thermodynamics) of large-Nc pure Yang-Mills, as computed on the lattice, for

energies up to several times Tc. Therefore it constitutes a good starting point for the

computation of dynamical observables in a realistic holographic dual to QCD (as opposed

to e.g. N = 4 SYM), such as transport coefficients and other hydrodynamic properties

that are not easily accessible by lattice techniques, at energies and temperatures relevant

for relativistic heavy-ion collision experiments.

The purpose of the present paper is to compute transport properties (the bulk viscosity)

and energy loss coefficients (the jet quenching parameter and the drag force) in the specific

Improved Holographic QCD model described in [49].

The shear viscosity of IHQCD is the same as that of N = 4 SYM, as the model is a

two derivative model. Although this is not a good approximation in the UV of QCD, it is

expected to be a good approximation in the energy range Tc ≤ T ≤ 5Tc. We find that the

bulk viscosity rises near the phase transition but ultimately stays slightly below the shear

viscosity. We also give a general holographic argument that any (large-N) gauge theory that

confines color at zero temperature should have an increase in the bulk viscosity-to-entropy

density ratio close to Tc.

The drag force on heavy quarks, and the associated diffusion times, are calculated

and found to be momentum depended as anticipated from asymptotic freedom. Numerical

values of diffusion times are in the region dictated by phenomenological analysis of heavy-

ion data. We calculated the medium-induced corrections to the quark mass (needed for the

diffusion time calculation), and we find they result in a mildly decreasing effective quark

mass as a function of temperature. This is consistent with lattice results. Finally the jet-

quenching parameter is calculated and found to be comparable at Tc to the one obtained

by extrapolation from N = 4 SYM. Its temperature dependence is however different and

again reflects the effects of asymptotic freedom.
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There are several sources of error and systematic uncertainties in the results above. We

analyze them in the appropriate sections and make a long commentary on their importance

in the last section.

The structure of the paper is as follows. In section 2, we review the holographic

construction that shall be used to compute certain observables of QGP. In particular we

review the asymptotic behaviors of the backgrounds and discuss the various parameters

in the model and how they are fixed. Section 3 is devoted to the computation of the

bulk viscosity. We describe the general holographic computation of the quantity from

the graviton fluctuation equations on the dual background and compute its temperature

dependence numerically. We also make a proposal for a holographic explanation of the rise

in the bulk viscosity near the phase transition. In section 4, we compute the drag force on

a heavy quark moving in QGP in our set-up. We obtain general analytic formulas in the

relativistic and the non-relativistic limits of the drag force as a function of temperature.

We compare our findings with the N = 4 SYM result. In this section we also compute the

diffusion times for the heavy quarks in the QGP. In particular, we present numerical results

for the charm and the bottom quarks. Furthermore, we compute the thermal corrections

to the quark masses in our set-up and finally discuss in what temperature ranges should

our results be trusted. In section 5, we compute the jet-quenching parameter in our set-up.

Our findings are compared with the conformal (N = 4 SYM) case. Finally, the section 6

contains a discussion and outlook. The various appendices detail our computations.

2 Review of IHQCD backgrounds

The holographic duals of large Nc Yang Mills theory proposed in [38, 39] are based on

five-dimensional Einstein-dilaton gravity with a dilaton potential. The basic fields for the

pure gauge sector are the 5D metric gµν (dual to the 4D stress tensor) and a scalar field Φ

(dual to TrF 2). The Einstein frame action for these fields is:

S5 = −M3
p N2

c

∫

d5x
√

g

[

R − 4

3
(∂Φ)2 + V (Φ)

]

+ 2M3
p N2

c

∫

∂M
d4x

√
h K. (2.1)

Here, Mp is the five-dimensional Planck scale and Nc is the number of colors. The last

term is the Gibbons-Hawking term, with K being the extrinsic curvature on the boundary.

The effective five-dimensional Newton constant is G5 = 1/(16πM3
p N2

c ), and it is small in

the large-Nc limit.

The scalar potential V (Φ) is what determines the dynamics. Its form is in part mo-

tivated from non-critical string theory, and in part chosen following guidelines from phe-

nomenology. We will often write V as a function of λ ≡ eΦ.

Asymptotic freedom in the UV requires V (λ) have a regular expansion for small λ ≡ eΦ:

V (λ) =
12

ℓ2

(

1 + V0λ + V1λ
2 + . . .

)

, V0 > 0, λ → 0. (2.2)

This ensures that in any solution of Einstein’s equations the metric has an asymptotically

AdS5 UV region, with AdS length ℓ, in which the field λ vanishes logarithmically. We have
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the perturbative identification, valid for small λ:

κλ ≡ Ncg
2
YM, κ ≡ 9

8

V0

β0
, (2.3)

where β0 = (22/3)(4π)−2 is the first coefficient of the perturbative beta-function for the ’t

Hooft coupling Ncg
2
YM of pure Yang-Mills theory.

For large λ, confinement and a linear glueball spectrum require:

V (λ) ≃ V∞λ4/3(log λ)1/2 λ → ∞, (2.4)

where V∞ is a positive constant.5

For a generic potential that obeys the asymptotics (2.2) and (2.4), the model exhibits

the following features:

• Zero temperature. At zero temperature, the gravity solution is dual to a confining

4D theory. One has color confinement (i.e. a Wilson Loop area law) and a discrete

glueball spectrum with linear behavior, m2
n ∼ n. The solution of Einstein’s equations

for the metric and dilaton has the form:

ds2 = e2Ao(r)
(

dr2 + ηµνdxµdxν
)

, λ = λo(r), 0 < r < ∞, (2.5)

with small-r log-corrected AdS asymptotics,

Ao(r) ∼ − log r/ℓ + O
(

1

log Λr

)

+ . . . , λo(r) ∼ − 1

log Λr
(2.6)

and large-r behavior:

Ao(r) ∼ −Cr2, λo(r) ∼ exp

[

3

2
Cr2

]

, r → ∞. (2.7)

In equation (2.6), Λ is an integration constant that sets the length scale of nonper-

turbative physics; the constant C in equation (2.7) is determined in terms of Λ.

• Finite temperature. At finite temperature, one finds a first order phase transition

between a low-temperature confined phase, described by the solution (2.5), and a

high-temperature deconfined phase, described holographically by a 5D black hole

solution:

ds2 = e2A(r)

[

dr2

f(r)
− f(r)dt2 + dxmdxm

]

, λ = λ(r), 0 < r < rh. (2.8)

These solutions are characterized by the presence of a horizon rh where f(rh) = 0,

and have a temperature T and an entropy density s:

T = − ḟ(rh)

4π
, s = 4π (M3

p N2
c ) e3A(rh). (2.9)

In the UV (r → 0), and for any rh , the black holes are asymptotically AdS5 and

reduce to the zero-temperature metric A(r) ≃ Ao(r), f(r) ≃ 1.

5Other types of large-λ asymptotics also lead to color confinement, with different features of the glueball

spectrum. These solutions were analyzed in complete generality in [39].
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In all types of solutions, (2.5) and (2.8), the dilaton Φ(r) is a monotonically increasing

function of r. One can therefore use Φ itself as the radial coordinate in (2.8):

ds2 = e2A(φ)(−fdt2 + dxmdxm) + e2B(φ) dφ2

f
. (2.10)

Comparison of (2.8) and (2.10) determines,

B = A − log

∣

∣

∣

∣

dφ

dr

∣

∣

∣

∣

. (2.11)

This form of the metric will prove useful later.

Generically, in these types of models there exist two separate black-hole solutions, that

were referred in [45] as the big and the small black-holes. In [45] it was proved that existence

of this second type of black-hole solution (the small BH) is necessary and sufficient for a

first order confinement-deconfinement phase transition.

The big BH solution exists for T > Tmin for some finite Tmin, see figure 3 (b), and

dominates the entire thermodynamic ensemble for T > Tc where Tc is always larger than

Tmin. It always dominates in the thermodynamic ensemble over the small BH. It corre-

sponds to the range 0 < λh < λmin in the horizon value of the dilaton, for some finite

λmin, see figure 3 (b). This solution is proposed as the holographic dual of the Yang-Mills

gluon plasma.

The small BH solution also exists for T > Tmin and it corresponds to the range λmin <

λh < ∞, see figure 3 (b). As it is never dominant in the thermodynamic ensemble, it bears

no direct significance for an holographic investigation of the quark-gluon plasma.

This situation is depicted in figure 1.

In summary, there exists three separate solutions to the dilaton-gravity system:

i. The thermal gas (2.5) that exists for all T > 0. It is the dominant solution for T < Tc.

ii. The big BH (2.8) that exists for T > Tmin and becomes the dominant solution for

T > Tc.

iii. The small BH that exists for T > Tmin and is always sub-leading in the thermody-

namic ensemble.

The solutions (2.5) and (2.8) are written in the Einstein frame. Some of the transport

properties we compute in this paper however are defined in terms of the string frame, since

they are related to world-sheet quantities. In the five-dimensional non-critical string setup,

the string frame and the Einstein frame metrics are related by [38]:

ds2
s = e

4
3
Φds2

E , (2.12)

so we can define a string frame scale factor (both at zero and finite temperature):

As(r) = A(r) +
2

3
Φ(r). (2.13)

As shown in [39], the Einstein frame scale factor is monotonic if the metric is asymp-

totically AdS and the theory satisfies the null energy condition.6 On the other hand, the

6This is always the case for a single scalar field with a canonical kinetic term.
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1 1.1 1.2

T

Tc
0

-0.01

0.01

-0.02

-0.03

F

Nc
2 Tc

4 V3

Figure 1. Free energy of black hole solutions as a function of temperature. The (constant) free

energy of the T = 0 confining vacuum is set to zero. The two branches correspond to the big

black holes (lower branch) and the small black holes (upper branch). The two branches merge at a

minimum temperature Tmin > 0, corresponding to the vertical dashed line. The free energy of the

big black hole branch crosses the x-axis at T = Tc, indicating a first order phase transition between

the vacuum and big black hole phase.

string frame scale factor may not be monotonic. In particular, in the backgrounds with IR

asymptotics (2.7), (which follows if the dilaton potential obeys (2.4) ) the zero-temperature

string frame scale factor behaves as:

As,o(r) ∼
{

− log r/ℓ → +∞ r → 0,
3
4 log r → +∞ r → ∞.

(2.14)

Therefore, the zero-temperature string frame scale scale factor must have a minimum at

some finite value of the radial coordinate, r = r∗, where in string units the metric has a

minimum size eAs,o(r∗). This is what causes the holographic Wilson loop to exhibit an area

law [50]. The confining string tension σc is related to the fundamental string length ℓs and

value of the string frame metric at the extremum:

σc =
e2As,o(r∗)

2πℓ2
s

. (2.15)

Notice that it is not guaranteed that the minimum survives in the black hole solutions.

For sufficiently high temperature, the minimum of the string world-sheet should disappear

behind the horizon. In fact, this is what happens in the explicit case we will consider in

this paper: a numerical analysis shows that for all temperatures larger than the critical

temperature Tc, both the string and Einstein frame scale factor are monotonically decreas-

ing over the whole range 0 < r < rh. Thus the minimum of the scale factor in both frames

occurs at r = rh.

