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Abstract. Nanostructuring provides a viable route to improve the thermoelectric performance of materials,
even of those that in bulk form have very low figure of merit. This strategy would potentially enable the
fabrication of thermoelectric devices based on silicon, the cheapest, most integrable and easiest to dope
Earth-abundant semiconductor. A drastic reduction of the thermal conductivity, which would lead to a
proportional enhancement of the figure of merit, was observed for silicon low-dimensional nanostructures,
such as nanowires and ultra-thin membranes. Here we provide a detailed analysis of the phononic properties
of the latter, and we show that dimensionality reduction alone is not sufficient to hinder heat transport to a
great extent. In turn, the presence of surface roughness at the nanoscale reduces the thermal conductivity
of sub-10 nm membranes up to 10 times with respect to bulk.

1 Introduction

The recent need for renewable energy harvesting using
thermoelectric devices and for solid-state Peltier coolers
to use in information and communication technology has
boosted the interest towards understanding the role of lat-
tice thermal transport in nanostructures and nanostruc-
tured materials [1,2]. Nanostructuring semiconductors was
proposed as a way to improve the thermoelectric figure
of merit (ZT), either by improving the electronic power
factor at the numerator of ZT [3] or by reducing the ther-
mal conductivity at the denominator, [4,5], ideally achiev-
ing a material that behaves as an electron crystal and a
phonon glass [6]. In fact, control of thermal conductiv-
ity based on phonon engineering in Earth abundant and
cheap materials, such as silicon, has already shown to be
a promising path to viable thermoelectric (TE) devices
with good performance [7,8,9,10]. A detailed understand-
ing of phonons dispersion relations and phonon scattering
in low-dimensional nanostructures can lead us to the de-
sign of materials and devices with tailored acoustic and
thermal properties [11,12,7,13,14,15,16,17,18].

Recent experiments have shown a consistent reduction
of the thermal conductivity of silicon thin films (silicon-on-
insulator, SOI) and suspended membranes, proportional
to the thinning of the silicon layer [19,20,21,22,23], with
minimum thermal conductivity of 9 W/m K measured
in 9 nm thick free-standing silicon membranes [23]. Cor-
respondingly, a strong reduction of the group velocities
of acoustic phonons, was observed in free-standing silicon
membranes [18]. Mesoscopic models based on the theory
of elasticity, which utilize the bulk properties of silicon
as input parameters, fit well to the experimental results
by adjusting the specularity parameter that determines

phonon surface scattering [24]. However, the applicabil-
ity of mesoscopic models for sub-10 nm nanostructures is
questionable and these models do not provide a clear con-
nection between structure, phonon properties and thermal
conductivity [25]. Former atomistic simulations elucidated
out-of-plane thermal transport in thin films [26], but suffer
from size converge issues and do not provide a reliable in-
sight into the scattering mechanisms of in-plane phonons
and their contribution to the thermal conductivity [27].

Here we provide a fully atomistic characterization of
the phononic properties of silicon membranes with thick-
ness comparable to the measured ones, performing large-
scale molecular dynamics and lattice dynamics calcula-
tions. We show that dimensionality reduction modifies
significantly the character of both acoustic and thermal
phonons, yielding a reduction of the group velocities over
the whole spectrum, with the consequence of a reduction
of the thermal conductivity. Nevertheless, this effect is
not sufficient to account for the experimental trends, as
the thermal conductivity of our models of flat crystalline
silicon membranes remains much higher than the values
reported in the experiments [23]. On the other hand, we
observe that models of membranes with rough surfaces
yield comparable reductions of the thermal conductivity
as in experiments, thus highlighting the major role played
by surfaces in controlling heat transport at the nanoscale.