In [49] we assumed a specific form of the potential:

V (λ) =
12

ℓ2

{

1 + V0λ + V1λ
4/3

[

log
(

1 + V2λ
4/3 + V3λ

2
)]1/2

}

. (2.16)
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The model specified by the potential (2.16) contains a few adjustable parameters,

namely the coefficients Vi and ℓ entering the potential, and the 5D Planck scale Mp. They

were fixed in [49] as follows:

• The coefficients V0 and V2 are chosen to reproduce the perturbative Yang-Mills beta-

function up to 2-loop order, β(λ) = −β0λ
2 − β1λ

3 + O(λ4). This requires:

V0 =
8

9
β0, V2 = β4

0

(

23 + 36β1/β
2
0

81V1

)2

. (2.17)

For pure Yang-Mills the beta-function coefficients are:

β0 =
22

3(4π)2
, β1 =

51

121
β2

0 . (2.18)

• The coefficients V1 and V3 were fixed by comparing the latent heat of the phase

transition, and the pressure of the deconfined phase at a given temperature (T = 2Tc),

to the corresponding lattice results. A successful matching leads to the choice:

V1 = 14, V3 = 170. (2.19)

• The asymptotic AdS scale ℓ only affects the overall unit of energy, and can be set

by fixing the value of a single dimensionful quantity in the model (say the lowest

glueball mass, or the critical temperature). Any physical dimensionless quantity is

independent of ℓ. Once ℓ is given, the UV solution is asymptotically:

A(r) = log
ℓ

r
+ O

(

1

log r

)

, λ(r) = − 1

β0 log Λr
+ O

(

log log r

log2 r

)

. (2.20)

The scale Λ appearing in the UV asymptotics of λ(r) is an integration constant

of the zero-temperature Einstein’s equations, and it is related to the UV boundary

conditions (A0, λ0) at a small but finite coordinate r0 as:

Λ ≃ ℓ−1(β0λ0)
−b exp

{

A0 −
1

β0λ0

}

, b =
β1

β2
0

. (2.21)

It may seem from this discussion that there is an extra dimensionless parameter in

our model, Λℓ, with respect to pure 4D Yang-Mills (where the only parameter is the

scale Λ). This is not so: all physical quantities that can be related holographically to

a Yang-Mills observable have a trivial dependence on Λℓ. In fact, as shown in [39],

changing Λ while keeping ℓ fixed, is the same as shifting A(r) by a constant, i.e. a

fixed rescaling of all energies in the model or a change of units. Alternatively, for

any given value of ℓ, there exists a unique solution such that the scale Λ is equal to

the physical value in 4D Yang-Mills, and that no dimensionless observable depends

on this choice.

• The 5D Planck scale is fixed (in units of ℓ) so that, in the T → ∞ limit, the equation

of state matches that of a free relativistic gas of N2
c photons,

lim
T→∞

p(T )

T 4
=

π2

45
⇔ M3

p =
ℓ−3

45π2
. (2.22)
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As shown in [49], with these choices of the parameters the 5D holographic model is

able to accurately reproduce all known thermodynamic properties of finite temperature

Yang-Mills theory, as they emerge from lattice studies. It also displays a glueball spectrum

which is in good agreement with lattice results. The value of the confinement-deconfinement

transition is found to be Tc = 247 MeV, very close to the lattice determination of the YM

critical temperature.

In the following sections we discuss the transport coefficients (i.e. the bulk viscosity) of

the deconfined phase and the energy loss of a heavy quark in this specific holographic model.

3 Bulk viscosity

The bulk viscosity ζ is an important probe of the quark-gluon plasma. Its profile as

a function of T reveals information regarding the dynamics of the phase transition. In

particular, both from the low energy theorems and lattice studies [8, 9, 11], there is evidence

that ζ increases near Tc.

For a viscous fluid the shear η and bulk ζ viscosities are defined via the rate of entropy

production as
∂s

∂t
=

η

T

[

∂ivj + ∂jvi −
2

3
(∂ · v)δij

]2

+
ζ

T
(∂ · v)2 (3.1)

Therefore, in a holographic setup, the bulk viscosity can be defined as the response of

the diagonal spatial components of the stress-energy tensor to a small fluctuation of the

metric. It can be directly related to the retarded Green’s function of the stress-energy

tensor by Kubo’s linear response theory:

ζ = −1

9
lim
ω→0

1

ω
ImGR(ω, 0), (3.2)

where GR(w, ~p) is the Fourier transform of retarded Green’s function of the stress-

energy tensor:

GR(w, ~p) = −i

∫

d3xdteiωt−i~p·~xθ(t)

3
∑

i,j=1

〈[Tii(t, ~x), Tjj(0, 0)]〉. (3.3)

A direct computation of the r.h.s. on the lattice is non-trivial as it requires analytic contin-

uation to Lorentzian space-time. In refs. [8, 9] the low energy theorems of QCD, as well as

(equilibrium) lattice data at finite temperature were used in order to evaluate a particular

moment of the spectral density of the relevant correlator. using a parametrization of the

spectral density via two time-dependent constants, one of which is the bulk viscosity a re-

lation for their product was obtained as a function of temperature. This can be converted

to a relation for ζ, assuming the other constant varies slowly with temperature.

The conclusion was that ζ/s increases near Tc. Another conclusion is that the fermionic

contributions to ζ are small compared to the glue contributions.

The weak point of the approach of [9], is that it requires an ansatz on the spectrum

of energy fluctuations, and further assumptions on the other parameters. which are not

derived from first principles.
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A direct lattice study of the bulk viscosity was also made in [11]. Here, the result is

also qualitatively similar 2. However, the systematic errors in this computation are large

especially near Tc, mostly due to the analytic continuation that one has to perform after

computing the Euclidean correlator on the lattice.

The results of references [8, 9] and the assumptions of the lattice calculation have been

recently challenged in [12].

3.1 Holographic computation and main results

The holographic approach offers a new way of computing the bulk viscosity. In the holo-

graphic set-up, ζ is obtained from (3.2). Using the standard AdS/CFT prescription, the

two point-function of the energy-momentum tensor can be read off from the asymptotic

behavior of the metric perturbations δgµν . This is similar in spirit to the holographic

computation of the shear viscosity [51], but it is technically more involved. For a recent

treatment of the fluctuation equation governing the scalar mode of a general Einstein-

Dilaton system, see [52]. Here, we shall follow the method proposed by [53].

As explained in [53], one only needs to examine the equations of motion in the gauge

r = φ, where the radial coordinate is equal to the dilaton. In our type of metrics, the appli-

cability of this method requires some clarifications, that we provide in appendix D. Using

SO(3) invariance and the five remaining gauge degrees of freedom the metric perturbations

can be diagonalized as

δg = diag(g00, g11, g11, g11, g55), (3.4)

where

g00 = −e2Af [1 + h00(φ)e−iωt], g11 = e2A[1 + h11(φ)e−iωt], g55 =
e2B

f
[1 + h55(φ)e−iωt],

(3.5)

where the functions A and B are defined in (2.10). Here, the fluctuations are taken to be

harmonic functions of t while having an arbitrary dependence on φ.

The bulk viscosity depends only on the correlator of the diagonal components of the

metric and so it suffices to look for the asymptotics of h11. Interestingly, in the r = φ gauge

this decouples from the other components of the metric and satisfies the following equation7

h′′
11 −

(

− 8

9A′ − 4A′ + 3B′ − f ′

f

)

h′
11 −

(

−e2B−2A

f2
ω2 +

4f ′

9fA′ −
f ′B′

f

)

h11 = 0 . (3.6)

One needs to impose two boundary conditions. First, we require that only the infalling

condition survives at the horizon:

h11 → cb(φh − φ)−
iω

4πT , φ → φh, (3.7)

where cb is a normalization factor. The second boundary condition is that h11 has unit

normalization on the boundary:

h11 → 1, φ → −∞. (3.8)

7Difference in the various numerical factors in this equation w.r.t [53] is due to our different normalization

of the dilaton kinetic term.
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Having solved for h11(φ), Kubo’s formula (3.2) and a wise use of the AdS/CFT prescription

to compute the stress-energy correlation function [53] determines the ratio of bulk viscosity

as follows.

The AdS/CFT prescription relates the imaginary part of the retarded Tii Green func-

tion to the number flux of the h11 gravitons F [53]:

Im GR(ω, 0) = − F
16πG5

(3.9)

where the flux can be calculated as the Noether current associated to the U(1) symmetry

h11 → eiθh11 in the gravitational action for fluctuations. One finds,

F = i
e4A−Bf

3A
′2

[h∗
11h

′
11 − h11h

∗′
11]. (3.10)

As F is independent of the radial variable, one can compute it at any φ, most easily

near the horizon, where h11 takes the form (3.7). Using also the fact that (dA/dφ)(φh) =

−8V (φh)/9V ′(φh) (see appendix A), one finds

F(ω) =
27

32
ω|cb(ω)|2e3A(φh) V

′(φh)2

V (φh)
. (3.11)

Then, (3.2) and (3.9) determine the ratio of bulk viscosity and the entropy density as,

ζ

s
=

3

32π

(

V ′(φh)

V (φh)

)2

|cb|2. (3.12)

In the derivation we use the Bekenstein-Hawking formula for the entropy density, s =

exp 3A(φh)/4G5.

To find ζ we need to find cb only in the limit ω → 0. The computation is performed by

numerically solving equation (3.6) with the appropriate boundary conditions. There are

two separate methods that one can employ to determine the quantity cb:

1. One can solve (3.6) numerically with a fixed ω/T , but small enough so that cb reaches

a fixed value. The method is valid also for finite values of ω. From a practical point

of view, it is easier to solve (3.6) with the boundary condition (3.7) with a unit

normalization factor, read off the value on the boundary h11(−∞) from the solution

and finally use the symmetry of (3.6) under constant scalings of h11 to determine

|cb| = 1/|h11(−∞)|.

2. An alternative method of computation that directly extracts the information at ω = 0

follows from the following trick [53]. Instead of solving (3.6) for small but finite ω,

one can instead solve it for ω = 0. This is a simpler equation, yet complicated

enough to still evade analytic solution. Let us call this solution h0
11. One numerically

solves it by fixing the boundary conditions on the boundary: h0
11(−∞) = 1 and the

derivative dh0
11/dφ(−∞) is chosen such that h11 is regular at the horizon. Matching

this solution to the expansion of (3.7) for small ω than yields |cb| = h0
11(φh).
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Figure 2. Plot of ζ/s (continuous line) calculated in Improved Holographic QCD model. This

is compared with the lattice data of [11] that are shown as boxes. The horizontal dashed line is

indicating the (universal) value of η
s

for comparison.

We used both methods to obtain ζ/s as a function of T and checked that they yield

the same result. As explained in [45], most of the thermodynamic observables are easily

computed using the method of scalar variables. This method is summarized in appendix A

where we also detail the computation of the bulk viscosity using these variables.

Our results are presented in figure 2. This figure gives a comparison of the curve

obtained by the holographic calculation sketched above by solving (3.6) and the lattice data

of [11]. We also show η/s = 1/4π in this figure for comparison. The result is qualitatively

similar to the lattice result where ζ/s increases as T approaches Tc, however the rate of

increase is slower than the lattice. As a result, we obtain a value ζ/s(Tc) ≈ 0.06 that is

an order of magnitude smaller than the lattice result [11] which is 0.8. Note however that

the error bars in the lattice evaluation are large near Tc and do not include all possible

systematic errors from the analytic continuation.

We should note the fact that the holographic calculation gives a smaller value for the

bulk viscosity near Tc than the lattice calculation is generic and has been found for other

potentials with similar IR asymptotics, [53]. The fact that the value of ζ/s near Tc is

correlated with the IR asymptotics of the potential will be shown further below.

Another fact that one observes from figure 2 is that ζ/s vanishes in the high T limit.

This reflects the conformal invariance in the UV and can be shown analytically as follows.
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ζ/s is determined by formula (3.12). In the high T limit, (corresponding to λh → 0,

near the boundary), the fluctuation coefficient |cb| → 1. This is because of the boundary

condition h11(λ = 0) = 1. We use the relation between T and λh in the high T limit [45],

λh → (b0 log(πT/Λ))−1 . (3.13)

Substitution in (3.12) leads to the result,

ζ

s

∣

∣

∣

∣

big

→ 1

54π

1

log2(πT/Λ)
, as T → ∞. (3.14)

As s itself diverges as T 3 in this limit — it corresponds to an ideal gas – we learn that

ζ also diverges as T 3/ log2(T ). Divergence at high T is expected from the bulk-viscosity

of an ideal gas. We do not expect however the details of the asymptotic result to match

with the pQCD result, for the same reasons that the shear-viscosity-to-entropy ratio does

not, [40]. However, the T-dependence is very similar to the pQCD result, [54]:

ζ/s ∝ log−2(πT/Λ) log−1 log(πT/Λ) . (3.15)

3.2 Holographic explanation for the rise of ζ/s near Tc and the small black-hole

branch

With the same numerical methods, one can also compute the ratio ζ/s on the small black-

hole branch. As this solution has a smaller value of the action than the big black-hole

solution, it is a subleading saddle point in the phase space of the theory, hence bears no

direct significance for an holographic investigation of the quark-gluon plasma. However,

as we show below, the existence of this branch provides a holographic explanation for the

peak in ζ/s in the quark-gluon plasma, near Tc.

From the practical point of view, we find the second numerical method above (solving

the fluctuation equation at ω = 0) easier in the range of λh that corresponds to the small

black-hole. The result is shown in figure 3 (a). The presence of two branches for T > Tmin,

is made clear in this figure. See also fig 3 (b) for the respective ranges of λh that correspond

to small and big BHs. In fig 3 (a), ζ/s on the big BH branch is depicted with a solid curve

and the small BH branch is depicted with a dashed curve. We observe that ζ/s keeps

increasing on the big-BH branch as T is lowered, up to the temperature Tmin where the

small and big BH branches merge.8 On the other hand, on the small BH branch ζ/s keeps

increasing as the T is increased, up to a certain Tmax that lies between Tmin and Tc, see

figure 4. From this point onwards, ζ/s decreases with increasing T.

A simple fact that can be proved analytically is that the derivative of ζ/s diverges at

Tmin. This is also clear from figure 4. This is shown by inspecting equation (3.12). The

T derivative is determined as d/dT = (dT/dλh)d/dλh. Whereas the derivative w.r.t λh is

everywhere smooth,9 the factor dT/dλh diverges at Tmin by definition, see figure 3 (b).

8As far as the thermodynamics of the gluon plasma is concerned, the temperatures below Tc (on the big

BH branch) has little importance, because for T < Tc the plasma is in the confined phase.
9Note that cb is also a function of λh. As both the fluctuation equation (3.6) and the boundary conditions

are smooth at λh = λmin, one concludes that cb also is smooth at this point.
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Figure 3. (a) Numerical evaluation of ζ/η both on the big-BH branch (the solid curve) and on

the small BH branch (the dashed curve). Tm denotes Tmin. (b) The two branches of black-hole

solutions, that correspond to different ranges of λh. The big BH corresponds to λh < λmin and the

small BH corresponds to λh > λmin.

Tmin

Tc

Tmax

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
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Ζ�s

Figure 4. An inset from the figure 3 around the maximum of ζ/s.

Therefore, we propose that the presence of a Tmin where the big and the small black-

holes meet, in other words, presence of a small-black-hole branch is responsible for the

increase of ζ/s near Tmin. As in most of the holographic constructions that we analyzed,

and specifically in the example we present in this paper, Tc and Tmin are close to one

another, this fact implies a rise in the bulk viscosity near Tc. This proposal, combined with

the fact that the existence of a small BH branch and color confinement in the dual gauge

theory at zero T are in one-to-one correspondence [45], suggests that in confining large-N

gauge theories, there will be a peak in the ratio ζ/s close to Tc.

Another fact that can be shown analytically is that ζ/s asymptotes to a finite value
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as T → ∞ in the small black-hole branch.10 We find that,

ζ

s

∣

∣

∣

∣

small

→ 1

6π
, as T → ∞. (3.16)

As the entropy density vanishes in this limit [45], we conclude that ζ should vanish with

the same rate.

For a general potential with strong coupling asymptotics

V (λ) ∼ λQ as λ → ∞, (3.17)

taking into account (3.12), equation (3.16) is modified to

ζ

s

∣

∣

∣

∣

small

→ 3Q2

32π
, as rh → r0. (3.18)

where r0 is the position of the singularity in the zero temperature solution.

For confining theories, the limit rh → r0 corresponds to T → ∞ on the small BH

branch. However, one can show that the result (3.18) holds quite generally, regardless of

whether the zero T theory confines or not.11 In particular, for the non-confining theories

— that is either when Q < 4/3 or when Q = 4/3 but the subleading term in the potential

vanishes at the singularity — there is only the big black-hole branch and the limit rh → r0

corresponds to the zero T limit of this BH. Thus, we also learn that there exist holographic

models that correspond to non-confining gauge theories whose zero T limit yield a constant

ζ/s. This constant approaches zero as Q → 0, i.e. in the limiting AdS case.

We also see that the asymptotic value of ζ/s in the small BH branch is close to the

value of ζ/s near Tc. We shall give an explanation of this fact in the next subsection. Using

the asymptotic formula (3.18), the fact that Q > 4
3 for confinement and Q ≤ 4

√
2

3 for the

IR singularity to be good and repulsive we may obtain a range of values where we expect

ζ/s to vary, namely
1

6π
≤ ζ

s

∣

∣

∣

∣

small,asymptotic

≤ 1

3π
. (3.19)

A final observation concerns the coefficient cb(λh) in (3.12). This part is the only

input from the solution of the fluctuation equation, the rest of (3.12) is fixed by the dilaton

potential entirely. We plot the numerical result for cb in fig 5 as a function of the coupling

at the horizon λh.

First of all, figure 5 provides a check that, the approximate bound of [53] |cb| ≥ 1,

is satisfied in the entire range. One also observes cb approaches to 1 in the IR and UV

asymptotics. These facts can be understood analytically: In the UV (near the boundary)

it is because of the boundary condition cb = 1. In the IR, it is more subtle, and we explain

this in appendix B.

Finally, we observe that the deviation of cb from the asymptotic value 1 is maximum

around the phase transition point λc. In fact, we numerically observed that the top of

the curve in figure 5 coincides with λc to a very high accuracy. Whether this is just a

coincidence or not, it needs to be clarified.

10See equations (B.1), (B.2), and the discussion in appendix B.
11The arguments in appendix B remain valid in the general case.
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Figure 5. The coefficient |cb| of equation (3.12) as a function of λh.

3.3 The adiabatic approximation

Motivated by the Chamblin-Reall solutions [55], Gubser et al. [56] proposed an approximate

adiabatic formula for the speed of sound. In the case when V ′/V is a slowly varying function

of φ, [56] proposes the following formulae for the entropy density and the temperature:

log s = −8

3

∫ φh

dφ
V

V ′ + · · · , (3.20)

log T =

∫ φh

dφ

(

1

2

V ′

V
− 8

9

V

V ′

)

· · · , (3.21)

where ellipsis denote contributions slowly varying in φh.12

It is very useful to reformulate this approximation using the method of scalar variables,

which in turn allows us to extract the general T dependence of most of the thermodynamic

observables in an approximate form. Here, we apply this formalism to the computation

of ζ/s. We explain the method of scalar variables in appendix A and the details of the

adiabatic approximation in the scalar variables are given in appendix C.

For the scalar variable X (see appendix A for a definition), the adiabatic approxima-

tion means

X(φ) ≈ −3

8

V ′(φ)

V (φ)
. (3.22)

In appendix C we present an independent argument based on the Einstein’s equations

in scalar variables, for why this approximation holds in certain regimes. The fluctuation

equation (3.6) greatly simplifies with (3.22). In fact, as shown in appendix C, the solution

becomes independent of φ. With unit normalization on boundary, the adiabatic solution

in the entire range of φ ∈ (−∞, φh) becomes hadb(φ) = 1. Consequently, the coefficient cb

12Various coefficients in these equations differ from [56] due to our different normalization of the dilaton

kinetic term.
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Figure 6. Comparison of the exact ζ/s with the adiabatic approximation in the variable λh.

Solid(red) curve is the full numerical result and the dashed(blue) curve follows from (3.23).
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Figure 7. Comparison of the exact ζ/s with the adiabatic approximation in variable T. Solid(blue)

curve is the full numerical result and the dashed(red) curve follows from (3.23).

in (3.12) becomes unity, hence:

ζ

s

∣

∣

∣

∣

adb

=
3

32π

(

V ′(φh)

V (φh)

)2

. (3.23)

We plot this function in λh in figure 6, where we also provide the exact numerical

result for comparison. Note that in figure 6 the whole large black-hole branch has been

compressed at the left of the figure for λh . 0.04 The same functions in the variable T/Tc

are plotted in figure 7.

The validity of the adiabatic approximation equation (3.22), is determined by the rate

which V ′/V varies with φ. In particular, the approximation becomes exact in the limits

where V ′/V becomes constant. This happens for a constant potential or a potential that
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is a single power of λ (eponential in φ). This is the case in the UV (φ → −∞, where the

potential becomes a constant) and the IR (φ → +∞ where the potential becomes a power

law.). Therefore equation (3.23) allows us to extract the analytic behavior of ζ/s in the

limits φh → ±∞.

The numerical values one obtains from (3.23) in the intermediate region may differ

from the exact result (3.12) considerably, especially near Tc. However, we expect that the

general shape will be similar. We refer to appendix C for further details.

Finally, the adiabatic approximation hints at why, in the particular background that

we study, ζ/s at Tc is close to the limit value (3.16): In order to see this we rewrite (3.23) as

ζ

s

∣

∣

∣

∣

adb

=
2

3π
X2. (3.24)

In the limit (3.16) we have X → −1/2. The only other point where X = 1/2, is at the

minimum of the string frame scale factor φ∗. This is the point where the confining string

saturates [39]. On the other hand, we expect on general physical grounds that the de-

confinement phase transition happens near this point, i.e. φc ≈ φ∗. Thus, the adiabatic

formula predicts that ζ/s(φc) be close to the limit value 1/6π.13

3.4 Buchel’s bound

In [57], Buchel proposed a bound for the ratio of the bulk and shear viscosities, motivated

by certain well-understood holographic examples. In 4 space-time dimensions the Buchel

bound reads,
ζ

η
≥ 2

(

1

3
− c2

s

)

. (3.25)

We note that the bound is proposed to hold in the entire range of temperature from Tc to

∞. This bound is trivially satisfied for exact conformal theories such as N = 4 YM, and

saturated in theories on Dp branes [57, 58]. With the numerical evaluation at hand, we

can check (3.25) in our case. In figure 8 (a) we plot the l.h.s. and r.h.s. of the bound.14

We clearly see that the bound is satisfied for all temperatures. As expected, both the l.h.s.

and the r.h.s. of (3.25) vanishes in the high T conformal limit.

A clear picture of Buchel’s bound is obtained by defining the function:

C(T ) =
ζ/η

2 (1/3 − c2
s)

, (3.26)

in terms of which the bound is simply C > 1. In figure 8 (b) we show the function C(T )

obtained numerically in our IHQCD model, between Tc and 5Tc. The values of this function

are mildly dependent on temperature, and are between 1.5 and 2, the same range of values

that were recently considered in the hydrodynamic codes by Heinz and Song [59].

13This argument may break down for two (dependent) reasons: First of all the adiabatic approximation

becomes lees good near φc. This is because, in this region V ′/V varies relatively more rapidly as a function

of φ. Secondly, precisely because of this, even though φc is not far away from φ∗ the difference can result

in a considerable change in the value of ζ/s through (3.23).
14Since this theory contains two derivatives only, η

s
has the universal value 1/4π.
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Figure 8. (a) Comparison of ζ/η (solid line) and the r.h.s. of (3.25) (dashed line), obtained

using the speed of sound of the IHQCD model [49]. (b) Plot of the function C(T ) defined in

equation (3.26) as a function of temperature. The horizontal dashed line indicates where Buchel’s

bound is saturated. We see that the bound is satisfied in the entire range of temperatures.

4 The drag force on strings and heavy quarks

We will now consider an (external) heavy quark moving through an infinite volume of gluon

plasma with a fixed velocity v at a finite temperature T [21, 33]. The quark feels a drag

force coming from its interaction with the plasma and an external force has to be applied

in order for it to keep a constant velocity. In a more realistic set up one would like to

describe the deceleration caused by the drag.

The heavy external quark can be described by a string whose endpoint is at the bound-

ary. One can accommodate flavor by introducing D-branes, but we will not do this here.

A first step is to describe the classical string “trailing” the quark.

– 21 –



J
H
E
P
1
2
(
2
0
0
9
)
0
5
6

We consider the Nambu-Goto action on the worldsheet of the string.

SNG = − 1

2πℓ2
s

∫

dσdτ
√

det (−gMN∂αXM∂βXN ) , (4.1)

where the metric is the string frame metric. The ansatz we are going to use to describe

the trailing string is, [22],

X1 = vt + ξ(r), X2 = X3 = 0 , (4.2)

along with the gauge choice

σ = r, τ = t , (4.3)

where r is the (radial) holographic coordinate. The string is moving in the X1 direction.