In the next section we review the experimental mea-
surements on silicon membranes along with the results
achieved so far by theoretical modeling. In section 3 we
illustrate our atomistic models of silicon membranes. The
results regarding the dispersion relations of acoustic and
thermal phonons are reported in section 4, and the calcula-
tions of the thermal conductivity are reported in section 5.
A brief summary and conclusions are given in section 6.
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2 Thermal transport in silicon membranes

and thin films

Miniaturization of electronic transistors, sensors and actu-
ators in the late 1990s lead to the use of single-crystalline
silicon layers below 0.1 µm deposited on oxide. The per-
formances of silicon-on-insulator (SOI) fabricated devices
are conditioned by the capacity of the silicon layer to dis-
sipate heat, so to avoid overheating and possibly burn
out. This development stimulated the earliest investiga-
tions on the in plane thermal conductivity (κ) of silicon
thin films [19,20]. These studies, which employed har-
monic Joule heating and electrical-resistance thermome-
try [28], showed that the thermal conductivity of silicon
films with thickness in the range of 100 nm is largely re-
duced with respect to the bulk, due to phonon boundary
scattering. The reduction of κ may exceed 50% at room
temperature for 100 nm thick films [19]. Measurements
also demonstrated that κ depends monotonically on the
thickness of the film: the thinner the film the lower κ. The
suppression of κ in films is strongly temperature depen-
dent, especially below 200 K, i.e. for temperature regimes
in which quantum effects become more prominent, indi-
cating that the relative populations of carriers may be
rather different in films than in bulk. At room tempera-
ture the thermal conductivity of SOI thin films becomes
nearly indistinguishable from that of bulk for thicknesses
beyond 1 µm. This trend of thermal conductivity reduc-
tion has been confirmed by measurements on even thinner
single crystalline silicon films, down to 20 nm, for which
κ ∼ 0.16κbulk was observed [29,21].

Reducing κ in SOI films would make it possible to
exploit these systems for thermoelectric applications, as
the Seebeck coefficient remains as large as in the bulk
and can be even enhanced by doping [30,31]. However en-
couraging, the measurement of the thermo power of thin
films indicates that room temperature thermal conductiv-
ity not larger than 2 W/m K would be necessary to achieve
a thermoelectric figure of merit of 0.3, i.e. at the lower
limit of thermoelectric applications. Following the path-
way indicated by a pioneering atomistic modeling [32],
such low values of thermal conductivity were achieved in
silicon thin films with arrays of nano-holes [9,10]. In these
systems a two orders of magnitude reduction of κ with re-
spect to bulk was observed, stemming from the interplay
of nanoscale morphology and atomistic disorder at hole
surfaces [33].

The evidences of considerable reduction of the thermal
conductivity of silicon nanowires [34,8,35,36] suggest that
a possible alternative approach to reduce the thermal con-
ductivity of crystalline silicon beyond the limits observed
for SOI films, would be to fully exploit dimensionality
reduction and to work with suspended two-dimensional
membranes. Advances in fabrication and processing have
made it possible to produce single crystalline silicon mem-
branes as thin as 6 nm, which can be suspended in such
a way to control their strain [37]. The thermal conduc-
tivity of this class of systems can be measured by Ra-
man thermometry,[22,23] so not to interfere with phonon
propagation by direct interaction of a solid probe at the
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Fig. 1. Room temperature thermal conductivity of silicon thin
films (triangles from Refs. [19,20,29,21]) and suspended mem-
branes (circles from Ref. [22,23]) normalized by the thermal
conductivity of natural bulk silicon (148 W/m K at 300 K) [38].
The dotted (blue) line represents the trend obtained from the
mesoscopic model outlined in Ref. [24].

surface. Recent experiments resulted in a thermal conduc-
tivity of 9 W/m K at room temperature for the thinnest
membrane measured so far (9 nm) [23].