This is a “steady-state” description of the moving quark as acceleration and decel-

eration are not taken into account. For a generic background the action of the string

becomes

S = − 1

2πℓ2
s

∫

dtdr
√

−g00grr − g00g11ξ′2 − g11grrv2 . (4.4)

Note that g00 is negative, and we should check whether our solution produces a real action.

For example a straight string stretching from the quark to the horizon is a solution to the

equations of motion but has imaginary action.

We note that the action does not depend on ξ but only its derivative, therefore the

corresponding “momentum” is conserved

πξ = − 1

2πℓ2
s

g00g11ξ
′

√

−g00grr − g00g11ξ′2 − g11grrv2
. (4.5)

We solve for ξ′ to obtain

ξ′ =

√

−g00grr − g11grrv2

√

g00g11 (1 + g00g11/(2πℓ2
sπξ)2)

. (4.6)

The numerator changes sign at some finite value of the fifth coordinate rs. For the solution

to be real, the denominator has to change sign at the same point. We therefore determine

rs via the equation

g00(rs) + g11(rs)v
2 = 0 , (4.7)

and the constant momentum

π2
ξ = −g00(rs)g11(rs)

(2πℓ2
s)

2
. (4.8)

Writing the string-frame metric as

ds2 = e2As

[

dr2

f
− f dt2 + dx · dx

]

(4.9)

(4.7) becomes

v2 = f(rs) (4.10)
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The induced world-sheet metric is therefore

gαβ = e2As(r)





−(f(r) − v2) e2As(rs)v2

f(r)

√

f(r)−v2

e4As(r)f(r)−e4As(rs)v2

e2As(rs)v2

f(r)

√

f(r)−v2

e4As(r)f(r)−e4As(rs)v2

e4As(r)f2(r)−v4e4As(rs)

f2(r)[e4As(r)f(r)−v2e4As(rs)]





(4.11)

We can change the time coordinate to obtain a diagonal induced metric t = τ+ζ(r) with

ζ ′ =
e2As(rs)v2

f(r)
√

(f(r) − v2)(e4As(r)f(r) − e4As(rs)v2)

The new metric is

ds2 = e2As(r)

[

−(f(r) − v2)dτ2 +
e4As(r)

(e4As(r)f(r) − e4As(rs)v2)
dr2

]

(4.12)

and near r = rs it has the expansion

ds2 =
[

−f ′(rs)e
2As(rs)(r − rs) + O((r − rs)

2)
]

dτ2

+

[

e2As(rs)

(4v2A′
s(rs) + f ′(rs))(r − rs)

+ O(1)

]

dr2 (4.13)

This is a world-sheet black-hole metric with horizon at the turning point r = rs.

4.1 The drag force

The drag force on the quark can be determined by calculating the momentum that is lost

by flowing along the string into the horizon:

Fdrag =
dp1

dt
= − 1

2πℓ2
s

g00g11ξ
′

√−g
= πξ . (4.14)

This can be obtained by considering the world-sheet Noether currents Πα
M [60] and ex-

pressing the loss of momentum as ∆P z
x1

=
∫

Πr
1. This may be evaluated at any value of r,

but it is more convenient to evaluate it at r = rs.

We finally find that

Fdrag = − 1

2πℓ2
s

√

−g00(rs)g11(rs) . (4.15)

Using the form (4.9) of our finite-temperature metric in the string frame we

finally obtain

Fdrag = −e2As(rs)
√

f(rs)

2πℓ2
s

= −e2A(rs)
√

f(rs)λ(rs)
4/3

2πℓ2
s

, (4.16)

where in the second equality we expressed the force in terms of the Einstein-frame scale

factor and the “running” dilaton. Substituting from (4.10) we obtain

Fdrag = −v e2As(rs)

2πℓ2
s

= −v e2A(rs)λ(rs)
4/3

2πℓ2
s

, (4.17)
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Figure 9. In this figure the ratio of the drag force in improved holographic QCD to the drag force

in N = 4 SYM is shown. The ratio is computed for different velocities as a function of temperature.

The ’t Hooft coupling for the N = 4 SYM theory is taken to be 5.5. We chose this value as it is

considered in the central region of possible values for the ’t Hooft coupling. It is seen that as the

velocity increases the value of the ratio decreases.

Before proceeding further, we will evaluate the drag force for the conformal case of N = 4

SYM where

eAs =
ℓ

r
, v2 = f(rs) = 1 − (πTrs)

4 ,
ℓ2

ℓ2
s

=
√

λ (4.18)

Substituting in (4.17) we obtain, [21]–[33],

Fconf =
π

2

√
λ T 2 v√

1 − v2
(4.19)

Moving on to YM, to compute the drag force from equation (4.17) we must first

determine ℓs in the IHQCD model. In this setup there is no analog of the N = 4 SYM

relation (4.18) between ℓ, ℓs and λ. Rather, the fundamental string length ℓs is determined

in a bottom-up fashion, by matching the effective string tension to the QCD string tension

σc derived from the lattice calculations. From (2.15)

σc =
1

2πℓ2
s

e2As,o(r∗) =
1

2πℓ2
s

e2Ao(r∗)λo(r∗)
4/3 , (4.20)

where r∗ is the point where the zero-temperature string scale factor As,o(r) has a minimum.

For a typical value of σc ∼ (440 MeV )2 [61] we find

ℓs = 6.4 ℓ , (4.21)

where ℓ is the radius of the asymptotic AdS space.

On the other hand, unlike in N = 4 SYM, in the IHQCD model the value of the

coupling λ(rs) in equation (4.17) is not an extra parameter to be fixed by hand, but rather

it is determined dynamically together with the background metric.
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Figure 10. In this figure the ratio of the drag force in improved holographic QCD to the drag force

in N = 4 SYM is shown. The ratio is computed for different temperatures as a function of velocity.

The ’t Hooft coupling for the N = 4 SYM theory is taken to be 5.5. As temperature increases the

value of the ratio decreases.

4.2 The relativistic asymptotics

When v → 1 then rs → 0 and we approach the boundary. Near the boundary (r → 0) we

have the following asymptotics of the scale factor and the ’t Hooft coupling, [45]

f(r) ≃ 1− πT e3A(rh)

ℓ3
r4

[

1 + O
(

1

log(Λr)

)]

+O(r8) , eA(r) =
ℓ

r

[

1+O
(

1

log(Λr)

)]

+ · · ·
(4.22)

and

λ(r) = − 1

β0 log(rΛ)
+ O(log(rΛ)−2) (4.23)

where rh is the position of the horizon.

We therefore obtain for the turning point

rs ≃
[

ℓ3(1 − v2)

πTe3A(rh)

]
1
4
[

1 + O
(

1

log(1 − v2)

)]

, λ(rs) ≃ − 4

β0 log [1 − v2]
+ · · · (4.24)

and the drag force

Fdrag ≃ −

√

πTℓb3(rh)λ
8
3 (rs)

2πℓ2
s

v√
1 − v2

+ · · · (4.25)

We also use

e3A(rh) =
s(T )

4πM3
p N2

c

=
45πℓ3s(T )

N2
c

(4.26)

where s(T ) the entropy per unit three-volume, and we write the relativistic asymptotics of

the drag force as,

Fdrag ≃ −
√

πTℓb3(rh)

2πℓ2
s

v
√

1 − v2
(

−β0

4 log [1 − v2]
) 4

3

+ · · · (4.27)

= −ℓ2

ℓ2
s

√

45 Ts(T )

4N2
c

v
√

1 − v2
(

−β0

4 log [1 − v2]
) 4

3

+ · · ·
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The force is proportional to the relativistic momentum combination v/
√

1 − v2 modulo

a power of log
[

1 − v2
]

. This factor is present because, as argued in [40] the asymptotic

metric is AdS in the Einstein frame instead of the string frame. Its effects are not important

phenomenologically. We discuss this issue further in appendix E.

4.3 The non-relativistic asymptotics

We now consider the opposite limit, v → 0. In this case the turning point asymptotes to

the horizon, rs → rh and we have the expansion

f(r) ≃ 4πT (rh − r) + O((rh − r)2) , rs = rh − v2

4πT
+ O(v4) (4.28)

and

Fdrag ≃ −e2A(rh)λ(rh)
4
3

2πℓ2
s

v

[

1 − v2

2πT
A′(rh) − v2

3πT

λ′(rh)

λ(rh)
+ O(v4)

]

(4.29)

≃ −ℓ2

ℓ2
s

(

45π s(T )

N2
c

)
2
3 λ(rh)

4
3

2π
v + O(v3)

where primes are derivatives with respect to the conformal coordinate r.

4.4 The diffusion time

For a heavy quark with mass Mq we may rewrite (4.19) as

Fconf ≡
dp

dt
= −1

τ
p , p =

Mqv√
1 − v2

(4.30)

where the first equation defines the diffusion time τ . In the conformal case, the diffusion

time is constant,

τconf =
2Mq

π
√

λ T 2
(4.31)

This is not anymore the case in QCD, where τ defined as above is momentum dependent.

We may still define it as in (4.30) in which case we obtain the following limits

lim
p→∞

τ = Mq
ℓ2
s

ℓ2

√

4N2
c

45 Ts(T )

(

β0

4
log

p2

M2
q

)
4
3

+ · · · (4.32)

lim
p→0

τ = Mq
ℓ2
s

ℓ2

(

N2
c

45π s(T )

)
2
3 2π

λ(rh)
4
3

+ · · · (4.33)

4.5 Including the medium-induced correction to the quark mass

In order to estimate the diffusion time of a quark of finite rest mass, we must take into

account the fact that the mass of the quark receives medium-induced corrections. In

other words, the mass appearing in equation (4.30) is a temperature-dependent quantity,

– 26 –



J
H
E
P
1
2
(
2
0
0
9
)
0
5
6

4 6 8
E, GeV

2.5

3.0

3.5

4.0

4.5

Τ�Τconf

T�Tc=3.1

T�Tc=2

T�Tc=1.2

Figure 11. In this figure the ratio of the diffusion time in the Improved Holographic QCD model

to the diffusion time in N = 4 SYM is shown. The ’t Hooft coupling for N = 4 SYM is taken to

be λ = 5.5. The heavy quark has a mass of Mq = 1.3 GeV . Note that with the definition of the

diffusion time in (4.30) the ratio is the inverse of the ratio of the forces. A similar plot is valid

for the bottom quark as well, as the mass drops out of the ratio. although the energy scales are

different. In this plot the x-axis is taken to be in MeV units. As temperature increases the ratio

also increases.

Mq(T ) 6= Mq(T = 0). The ratio Mq(T )/Mq(0) can be estimated holographically by repre-

senting a static quark of finite mass by a static, straight string15 stretched along the radial

direction starting at a point r = rq 6= 0. At zero temperature, the IR endpoint of the string

can be taken as the “confinement” radius, r∗, where the string frame metric reaches its

minimum value; At finite temperature, the string ends in the IR at the BH horizon.16 The

masses of the quark at zero and finite T are related to the worldsheet action evaluated on

the static solution (τ = t, σ = r):

Mq(0) =
ℓ

2πℓ2
s

∫ r∗

rq

dr e2Ao(r)λ4/3
o (r) , Mq(T ) =

ℓ

2πℓ2
s

∫ rh

rq

dr e2A(r)λ4/3(r) . (4.34)

The value rq can be fixed numerically by matching Mq(0) to the physical quark mass,

and translating the fundamental string tension in physical units by using the relation (4.20),

with σc = (440MeV )2. This makes Mq(T ) a function of Mq(0). The ratios Mq(T )/Mq(0)

we found numerically in the model under consideration is shown in figure 12 for the Charm

(M(0) = 1.5GeV ) and Bottom (M(0) = 4.5GeV ) quarks. The fact that, in the deconfined

plasma, the quark mass decreases with increasing temperature is a direct consequence of

the holographic framework,17 since for higher temperature, the distance to the horizon

15This representation ignores the fact that the kinetic mass of a moving quark may be different from the

static mass [21]. We plan to treat this in the future.
16t would stop at the confinement radius if the latter were closer to the boundary than the horizon, i.e.

if r∗(T ) < rh(T ). However, in the model we are considering, in the big BH branch we find that the relation

rh < r∗ is always satisfied.
17For a possible field theoretical explanation of this phenomenon, see [62].
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Figure 12. Ratios between the thermal mass and the rest mass of the Charm (curve labeled “c”)

and Bottom (curve labeled “b” ) quarks, as a function of temperature.

is smaller. An indication that this result may be in the right direction comes from the

lattice computation of the shift in the position of the quarkonium resonance peak at finite

temperature [63]: in the deconfined phase the charmonium peak moves to lower mass at

higher temperature. Our result for the medium-induced shift in the constituent quark mass

is consistent with these observations.

We can now write the diffusion time from eqs. (4.17) and (4.30) as:

τ(T, v) =
Mq(T )

σc

√
1 − v2

(

λo(r∗)

λ(rs)

)4/3

e2Ao(r∗)−2A(rs), (4.35)

where once again we have eliminated the fundamental string length using equation (4.20).

Given a set of zero- and finite-temperature solutions, equation (4.35) can be evaluated

numerically for different values of the velocity and different quark masses. The results

for the Charm (Mq(0) = 1.5 GeV ) and Bottom (M = 4.5 GeV ) quarks are displayed in

figure 13.

4.6 Temperature matching and diffusion time estimates

An important question is how we should choose the temperature in our holographic model

in order to compare our results with heavy-ion collision experiments. This is nontrivial,

since our setup is designed to describe pure SU(Nc) Yang-Mills, whereas at RHIC tem-

peratures there are 3 light quark flavors that become relevant. As a consequence, the

critical temperatures and the number of degrees of freedom of the two theories are not

the same: for pure SU(Nc) Yang Mills we have N2
c − 1 degrees of freedom and a critical

temperature around 260 MeV ; For SU(Nc) QCD with Nf flavors the number of degrees of

freedom is N2
c − 1 + NcNf , and the transition temperature is lower, around 180 MeV. In

our holographic model, the transition temperature in physical units was estimated to be
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Figure 13. Diffusion time for the Charm and Bottom quarks, as a function of energy, for different

ratios of the temperature to the IHQCD transition temperature Tc.

Tc = 247 MeV [49], i.e. close to the lattice result for the pure YM deconfining temperature.

From now on, this is the value we will mean when we refer to Tc. This is also close to

the temperature of QGP at RHIC, which we will denote TQGP, and is estimated to be

around 250 MeV . Since this value is uncertain, below we give our results for a range of

temperatures between 200 MeV and 400 MeV. The higher temperatures will be relevant for

the LHC ion collision experiments (see e.g. [64]).

Based on these considerations, there are different ways of fixing the temperature (see

e.g. the recent review [18]): one direct and two alternative schemes (that we call the energy

and entropy scheme).

• Direct scheme: The temperature of the holographic model is identified with the

temperature of the QGP in the experimental situation (at RHIC or LHC), T
(dir)
ihqcd =

TQGP.

• Energy scheme: One matches the energy densities, rather than the temperatures.

The energy density at RHIC is approximately (treating the QCD plasma as a free

gas.18) ǫQGP ≃ (π2/15)(N2
c − 1 + NcNf )(TQGP)4. For Nc = Nf = 3, asking that our

energy density matches this value requires us to consider the holographic model at

temperature T
(ǫ)
ihqcd given by

ǫihqcd(T
(ǫ)
ihqcd) ≃ 11.2(TQGP)4 (4.36)

• Entropy scheme: Instead of matching the energy densities, alternatively one can

match the entropy density s, which for the QGP, in the free gas approximation, is

given by σQGP ≃ 4π2/45(N2
c − 1 + NcNf )(TQGP)4. This leads to the identification:

sihqcd(T
(s)
ihqcd) = 14.9(TQGP)3 (4.37)

The temperature translation table between the various schemes is shown in table 1.

In that table, Tc = 247MeV is the deconfining temperature of the holographic model.

18This is itself an approximation, since as we know both from experiment and in our holographic model,

the plasma is strongly coupled up to temperatures of a few Tc.
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TQGP (MeV) TQGP/Tc T
(ǫ)
ihqcd (MeV) T

(ǫ)
ihqcd/Tc T

(s)
ihqcd (MeV) T

(s)
ihqcd/Tc

190 0.77 259 1.05 274 1.11

220 0.89 290 1.18 302 1.23

250 1.01 325 1.31 335 1.35

280 1.13 361 1.46 368 1.49

310 1.26 398 1.61 402 1.63

340 1.38 434 1.76 437 1.77

370 1.50 471 1.90 472 1.91

400 1.62 508 2.06 507 2.05

Table 1. Translation table between different temperature identification schemes. The first two

columns display temperatures in the direct scheme, (in which the temperature of the holographic

model matches the physical QGP temperature) and the corresponding ratio to the IHQCD critical

temperature, that was fixed by YM lattice results at Tc = 247MeV [49]. The third and fourth

columns display the corresponding temperatures (and respective ratios to Tc) in the energy scheme,

and the last two in the entropy scheme.

bottom
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Figure 14. Diffusion times for the Charm and Bottom quarks, as a function of initial momentum,

at TQGP = 250MeV. The different lines represent the in the direct scheme (solid), energy scheme

(dashed) and entropy scheme (dash-dotted), all corresponding to the same temperature TQGP =

250MeV.

In figure 14 we show the comparison between the diffusion times, as a function of

initial quark momentum, in the different schemes for the Charm and Bottom quarks, at

the temperature TQGP = 250MeV .

The results for the diffusion times at different temperatures, computed at a reference

heavy quark initial momentum p ≈ 10 GeV , are displayed in tables 2 and 3. We see that

there is little practical difference between the entropy and energy schemes; on the other

hand the difference between the direct scheme and the two alternative schemes can be

quite substantial.
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TQGP,MeV τcharm (fm/c) τcharm (fm/c) τcharm (fm/c )

(direct) (energy) (entropy)

220 - 4.0 3.6

250 5.7 3.1 3.0

280 4.3 2.6 2.5

310 3.5 2.1 2.1

340 2.9 1.8 1.8

370 2.5 1.5 1.5

400 2.1 1.3 1.3

Table 2. The diffusion times for the charm quark are shown for different temperatures, in the

three different schemes. Diffusion times have been evaluated with a quark initial momentum fixed

at p ≈ 10 GeV .

TQGP(MeV ) τbottom (fm/c) τbottom (fm/c) τbottom (fm/c)

(direct) (energy) (entropy)

220 - 8.9 8.4

250 11.4 7.5 7.1

280 10.1 6.3 6.1

310 8.6 5.4 5.3

340 7.5 4.7 4.7

370 6.6 4.1 4.1

400 5.8 3.6 3.6

Table 3. Diffusion times for the bottom quark are shown for different temperatures, in the three

different schemes. Diffusion times have been evaluated with a quark initial momentum fixed at

p ≈ 10 GeV .

5 Jet quenching parameter

In this section we discuss the jet quenching parameter in the class of holographic models

under consideration, and we estimate its numerical value for the concrete model with

potential (2.16) and parameters fixed as in [49]. For the holographic computation, we will

follow [19, 20]. There is another method available [28], but we will not use it here.

The jet-quenching parameter q̂ provides a measure of the dissipation of the plasma

and it has been associated to the behavior of a Wilson loop joining two light-like lines.

We consider two light-like lines which extend for a distance L− and are situated distance

L apart in a transverse coordinate. Then q̂ is given by the large L+ behavior of the

Wilson loop

W ∼ e
− 1

4
√

2
q̂L−L2

. (5.1)

We consider the bulk string frame metric

ds2 = e2As(r)

(

−f(r)dt2 + d~x2 +
dr2

f(r)

)

. (5.2)
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To address the problem of the Wilson loop we make a change of coordinates to light cone

coordinates for the boundary theory

x+ = x1 + t x− = x1 − t (5.3)

for which the metric becomes

ds2 = e2As

(

dx2
2 + dx2

3 +
1

2
(1 − f)(dx2

+ + dx2
−) + (1 + f)dx+dx− +

dr2

f

)

. (5.4)

The Wilson loop in question stretches across x2, and lies at a constant x+,x3. It is conve-

nient to choose a world-sheet gauge in which

x− = τ, x2 = σ . (5.5)

Then the action of the string stretching between the two lines is given by

S =
1

2πℓ2
s

∫

dσdτ
√

−det(gMN∂αXM∂βXN ) (5.6)

and assuming a profile of r = r(σ) we obtain

S =
L−

2πℓ2
s

∫

dx2 e2As

√

(1 − f)

2

(

1 +
r′2

f

)

. (5.7)

The integrand does not depend explicitly on x2, so there is a conserved quantity, c:

r′
∂L
∂r′

− L =
c√
2

(5.8)

which leads to

r′2 = f

(

e4As(1 − f)

c2
− 1

)

. (5.9)

A first assessment of this relation involves determining the zeros and the region of positivity

of the right-hand side. f is always positive and vanishes at the horizon. For the second

factor we need the asymptotics of e4As(1 − f). This factor remains positive and bounded

from below in the interior and up to the horizon. It vanishes however logarithmically near

the boundary as

e4As(1 − f) = πTℓe3A(rh)

(

− 1

β0 log(Λr)

) 8
3
[

1 + O
(

1

log(Λr)

)]

(5.10)

This is unlike the conformal case where we obtain a constant

e4As(1 − f)
∣

∣

∣

conformal
= (πTℓ)4 (5.11)

The behavior in (5.10) is a model artifact and is analyzed in appendix E.

Because of this, for fixed c, there is a region near the boundary where r′2 becomes

negative. At this stage we will avoid this region, by using a modified boundary at r = ǫ.
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Figure 15. In this figure the combination (1−f)e4As is plotted as a function of the radial distance,

for several temperatures. The radial distance is given in units of the horizon position rc for the

black hole at the critical temperature Tc. All curves stop at the corresponding horizon position.

We will later show that this gymnastics will be irrelevant for the computation of the jet

quenching parameter, as it involves effectively the limit c → 0.

We will place the modified boundary r = ǫ a bit inward from the place r = rmin where

the factor e4As (1−f)
c2

− 1 vanishes:

e4As(rmin)(1 − f(rmin)) = c2 (5.12)

Therefore we choose rmin < ǫ.

Then, in the range ǫ < r < rh the factor e4As(1−f)
c2

− 1 is positive for sufficiently small

c. In this same range, r′ vanishes only at r = rh. This is the true turning point of the

string world-sheet. This is also what happens in the conformal case. It is also intuitively

obvious that the relevant Wilson loop must sample also the region near the horizon.

The constant c is determined by the fact that the two light-like Wilson loops are a

x2 = L distance apart.
L

2
=

∫ rh

ǫ

cdr
√

f(e4As(1 − f) − c2)
. (5.13)

The denominator vanishes at the turning point. The singularity is integrable.19 Therefore,

as we are interested in the small L region, it is obvious from the expression above that that

c must also be small in the same limit.