Both the results on SOI thin films and on suspended
membranes can be modeled using the kinetic theory of
thermal diffusion, which relies on an approximated solu-
tion of the linearized Boltzmann transport equation. Using
the phonon dispersion relations of bulk silicon and taking
into account the different contributions from different po-
larization branches (z), one can express the thermal con-
ductivity at temperature T as an integral over the phonon
frequencies up to the Debye frequency (ωD) [39]:

κ =
1

3

3∑
z=1

v2z

∫ ωD

0

dω
h̄

kBT
Cz(ω)τ

bulk
z (ω)Fp (d, ω) (1)

where vz is the group velocity of each acoustic branch z,
Cz(ω) is the phonon specific heat per unit volume, τ bulkz

the phonon lifetimes in the bulk, and Fp is a reduction
function that takes into account the effect of phonon scat-
tering at the surfaces or interfaces. Fp depends on the film
thickness d and on the frequency, and rescales bulk phonon
lifetimes and, consequently, phonon mean free paths. The
subscript p is a specularity parameter, which ranges from
0 for purely diffusive scattering to 1 for purely specular re-
flection. The reduction function Fp for a two-dimensional
film can be derived in analogy with the solution derived
by Sondheimer for the Boltzmann equation for electronic
transport [40]. Assuming fully diffusive scattering (p = 0)
at the surfaces, this simple analytical model reproduces
fairly well the thermal conductivity reduction observed
for SOI films as a function of their thickness [19,20,21].
A similar model, described in detail in Ref. [24], fits well
also the results for membranes [23].

Mesoscopic models can be refined introducing in the
integral the complete bulk dispersion relations and relax-
ation times, which can be obtained by anharmonic lat-
tice dynamics, computed either by empirical potentials
[25] or by ab initio methods [41]. Using this approach and
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comparing lattice dynamics results to molecular dynamics
simulations Turney et al. showed that for film or mem-
branes thinner than ∼ 10 nm large discrepancies may
arise, thus indicating that bulk dispersion relations and
lifetimes cannot be used to infer the thermal conductivity
of ultra-thin silicon layers, and direct atomistic simula-
tions are necessary [25]. In addition, the use of a reduc-
tion function with a specularity parameter relies solely on
phenomenological observations, and does not reveal the
connection between the structure of surfaces or interfaces
and the thermal conductivity of ultra-thin silicon layers
either suspended or deposited on a substrate.

3 Atomistic model of silicon membranes

Microscopic configurations. Bulk crystalline silicon has
a cubic diamond unit cell with an experimental lattice
constant a = 5.431 Å. We prepared the crystalline sili-
con membranes by cleaving a slab from the bulk along
the (001) face. We chose silicon membranes of varying
thickness for our investigation: namely 0.81 nm, 1.09 nm,
3.26 nm, 5.43 nm and 10.86 nm and 20.1 nm. The (001)
surface of silicon is the one used for technological appli-
cation, as it does not display metallic character when it
is passivated with hydrogen. To minimize the number of
dangling bonds the (001) surface undergoes a 2x1 recon-
struction, displaying rows of dimers [42,43,44,45]. Each
atom forming a dimer has a dangling bond that can be
passivated by hydrogen. Such 2x1 reconstruction is en-
ergetically favourable and is stable at high temperature.
Former tests on thin silicon nanowires showed that in-
cluding explicit hydrogens in the MD simulations would
not alter the resulting thermal conductivity, which may
be very sensitive to surface disorder [46]. Side views of
representative microscopic configurations of 1 and 5 nm-
thick membranes, and a top view displaying the surface
reconstruction are shown in Figure 2. We also consider
models of membranes with a periodic surface roughness,
with 1 nm thick features modulating the surface with a
correlation length of about 2 nm.

Interatomic potential. In order to compute the inter-
atomic forces in our atomistic model systems, we used
empirical potentials, which are parametrised by fitting to
fundamental properties of bulk silicon, such as the elastic
constants, the equilibrium volume, the binding energy or
the formation energy of point defects. The choice of em-
pirical interatomic potentials is dictated by the necessity
to calculate the phonon properties and the thermal con-
ductivity of models in the same range of thickness as the
experiments. We can thus perform molecular dynamics
simulations of systems of up to ten millions of atoms for
several nanoseconds, so to get well converged estimates
of the thermal conductivity of membranes up to 20 nm
thick. For covalently bonded solids, such as silicon and
germanium, different empirical potentials were proposed:
Stillinger-Weber [47], environment dependent interatomic
potential (EDIP) [48] and Tersoff bond-order potential

(a) (b)

(c)

Fig. 2. (a) Top view of 1nm-thick silicon membrane. The top
surface atoms are marked with larger spheres to illustrate the
row of dimers at the surface. Side views of (b) 1 nm-thick and
(c) 5 nm-thick membranes to illustrate reconstructed surfaces:
surface reconstruction is visible by the presence of dimers at
the surface, especially for the 1 nm-thick membrane. The red
and green arrows indicate the crystallographic directions along
which the phonon dispersions are calculated.