This relation can then be expanded in powers of c as

L

2c
=

∫ rh

ǫ

e−2Asdr
√

f(1 − f)
+

c2

2

∫ rh

ǫ

e−6Asdr
√

f(1 − f)3
+ O(c4) . (5.14)

19Even if we choose ǫ = rmin, the new singularity at r = rmin is also integrable as suggested from (5.10).
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Therefore to leading order in L

c =
L

2
∫ rh

ǫ
e−2Asdr√

f(1−f)

+ O(L3) (5.15)

We are now ready to evaluate the Nambu-Goto action of the extremal configuration

we have found. Starting from (5.7), we substitute r′ from (5.9), and change integration

variable from x2 → r to obtain

S =
2L−

2πℓ2
s

∫ rh

ǫ
dr

e4As(1 − f)
√

2f (e4As(1 − f) − c2)
. (5.16)

As in [19, 20], we subtract from equation (5.16) the action of two free string straight

worldsheets that hang down to the horizon. To compute this action a convenient choice of

gauge is x− = τ, r = σ. The action of each sheet is

S0 =
L−

2πℓ2
s

∫ rh

ǫ
dr

√
g−−grr

=
L−

2πℓ2
s

∫ rh

ǫ
dr e2As

√

1 − f

2f
(5.17)

The subtracted action is therefore:

Sr = S − 2S0 =
L−c2

2πℓ2
s

∫ rh

ǫ

dr

e2As

√

f(1 − f)
+ O(c4) , (5.18)

Using now (5.15) to substitute c we finally obtain

Sr =
L−L2

8πℓ2
s

1
∫ rh

ǫ
dr

e2As
√

f(1−f)

+ O(L4) . (5.19)

So far we have evaluated the relevant Wilson loop in the fundamental representation

(by using probe quarks). On the other hand, the Wilson loop that defines the jet-quenching

parameter is an adjoint one. We can obtain it in the large-Nc limit from the fundamental

using trAdjoint = tr2
Fundamental. We finally extract the jet-quenching parameter as

q̂ =

√
2

πℓ2
s

1
∫ rh

ǫ
dr

e2As
√

f(1−f)

. (5.20)

We are now ready to remove the cutoff. As the integral appearing is now well-defined up

to the real boundary r = 0 we may rewrite it as

∫ rh

ǫ

e−2Asdr
√

f(1 − f)
=

∫ rh

0

e−2Asdr
√

f(1 − f)
− I(ǫ) , I(ǫ) =

∫ ǫ

0

e−2Asdr
√

f(1 − f)
(5.21)
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Figure 16. In this figure the ratio of the jet quenching parameter in our model to the jet quenching

parameter in N = 4 is shown. The integral present in equation (5.20) has been numerically

calculated from an effective cutoff at r = rh/1000. The jet quenching parameter in N = 4 SYM

has been calculated with λ′tHooft = 5.5.

TQGP,MeV q̂ (GeV 2/fm) q̂1 (GeV 2/fm)

(direct) (direct)

220 - -

250 0.5 0.6

280 0.8 0.8

310 1.1 1.1

340 1.4 1.4

370 1.8 1.8

400 2.2 2.2

Table 4. This table shows the jet quenching parameter q̂ computed with different cutoffs for the

different temperatures shown in the first column. The computation is done in the direct scheme.

The second column shows q̂ with a cutoff at rcutoff = rh/1000, where rh is the location of the

horizon. In accordance with the conclusions of appendix F q̂ does not change significantly as we

vary the cutoff from rh/1000 to rh/100.

In appendix F we obtain the small ǫ estimate of I(ǫ) that vanishes as ∼ ǫ(log ǫ)
4
3 . We may

finally write20

q̂ =

√
2

πℓ2
s

1
∫ rh

0
dr

e2As
√

f(1−f)

. (5.22)

20In practise, the previous discussion including regularizing the UV is academic. The numerical calcula-

tion is done with a finite cutoff where the boundary conditions for the couplings are imposed.
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Figure 17. The jet quenching parameter q̂ for the Improved Holographic QCD model and N = 4

SYM is shown in units of GeV 2/fm for a region close to T = Tc. The smallest dashed curve is the

ihQCD result with an effective cutoff of rcutoff = rh/1000. The small dashed curve is the ihQCD

result with the cutoff from the mass of the Bottom quark. The medium dashed curve has a cutoff

coming from the Charm mass and and largest dashed curve is the N = 4 SYM result.
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Figure 18. The jet quenching parameter q̂ for the Improved Holographic QCD model (lower curve)

and N = 4 SYM (upper curve) are shown in units of GeV 2/fm for temperatures up to T = 4Tc.

From equation (5.22) we obtain, in the conformal case:

q̂conformal =
Γ

[

3
4

]

Γ
[

5
4

]

√
2λ π

3
2 T 3 (5.23)

The conformal value, for the median value of λ = 5.5 and T ≃ 250 MeV gives q̂conformal ≃
1.95 GeV2/fm where we used the conversion 1 GeV≃ 5 fm−1.

Numerical evaluation of equation (5.22) in the non-conformal IHQCD setup21 gives

us a value of q̂ which is lower (at a given temperature) than the conformal value, as

shown in figures 16, 17 and 18. Tables 4 to 7 display the numerical values of the jet

21In this case, the value of ℓs appearing in equation (5.22) is fixed as explained in section 4.
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TQGP,MeV q̂ (GeV 2/fm) q̂ (GeV 2/fm) q̂ (GeV 2/fm)

(direct) (energy) (entropy)

220 - 0.9 1.0

250 0.5 1.2 1.3

280 0.8 1.6 1.7

310 1.1 2.1 2.2

340 1.4 2.7 2.8

370 1.8 3.4 3.4

400 2.2 4.2 4.2

Table 5. This table displays the jet quenching parameter q̂ using the three different comparison

schemes. For lower temperatures the “entropy scheme” gives higher values. As energy is increased

the energy and entropy schemes temperatures start to coincide and there is little difference in the

jet quenching parameter as well.

TQGP,MeV q̂charm (GeV 2/fm) q̂charm (GeV 2/fm) q̂charm (GeV 2/fm)

(direct) (energy) (entropy)

220 - 1.3 1.5

250 0.8 1.8 2.0

280 1.2 2.6 2.8

310 1.7 3.5 3.6

340 2.2 4.6 4.7

370 2.8 5.9 6.0

400 3.6 7.6 7.5

Table 6. This table displays the jet quenching parameter q̂ using the three different comparison

schemes with an effective cutoff provided by the mass of the Charm quark. Again, for lower

temperatures the “entropy scheme” gives higher values. As energy is increased the energy and

entropy schemes temperatures start to coincide and there is little difference in the jet quenching

parameter as well. Also when the temperature approaches the quark mass the picture of the heavy

quark as a hanging string collapses and results are not reliable.

quenching parameter at different temperatures in the experimentally relevant range, in

different temperature matching schemes.

6 Discussion and summary

In this paper we have examined several aspects associated with the physics of thermal

transport phenomena in gluon plasma with potential applications to heavy ion collisions.

We have used as basic model for our calculations the 5D Einstein-dilaton model with a

potential proposed in [38, 39]. This is a hybrid model that incorporates features coming

from string theory as well as features originating in YM, [40]. We have also used a potential,

whose two phenomenological parameters have been fit to lattice YM data, [49]. This model,

named Improved Holographic QCD is expected to be a very good approximation to several

aspects of YM physics.
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TQGP,MeV q̂bottom (GeV 2/fm) q̂bottom (GeV 2/fm) q̂bottom (GeV 2/fm)

(direct) (energy) (entropy)

220 - 1.0 1.1

250 0.6 1.4 1.5

280 0.9 1.9 2.0

310 1.2 2.5 2.6

340 1.6 3.2 3.2

370 2.0 4.0 4.0

400 2.5 5.0 4.9

Table 7. This table displays the jet quenching parameter q̂ using the three different comparison

schemes with an effective cutoff provided by the mass of the Bottom quark. The results are close

to the q̂ results computed in table 5 since the mass of the Bottom quark is much larger than the

temperatures we examine.

In this context we calculated the bulk viscosity by calculating the low-frequency asymp-

totics of the appropriate two-point function of the energy-momentum tensor. We have

further calculated the drag force on a heavy quark by extending the dragging string calcu-

lation done earlier in the context of N = 4 SYM, [21–23]. Finally we have calculated the

jet-quenching parameter q̂ defined by the expectation value of a light-like Wilson loop, by

adapting the calculation of [19, 20] from N = 4. Unlike the case of N = 4, our calculations

here are numerical as no analytical solutions are known for Improved Holographic QCD

with the appropriate potential. We have however derived analytically various asymptotics

of the results relevant for high energy, low velocity or high temperature.

Before discussing the results, it is appropriate at this point to take a critical look and

analyze potential sources of (systematic) error in our calculations.

• Holographic models are reliable in the context of large-Nc expansion of the SU(Nc)

gauge theory. Therefore a priori, our results should be understood as the leading

order O(1) part in the large-Nc expansion.

The issue, however, is a bit more complicated by the fact the the model we are

employing is semi-phenomenological and therefore contains two phenomenological

parameters (apart from the ones expected in YM) that have been fit to data in [49].

Although several lattice data are known at large-Nc, [65], others are not. In particular,

the detailed thermodynamics of large-Nc YM is currently being calculated on the

lattice, [66]. Therefore not all relevant input data we used have been computed at

large Nc.

In this sense the semi-phenomenological model we are using is positioned somewhere

between Nc=3, YM and Nc = ∞ YM. It is known so far that the difference in many

observables in the gluon sector between these two points is of the order of 5% or less.

• There are no dynamical flavor degrees of freedom incorporated in the model used.

In [38, 39] the incorporation of flavor branes was described at the semi-quantitative
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level. We have assumed that we work in the “quenched” approximation: the number

of flavors Nf ≪ Nc which implies in particular that fermions loops are suppressed by

a factor of
Nf

Nc
≪ 1.

The configuration of flavor branes is expected to involve a pair of space-filling D4

and D4 per quark flavor. These branes enter at the AdS boundary and at some point

in the interior they are expected to fuse signalling chiral symmetry breaking. The

configuration in the broken phase involves a space-filling brane that folds on itself

and resembles closely the branes described in [67] using Boundary CFT.

The bare mass of the associated quarks enters as a source boundary condition on

the relevant tachyon field, [41]. The higher the mass the stronger is the tendency

on the tachyon to diverge in the IR. In the deconfined phase we expect that branes

associated to light quarks cross the BH horizon and this signals the melting of the

associated mesons. Branes associated to heavy quarks, will fuse outside the horizon,

signaling the stability of the associated mesons. These expectations are qualitative.

They have been observed in toy models, [68] but have not been yet calculated in a

reliable extension of the present setup, [69].

Our estimate is that the bare quark mass is related to the flavor brane position rm in

the following way: The energy of a string stretching from rm to r∗, (the equilibrium

position of string world-sheets) is equal to the bare quark mass, as detailed in sec-

tion 4.5. This is expected to be asymptotically correct when the mass of the quark

is much larger than the dynamical scale of the gauge theory, and we therefore do not

expect a large source of error for charm and bottom quarks.

• There are several other sources of error, that enter between using the quantities

computed here and comparing them to the eventual experimental data. Most of

them have been described preciously, [19–21, 23, 33], and we do not have much more

to add here. We would like however to mention one extra important aspect: deciding

the appropriate temperature to be used in comparisons with data. This is an issue

because in YM the deconfining transition is first order (instead of the expected cross-

over in the theory with quarks) with a transition temperature that is about 50%

larger than in QCD.

There is therefore a non-trivial comparison to be made. We do not know the best way

to compare, but we have explored three different matchings: taking the same tem-

perature, the same energy density or the same entropy density. Until a computation

is made taking into account the fermionic degrees of freedom, this choice introduces

an extra systematic error in the comparison.

This ambiguity is the same one that arises when one fixes the temperature in the

holographic computations using the N = 4 theory. In that case however, one must

also fix the N = 4 coupling constant, and this introduces an extra source of error.

In our model this is not an issue, since the coupling constant runs. All observable

quantities we compute are independent of the value of the coupling at a given energy,

thus we do not need to fix an extra parameter by hand.
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• There are further limitations on the range of applicability of the drag force and jet-

quenching calculations, that have been discussed in the literature [70, 71]. In the

drag-force calculation the velocity is limited by the position of the associated flavor

brane. In a sense the world-sheet horizon should be kept away from that brane so

that standard calculations of the drag force are reliable. The jet-quenching parameter

seems valid in the opposite regime.

There is a further important issue concerning the physics of heavy quarks in the context

of the QGP. It has been argued from various points of view,[23, 24]–[31] that the motion

of a heavy quark propagating and interacting in QGP is very similar to Brownian motion.

The associated description starts with a Langevin equation which contains two ingredients:

a classical force (the drag force) and a fluctuation force (the “noise”) characterized by a a

diffusion coefficient in the (late-time) Gaussian case.

The distribution for the kinematic data then describes a Fokker-Planck equation. In

the standard non-relativistic case, the assumption of a Maxwell equilibrium solution to the

Fokker-Planck equation provides a relation between the classical force and the stochastic

force known in the simplest cases as the Einstein relation.