[49]. The Tersoff potential has been used to study sur-
face reconstructions [50] and with results consistent with
experiments [51]. In addition the Tersoff potential can ac-
curately describe the properties of non-tetrahedral forms
of silicon and provides a good representation of the phonon
dispersion relation of bulk silicon (Fig. 3a). For these rea-
sons we chose the Tersoff empirical potential [49] for our
study.

4 Phonon properties of suspended silicon

membranes

Phonon bands engineering in nanostructures has gained
an increasing attention in recent years [15,18], especially
with the intent of designing of thermoelectric systems with
improved efficiency [52]. In suspended membranes thick-
ness is the main control parameter. We computed the
phonon dispersions of silicon membranes with 2 × 1 re-
constructed surfaces as a function of thickness using har-
monic lattice dynamics. The dispersion relations are com-
puted by direct diagonalisation of the dynamical matrix of
a unit cell of the actual slab geometry and Fourier expan-
sion along the symmetry directions of the two-dimensional
Brillouin zone.

Figure 3 (b) shows the phonon dispersion relations of
crystalline silicon membrane of thickness 5.43 nm to be
compared to the bulk dispersion relations shown in Figure
3 (a). The range of frequencies of the longitudinal acous-
tic (LA) and transverse acoustic (TA) modes is reduced
with respect to the bulk, and a large number of higher-
order flexural or breathing modes appears. The thinner
the membranes the smaller the range of acoustic frequen-
cies, indicating an average softening of the elastic moduli,
especially for the out-of-plane components. On the other
hand the number of higher-order modes increases with
thickness, as a consequence of the increasing number of
atoms in the unit cell.

Figure 3 (c) zooms into the dispersion relations of the
three fundamental acoustic branches of the membranes of
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Fig. 3. (a) Phonon dispersion in bulk silicon. (b) Phonon dis-
persion in 3 nm-thick silicon membrane along different sym-
metry directions. The softening of modes in general and the
presence of out-of-plane ZA modes can be clearly discerned.
(c) Phonon dispersion for small values of wavevectors in sil-
icon membranes of different thicknesses in comparison with
bulk. The ZA modes are mostly affected by the membrane
thickness.

thicknesses 3 nm (blue), 5 nm (green), 10 nm (magenta)
and 20 nm (red), in comparison to bulk (black), near the Γ
point. The lowest frequency modes, compatible with the
periodicity of a membrane supercell containing ∼ 5000
atoms, with LA, TA and ZA polarisation are displayed in
the snapshots in Figure 3 (c), in which the atomic dis-
placements are represented by grey lines. Displacement
vectors were obtained by diagonalising the dynamical ma-
trix of the supercell. The LA modes of the membranes are
slightly flattened as compared to bulk, while one of the TA
modes remains unchanged. The most prominent effect of
dimensionality reduction is the lifting of the degeneracy of
the TA modes and the conversion of one of the TA modes
into a flexural out-of-plane modes (ZA), with quadratic
dispersion relation at zone centre. These ZA modes are
very sensitive to the reduction of the membrane thick-
ness, and gets softer the thinner the membranes. This ef-

Fig. 4. (a) Phonon group velocities in free-standing silicon
membranes compared to bulk. Phonon group velocities are re-
duced in the 5 nm-thick membrane and decrease in reducing
the membrane thickness.
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Fig. 5. Speed of sound in silicon membranes as a function of
thickness. The speeds of sound of LA modes are reduced in the
membranes.

fect, observed by Brillouin light scattering measurements
[18], pinpoints the need to explicitly consider the modified
dispersion relations in low-dimensional structures. Such
softening of the ZA modes can also be predicted using the
theory of elasticity for Lamb’s waves [53].

The slope of the phonon dispersion curves at the Γ
point gives the speed of sound for each polarization branch.
Figure 5 shows the speed of sound longitudinal, and trans-
verse modes as a function of membrane thickness for (100)
and (110) propagation directions. The speed of sound of
the longitudinal modes is reduced compared to that in the
bulk crystalline silicon, whereas the speed of sound of the
transverse mode remain almost unaltered (see also Figure
3(c) ). Note that there is only one transverse TA mode
in the membranes, as the other one is converted into a
flexural ZA mode, which has zero group velocity at the Γ
point.

Even though they provide valuable information on the
acoustic and elastic properties of the system, phonons in
the GHz regime do not affect significantly thermal con-
ductivity, which is mostly determined by the features of
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Fig. 6. Vibrational density of states in silicon membranes of
different thickness. The population of the phonon modes in the
membranes is increased in the low frequency region.

phonons in the THz regime. In this range of frequen-
cies dimensionality reduction leads to an overall flatten-
ing of the phonon dispersions, resulting in lower phonon
group velocities, which are computed as the gradient of
the frequency (ω) with respect to the wavevector q, i.e.
vg(ω) = ∂ω(q)/∂q.

In a bulk material, the thermal conductivity tensor can
be expressed as [54]

καβ =
∑
q,z

cph,λ(q)vz,αvz,β(q)τz(q) (2)

where, q and z are the phonon wavevector and polariza-
tion, cph,z(q) is the phonon specific heat per unit vol-
ume, vz,α(q) is the component of phonon group veloc-
ity vector along the Cartesian direction α, and τz(q) is
the phonon lifetime. The phonon group velocity term has
thus a dominant role in the thermal conductivity expres-
sion and hence, can help us to make a qualitative pre-
diction about the thermal conductivities in the material.
In Figure 4, we show the phonon group velocities in sil-
icon membranes of thicknesses 5 nm (green), along with
the phonon group velocities in bulk silicon (black). The
phonon group velocities are reduced in the membranes
compared to bulk, especially in the low frequency region,
which plays a dominating role in thermal transport. Di-
mensionality reduction is therefore expected to lower the
thermal conductivity of silicon membranes as expressed in
Eq. 2, through the observed reduction of the group veloc-
ities of acoustic phonons.

The sum in Eq. 2 is implicitly affected by the vibra-
tional density of states (VDOS) of the system, which is
also a function of the membrane thickness. In order to
obtain the phonon vibrational density of states (VDOS)
in the crystalline silicon membranes, we have integrated
the first Brillouin zone using a 40 × 40 Monkhorst–Pack
mesh of q- points [55]. The VDOSs are reported in Fig-
ure 6 for crystalline silicon membranes of 1 nm, 3 nm, 5
nm and 10 nm thickness. The bulk VDOS is also given
for reference. We observe a shift towards lower frequen-
cies of the bulk acoustic band between 5 and 8 THz. This

shift results in the appearance of a peak below 5 THz in
the membranes, which which broadens and shifts toward
lower frequencies in the thinnest ones (1 and 3 nm). In
turn, the intensity of the peak related to optical modes at
about 16 THz decreases with decreasing thickness of the
membranes. For the 1 nm membrane, the sharp optical
peak is largely reduced and broadened toward lower fre-
quencies. Although the phonon density of states is higher
in the low frequency (∼ 5 THz) region in the membranes,
they would not contribute greatly to thermal conductivity
because of the lowered group velocities.

5 Thermal transport in free-standing silicon

membranes

5.1 Molecular dynamics

The harmonic lattice dynamics calculations presented in
the previous section are not sufficient to assess quantita-
tively the thermal conductivity of membranes. We then
used classical molecular dynamics (MD) to compute the
thermal conductivity in the crystalline silicon membranes.
There are two possible approaches to calculate the thermal
conductivity of a system by MD simulations. The first ap-
proach is to perform equilibrium MD (EMD) simulations
and obtain the thermal conductivity from the autocorre-
lation function of the heat current using the fluctuation-
dissipation theorem and the respective Green-Kubo rela-
tion [56]. The second approach is to perform non-equilibrium
MD (NEMD) simulations and calculate the thermal con-
ductivity using Fourier’s heat equation [57,58,59,60]. The
NEMD approach, though more intuitive, requires a careful
size-scaling analysis extrapolate to bulk thermal conduc-
tivities. Such extrapolation is often far from trivial [61].
NEMD was used in the past to compute thermal transport
in silicon membranes, but the results were not conclusive
as size scaling analysis was not performed [27].