One of the relevant ingredients in the case of QGP is that the description of the

Brownian motion must be relativistic. Relativistic Langevin evolutions have been described

already in the relevant mathematical literature, [32]. However, in the early literature, it

was assumed that the relativistic Maxwell distribution is an equilibrium solution to the

Fokker-Planck equations. This leads to an Einstein-like relation that is problematic at

high temperatures. This is taken as a hint that the initial assumption is false. Moreover,

in the case of heavy-quark diffusion the longitudinal and transverse directions behave very

differently. A recent series of papers, [28]–[31] derived the Langevin-type evolution of a

heavy quark in the context of AdS/CFT by studying the small oscillations of the trailing

string solution that describes the average motion of the quark. In particular, it was shown

in [31] that the fluctuating force is strongly influenced by the existence of an induced 2d

black-hole metric and an associated world-sheet horizon in the semiclassical trailing string

solution, as detailed in section 4. In the non-relativistic limit, this world-sheet horizon

and the bulk black-hole horizon coincide. The relevant diffusion coefficients are therefore

computed from thermal two-point functions for the string fluctuations.

The analogous computation of such thermal correlators in our case, is more involved

than the N = 4 case and will be reported in a future publication.

Below we give a summary of our results.

Bulk viscosity: we have computed the bulk viscosity by calculating the low frequency

asymptotics of the appropriate stress tensor correlator holographically. We find that the

bulk viscosity rises near the phase transition but stays always below the shear viscosity.

It floats somewhat above the Buchel bound, with a coefficient of proportionality varying

between 1 and 2. Therefore it is expected to affect the elliptic flow at the small percentage

level [13, 59]. Knowledge of the bulk viscosity is important in extracting the shear viscosity

from the data. This result is not in agreement with the lattice result near Tc. In particular

the lattice result gives a value for the viscosity that is ten times larger.
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The bulk viscosity keeps increasing in the black-hole branch below the transition point

until the large BH turns into the small BH at a temperature Tmin. The bulk viscosity on the

small BH background is always larger than the respective one in the large BH background.

In particular, we showed that the T derivative of the quantity ζ/s diverges at Tmin. This is

the holographic reason for the presence of a peak in ζ/s near Tc. On the other hand, as it

is shown in [45], presence of Tmin (i.e. a small BH branch) is in one-to-one correspondence

with color confinement at zero T. We arrive thus at the suggestion that in a (large N)

gauge theory that confines color at zero T, there shall be a rise in ζ/s near Tc.

An important ingredient here was the value of the viscosity asymptotically in the small

BH branch. There we correlated precisely its asymptotic value to the IR behavior of the

potential. Taking also account the fact that this asymptotic value is very close to the value

of the bulk viscosity near Tc, we can derive bounds that suggest that the bulk viscosity

cannot increase a lot near Tc.

Drag force: the drag force we have calculated has the expected behavior. Although it

increases with temperature, it does so slower than in N = 4 SYM, signaling the effects of

asymptotic freedom. This feature is at odds with the robustness observations for the drag

force of [72].

Diffusion time: based on the drag force calculation we have computed the diffusion

times for a heavy external quark. The numerical values we obtain are in agreement with

phenomenological models [17]. To accommodate for the fact that our models exhibits a

phase transition around T = 247 MeV (i.e. about 30% higher than in QCD), we compare

our results using alternative schemes, as proposed in [33]. For example, for an external

Charm quark of momentum p = 10 GeV we find (in the alternative scheme) a diffusion

time of τ = 2.6 fm at temperature T = 280 MeV . Similarly, for a Bottom quark of the

same momentum and at the same temperature we find τ = 6.3 fm. Generally the numbers

we obtain are close to those obtained by [17] and [25].

Jet quenching: we have also calculated the jet quenching parameter of this model, based

on the formalism of [19, 20] by computing the appropriate light-like Wilson loop. We find

that q̂ grows with temperature, but slower than the T 3 growth of N = 4 SYM result. Again

this can be attributed to the incorporation of asymptotic freedom in our model. Using the

alternative scheme to compare with experiment we find that our results are close to the

lower quoted values of q̂. For example, for a temperature of T = 290 MeV, which in the

alternative “energy scheme” corresponds to a temperature of T = 395 MeV in our model,

we find that q̂ ≈ 2GeV 2/fm.

However, the numbers obtained for this particular definition of jet quenching parame-

ter seem rather low and indicate that this may not be the most appropriate definition in the

holographic context. There are other ways to define q̂, in particular using the fluctuations

of the trailing string solution. This is gives a direct and more detailed input in the associ-

ated Langevin dynamics and captures the asymmetry between longitudinal and transverse

fluctuations. It would be interesting to compute this, along the lines set in [28, 30, 31] and

we are currently pursuing that aim.
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Note added in proof

Since this paper has appeared in the archive, two papers appeared that have a direct

connection to some of the issues discussed here. In reference [75] a high precision lattice

calculation of the thermodynamics was performed at various Nc. The results suggest

that the thermodynamic functions vary very little with Nc although the phase transition

becomes sharper as Nc increases. The thermodynamic functions and in particular the

trace-anomaly calculated from the Improved Holographic QCD model [49] match very well

the lattice data.

In reference [76] a detailed study of the hydrodymamics with a high-viscosity regime

was performed. It was found that cavitation ensues for bulk or shear viscosity values a

few times the PSS value, thus corroborating earlier numerical evidence, [11]. Our results

indicate that cavitation (and therefore breakdown of the hydrodynamic description) is not

expected to happen in the deconfined phase of the quark gluon plasma.
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A The scalar variables and evaluation of the bulk viscosity

To determine ζ we need to solve the fluctuation equation (3.6) numerically. This requires

knowledge of the background functions A, B and f as functions of φ. A very convenient

reformulation of the Einstein’s equations, especially when the radial variable is taken as φ

is explained in section 7 of [45], that we review here.

One can reduce the number of Einstein’s equations by introducing the following

scalar variables:

X(φ) =
φ′

3A′ , Y (φ) =
g′

4A′ (A.1)

where we defined f = exp(g). Note that X and Y are invariant under radial coordinate

transformations. These variables obey the following first order equations:

dX

dφ
= −4

3
(1 − X2 + Y )

(

1 +
3

8X

d log V

dφ

)

, (A.2)

dY

dφ
= −4

3
(1 − X2 + Y )

Y

X
. (A.3)
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As shown in [45], the thermodynamics of the dual field theory are completely determined

by knowledge of X and Y as a function of φ. Roughly speaking, Y is dual to the enthalpy

and X to the energy of the gluon fluid.

In solving (A.2) and (A.3) one imposes the boundary conditions at the horizon. The

regularity of horizon requires

Y → Yh

φh − φ
+ O(1),

X → −4

3
Yh + O(φh − φ), (A.4)

as φ → φh. Solving (A.2) near the horizon determines

Yh =
9V ′(φh)

32V (φh)
. (A.5)

Having solved for Y and X, one determines the metric functions A and f as,

A = A0 +

∫ φ

φ0

1

3X
dφ̃, (A.6)

g = log f =

∫ φ

−∞

4

3

Y

X
dφ̃. (A.7)

Now, let us compute the last metric function B. The metric written in the r-frame and

the φ-frame are:

ds2 = e2A

(

− fdt2 + d~x2 +
dr2

f

)

= e2A(−fdt2 + d~x2) + e2B dφ2

f
. (A.8)

Comparison determines,

B = A − log |dφ

dr
|. (A.9)

In the formulation of the scalar variables, dφ/dr is given by,

dφ

dr
= −3X

ℓ
eA− 4

3

R φ
−∞ X . (A.10)

Thus, one finds B as

B =
4

3

∫ φ

−∞
X − log |3X|. (A.11)

Having found the metric functions in X and Y variables, one can rewrite the fluctuation

equation (3.6). There are various cancellations most notably in rewriting the ω-dependent

term in (3.6): The temperature T is determined by the following equation, (see equation

(H.67) pf [45]) in the scalar variables:

T =
Y (φ0)

πℓ
e
A0−

R φh
φ0

dφ 1
X . (A.12)

Now, using the equations (A.3), (A.6), (A.7) and (A.12), the ω dependent term can be

simplified as
(

wY

3πTX

)2

e−2
R φh

φ
1
X .
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With similar simplifications, the entire (3.6) equation can be written only in terms of X

and Y functions:

h′′
11 = c(φ)h′

11 + d(φ)h11, (A.13)

where

c(φ) =
1 − X2 + Y

X

(

8

3
+

3

2X

V ′

V

)

, (A.14)

d(φ) = −16Y

9X2
(1 − X2 + Y )

(

1 +
3

8X

V ′

V

)

−
(

ωY

3πTX

)2

e−2
R φh
φ

1
X . (A.15)

To summarize: Given φh, one computes the functions X and Y from (A.2) and (A.3) and

the temperature from (A.12). Given these data, one solves (A.13) numerically (with the

boundary conditions explained below (3.6)).

In passing, we note that the equation (A.13) can be put in a Riccati form by the change

of variables h11 = exp(
∫

h): h′ + h2 = ch + d whose general solution can be found iff one

knows a special solution. It is presumably possible to find a special solution for simple

potentials V .

B Bulk viscosity in the limit of vanishing black-hole

Here, we fill in the details of the computation that leads to equation (3.16). This follows

from (3.12) in the high T limit on the small BH (λh → ∞). We first show that, the

fluctuation coefficient |cb| goes to 1 in this limit. cb is given by the value of h11(λh) that

follows from solving (A.13) with ω = 0, and the boundary condition h11(−∞) = 1.

In [45], it was shown that in the λh → ∞ limit, the functions X and Y simplify. In

particular X(λ) → X0(λ) where X0 corresponds to the zero T solution and Y (λ) → 0

everywhere except λ = λh. In fact, one can show that Y is proportional to a delta function

δ(λ − λh) in the limit λh → ∞. Thus, from (A.15) we observe that d(φ) vanishes in this

limit for all values of λ < λh. In fact it also vanishes at λh because the term 1 + 3V ′/8XV

vanishes as λ = λh → ∞. Therefore the fluctuation equation simplifies to

h′′
11(φ) = c0(φ)h′

11(φ), c0(φ) =
1 − X2

0 + Y

X0

(

8

3
+

3V ′

2X0V

)

. (B.1)

The solution with the aforementioned boundary condition is,

h11(φ) = 1 + C

∫ φ

−∞
dt e

R t
−∞ c0(t). (B.2)

The integration constant C is determined by the second boundary condition h′(φh) = 0.

On the other hand, c(φ) is positive definite in the limit φ → ∞. This is because V ′/V

approaches to 4/3 whereas X0 approaches to −1/2. Hence the only way to obey the

condition is to set C = 0, hence h11 = 1 for all values of λ in the limit λh → ∞. We

checked that this is indeed the case by numerical analysis.
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Figure 19. Comparison of the scalar function X , the adiabatic approximation Xadb and the

corresponding zero-T variable X0. λh = 1 is chosen to be 1. Solid (black), short-dashed(red) and

the long-dashed(blue) curves correspond to the full numerical result X , the adiabatic approximation

Xadb and the zero-T result X0 respectively.

C The adiabatic approximation in scalar variables

The approximate solution explained in [56] is given by eqs. (3.20) and (3.21). Using log s ∝
A and (A.6), we observe starting from (3.20) that the approximation translated in scalar

variables implies,

X ≈ Xadb(φ) ≡ −3

8

V ′(φ)

V (φ)
. (C.1)

To verify that the second equation (3.21) leads to the same conclusion, we may use equation

(7.38) of [45]:

log s − 3 log T ∝ −4

∫ φh

X − 3 log V (φh). (C.2)

On the other hand, log V (φh) ∝ −8
3

∫ φh X [45]. Therefore, we verify that (3.21) also leads

to (C.1).

We compare both sides of equation (C.1) in figure 19 for a large enough λh (so that

a wider range can be compared). On this figure we also plot X0 (the variable X for the

zero-T theory) for comparison.

We will now proceed to understand the approximate formula (C.1) independently.

Suppose that V ′/V is a slowly varying function of φ. Then, we claim that we can write

X(φ) = Xadb(φ) + δ(φ), (C.3)

where δ(φ) is small w.r.t Xadb everywhere (this also means that δ′(φ) is small everywhere).

Substitution of (C.3) in (A.2) gives,22

X ′
adb ∝ δ. (C.4)

22The proportionality constant is smooth and order one. This is firstly because X ∈ (−1, 0) every-

where, and secondly, at the point Y diverges, i.e. at φh, the boundary condition (A.4) guarantees that the

proportionality constant is still order 1.
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Figure 20. Validity of the adiabatic approximation. Solid(blue) curve is the difference be-

tween the true numerical result and the adiabatic approximation (normalized by the true value)

(ζ/s(true) − ζ/s(adb)) /(ζ/s)(true), and the dashed(red) curve is the criteria |(V ′/V )′(φ)| for the

validity of approximation.

Therefore, the condition X ≈ Xadb is equivalent to V ′/V is slowly varying with φ, namely

the condition for the adiabatic approximation. This argument also shows that in the

limits where V ′/V becomes constant, in particular near the boundary φ → −∞, and

near the singularity φ → +∞ (for φh → ∞), the approximation becomes exact. Fig-

ure 20 supports our arguments above by numerical evidence. Here we plot the ratio

(ζ/s(exact) − ζ/s(adb)) /(ζ/s)(exact), namely the difference between the exact (numerical)

result and the adiabatic approximation (normalized by the exact value) and the function

|(V ′/V )′(φ)|. The latter provides the criterion for the validity of the adiabatic approxi-

mation. The regions where both functions become large (the region around λc) coincide,

as expected from our argumentation above. We also see that the approximation becomes

better near the UV and the IR regions.

In passing let us also note the physics features that cannot be captured by the adiabatic

approximation. The same condition, namely that V ′/V varies slowly, also leads to X0

∣

∣

adb
=

−3
8

V ′(φ)
V (φ) for the zero T theory. This means X − X0 vanishes in this regime. According

to [45], the gluon condensate is set to zero within this approximation. Therefore, one

cannot observe the phase transition at Tc in the adiabatic approximation. By the same

reasoning, we learn that the adiabatic approximation becomes worst when X differs from

X0 most, i.e. when the gluon condensate is largest, in other words in the region near Tc,

see also figure 20.

Most equations simplify greatly with (C.1). In particular, the coefficient d(φ) of (A.15)

vanishes in the fluctuation equation (A.13) for ω = 0. Therefore with the same arguments

of appendix B we are lead to the conclusion h11 = 1 in the adiabatic regime. Then,

equation (3.23) follows immediately.
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D Equivalence of the axial and the δφ = 0 gauges

According to the standard AdS/CFT dictionary the metric fluctuation h11 = h22 = h33 is

dual to 1
2T i

i in the axial gauge h5m = 0, whereas our computation of the bulk viscosity is

carried out δφ = 0 gauge, following [53]. In [53], it is shown that the result is independent

of the gauge choice, by performing a gauge transformation between the two gauges and

showing that this does not affect the coupling of the fluctuation to the corresponding

operator to leading order near the boundary. In our backgrounds, this issue is slightly

more subtle, due to the logarithmic corrections to the asymptotically AdS geometry.

Here we shall follow the steps in [53] and prove that indeed the gauge choice does

not affect the coupling also in our backgrounds. The metric in the δφ = 0 gauge is

given in (A.8). Asymptotic forms of the metric functions near the boundary read (in the

λ = exp(φ) coordinate) ,

A(λ) =
1

b0λ
+ b log(b0λ) + O(λ), (D.1)

B(λ) = − log(b0λ) + O(λ), (D.2)

f(λ) = 1 + O(e−4/b0λ(b0λ)−4b). (D.3)

We want to perform a gauge transformation from the gauge I to gauge II where,

I : δφ = 0, δgµν = diag

[

− fe2Ah00, e
2Ah11, e

2Ah22, e
2Ah33, e

2B h55

f

]

, (D.4)

II : δ̃φ = ζ5 6= 0, δ ˜gµν = diag[−fe2Ah̃00, e
2Ah̃11, e

2Ah̃22, e
2Ah̃33, 0]. (D.5)

Under an infinitesimal gauge transformation ζµ, the metric functions and the dilaton trans-

form as

δ̃φ = δφ + ζµ∂µφ, δg̃µν = δgµν + ∇µζν + ∇νζµ. (D.6)

The symmetries of the problem dictate that ζ1 = ζ2 = ζ3 = 0 and ζ0 = ζ0(t, φ),

ζ5 = ζ5(t, φ).

When applied to (D.4) in order to get (D.5) these transformations reduce to the follow-

ing equations. The dilaton equation yield δ̃φ = ζ5 and the 55, 50, 00 and 11 components

of the second equation in (D.6) respectively produce [53]:

ζ5′ +

(

B′ − f ′

2f

)

ζ5 +
h55

2
= 0, (D.7)

ζ0′ − e2(B−A)

f2
ζ̇5 = 0, (D.8)

h̃11 − h11 − 2A′ζ5 = 0, (D.9)

h̃00 − h00 −
(

2A′ +
f ′

f

)

ζ5 − 2ζ0′ = 0, (D.10)

where prime and dot denotes derivation w.r.t. φ and time, respectively.
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We shall assume an oscillatory form for the t-dependence of the fluctuations, δx(t, φ) =

e−iwtx(φ) and use the same symbol to denote the φ-dependent piece, with a slight abuse of

notation. One can easily see that the following computation goes through with no change

for a more general t-dependence. Using the asymptotic forms of the metric functions above,

one finds an approximate solution to (D.7) as,

ζ5(φ) ≈ λ

[

c1 −
1

2

∫ λ

0

dλ̃

λ̃2
h55(λ̃)

]

. (D.11)

In order to determine the asymptotic behavior, one needs to determine h55 near the bound-

ary. This can be done by using the fluctuation equation for h55 ( see [53]),

h55 =
1

A′

(

h′
11 −

f ′

2f
h11

)

, (D.12)

where h11 is the solution to (3.6). Again, using the asymptotic forms of the metric functions

above, one finds that the solution to (3.6) near boundary (with the boundary condition

h11 → 1) reads,

h11 → 1 + cλ−2be
− 2

b0λ , ω 6= 0, (D.13)

h11 → 1 + c′λ−4b−1e
− 4

b0λ , ω = 0, (D.14)

where c, c′ are some integration constants. Using these in (D.12) one finds that h55 =

O(λ−2be
− 2

b0λ ) for ω 6= 0 and O(λ−4b−1e
− 4

b0λ ) for ω = 0. Finally, substituting this in (D.11)

gives (for ω 6= 0) ,

ζ5 = λ
[

c1 + O
(

λ−2b−1e
− 2

b0λ

)]

. (D.15)

We see that the leading term goes as −1/ log r whereas the sub-leading term is suppressed as

O(r2) as r → 0 at the boundary. Thus we can safely ignore the inhomogeneous contribution

in (D.11) and take ζ5 ≈ c1λ. Using this and the asymptotics of the metric functions above

in (D.8) now gives,

ζ0 ≈ c2λ
−2be

− 2
b0λ e−iwt (D.16)

Finally, using all the above, one solves (D.10) and (D.9) as (stripping off the t-dependence),

h̃00 = h00 −
2c1

b0
+ O

(

λ−2b−1e
− 2

b0λ

)

, h̃11 = h11 −
2c1

b0
+ O

(

λ−2b−1e
− 2

b0λ

)

. (D.17)

The operator that is dual to ζ5 = δφ is O = tr F 2/(4λ) ([45]) . Thus, from (D.15)

and (D.17) we find that the fluctuation of the Lagrangian that is proportional to c1 is

δc1L = − 1

b0
T µ

µ +
1

4
tr F 2. (D.18)

Expanding the dilatation Ward identity, T µ
µ = β(λ)

4λ2 tr F 2 to leading order in λ we see

that, (D.18) vanishes. This proves that the fluctuation of the metric function h11 couples

to 1
2T i

i both in the axial gauge and in the δφ = 0 gauge.
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E UV subtleties

In a theory where the dilaton is non-trivial, there is a relevant question to be asked. In

which frame is the metric asymptotically AdS? This question is void in the dual of N = 4

SYM where the dilaton is trivial but not in Improved Holographic QCD where the gauge

coupling is a function of the holographic coordinate. In [40] by analyzing the structure of

string higher-curvature corrections, it was shown that it is consistent with the equations

of motion that the string-frame metric is asymptotically AdS. This is required in order

for the background solution to have the correct structure and QCD perturbation theory

to emerge.

By approximating the string theory dual to QCD by a two derivative theory and a

dilaton potential as it was proposed in [38, 39] this property cannot be maintained. It is not

easy to see that the only option that can be implemented in the UV is an asymptotically

AdS metric in the Einstein frame instead. This has as a result a few “stray logs” in several

quantities that are calculated from the world-sheet action (instead of the bulk effective

action). One of them is the short distance inter-quark potential calculated in [73] which

is23 V (r) ∼ (log(rλ))
4
3

r .

Other similar cases appear in this paper, in the two observables that involve the string

world-sheet action. The first is the drag-force calculation. The effect of these logs appears

both as the energy of the string end-point becomes asymptotically large (v → 1) or when

the temperature becomes large T → ∞. One example is the ultra-relativistic diffusion

time (4.32) that we reproduced here

lim
p→∞

τ = Mq
ℓ2
s

ℓ2

√

4N2
c

45 Ts(T )

(

b0

4
log

p2

M2
q

)
4
3

+ · · · (E.1)

The logarithmic fact is due to a factor of λ− 4
3 . Another example is the large T asymptotics

of the non-relativistic diffusion time in (4.33). It gives exactly the conformal result modulo

again a factor of λ− 4
3 .

A similar effect appears in the jet-quenching calculation in section 5. Indeed, in (5.22),

the combination e4As(1− f) vanishes logarithmically in the UV instead of asymptoting to

a constant value. This occurrence perturbs the structure of the Wilson loop configura-

tion near the boundary, but as shown there does not affect the calculation of the jet-

quenching parameter.

A perturbative calculation at NLO of the diffusion time gives, [74]

1

τpQCD
=

8πT 2

3M
α2

s [− log g + 0.07428 + 1.8869g] (E.2)

while for large Nc N = 4 SYM it is obtained

1

τpsYM
=

λ2T 2

12πM

[

log
1√
λ

+ 0.4304 + 0.801
√

λ

]

(E.3)

23Interestingly, it was argued in [73] that this fits better Quarkonium data than the Cornell potential.
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Such perturbative asymptotics are not visible in the NG action.

There is however an important issue here: when and where we can trust the standard

Nambu-Goto world-sheet action. The structure of the vacuum solution near the boundary,

advocated in [40], suggests that since curvatures are high in that region, care is needed

when using the NG action in that regime. On the other hand, the UV behavior remains

qualitatively correct although in its details it may be revisable.

F The UV asymptotics of the integral (5.21)

We now turn to estimating the integral

I(ǫ) ≡
∫ ǫ

0

dr

e2As

√

f(1 − f)
=

∫ ǫ

0

λ− 4
3 dr

e2A
√

f(1 − f)
(F.1)

used in section 5 when ǫ → 0.

Near r = 0 in the Einstein frame, [38],

f(1 − f) ≃ πT
e3A(rh)

ℓ3
r4

[

1 + O
(

1

log(Λr)

)]

(F.2)

λ ≃ − 1

b0 log(Λr)
+ O

(

log log(Λr)

log2(Λr)

)

, eA ≃ ℓ

r

[

1 + O
(

1

log(Λr)

)]

(F.3)

Using these relations we obtain

I(ǫ) =

∫ ǫ

0

λ− 4
3 dr

e2A
√

f(1 − f)
≃ b3

0√
πT e3A(rh)ℓ

∫ ǫ

0
(− log(Λr))

4
3

[

1 + O
(

log log(Λr)

log(Λr)

)]

dr

(F.4)

changing variables to u = − log(Λr) we obtain

I(ǫ) =
b3
0

Λ
√

πT e3A(rh)ℓ

∫ ∞

− log(Λǫ)
du u

4
3 e−u

[

1 + O
(

log(u)

u

)]

(F.5)

We now use
∫ ∞

− log(Λǫ)
du u

4
3 e−u = Γ

[

7

3
,− log(Λǫ)

]

≃ [− log(Λǫ)]
4
3 Λǫ+ (F.6)

to finally obtain

I(ǫ) =
b3
0

√

πTb3(rh)ℓ
[− log(Λǫ)]

4
3 ǫ

[

1 + O
(

log log(Λǫ)

log(Λǫ)

)]

(F.7)

valid as ǫ → 0.
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