Here we employ the EMD method. In EMD simula-
tions the diagonal components of the thermal conductivity
can be written as [56]:

καα =
1

kBV T 2

∫ ∞

0

dt〈Jα(t)Jα(0)〉 (3)

where α = x, y, z; kB is the Boltzmann constant, V is the
volume of the system, T is the temperature, and 〈Jα(t)Jα(0)〉
is the heat current autocorrelation function along the di-
rection (α) of heat propagation. The heat current is given
by:

J =

N∑
i

ǫivi +
1

2

N∑
i,j;i 6=j

(Fij · vi)rij +

1

6

N∑
i,j,k;i 6=j 6=k

(Fijk · vi)(rij + rik), (4)

where ǫi and vi are the energy density and velocity as-
sociated with atom i, respectively. F represents the in-



6 Sanghamitra Neogi, Davide Donadio: Thermal transport in silicon membranes

teratomic force acting between atoms separated by a dis-
tance r. A disadvantage of this approach is that the con-
vergence of the heat current autocorrelation function can
be very slow, requiring long MD runs (several tens of ns
for silicon-based materials), however in general size con-
vergence is achieved more easily than for NEMD and no
extrapolation is required [58,62]. Our calculations of the
in-plane (x − y) thermal conductivity of crystalline sili-
con membranes by EMD simulations are performed using
the LAMMPS package [63]. We applied periodic bound-
ary conditions in the x and y directions, thus mimick-
ing the simulation of an infinite plane, and the simulation
supercell is built in such a way that periodic images of
the slab do not interact in the perpendicular direction
(z-direction). The volume of the system is defined as the
product of the area of the x − y plane of the cell times
the membrane thickness. We use a time step of 1 fs for
our simulations to calculate the thermal conductivities of
the smooth membranes. The systems employed in the MD
simulations were constructed replicating the unit cells of
silicon membranes described in the first subsection. We
chose five samples of silicon membranes of various thick-
nesses for our investigation: namely 1.09 nm, 3.26 nm, 5.43
nm and 10.86 nm and 20.1 nm.

Each sample was equilibrated using the Nosé-Hoover
thermostat [64] set at 300 K for 100 ps, while the sur-
face area in the x,y plane was kept constant. The system
was then coupled to a barostat set at zero pressure and
was allowed to expand or contract the volume in order to
obtain unstrained configurations. This step was performed
for times of the order of 1 ns. After equilibration, the veloc-
ities were set to 300 K and the systems were again coupled
to a Nosé-Hoover thermostat for 1 ns to decorrelate the
systems from the initial configurations. The thermostat
was then decoupled from the systems and the heat flux cal-
culations were performed under microcanonical conditions
(constant number of particles N , volume V , and energy
E) using Eq. 4, and recorded every 5 fs intervals. The ther-
mal conductivities were calculated using the Green-Kubo
formula Eq. 3.

We have tested the convergence of κ of crystalline sil-
icon membrane as a function of simulation time. Our re-
sults showed that simulations of the order of 20 ns are
necessary to obtain a converged value of κ. We also tested
the convergence of κ with respect to the truncation time
used in the integration of the heat current autocorrelation
function 〈Jα(t)Jα(0)〉 in Eq. 3. A truncation time of 200
ps yielded well-converged values for κ of Si membranes. In
order to test size effects, we carried out simulations with
the ∆t = 1 nm-thick membrane for supercells of various
sizes, starting from 4 × 4 × ∆t nm3 up to 32 × 32 × ∆t
nm3, here ∆t is the thickness of the sample in nm. In Fig.
7, we show the κ values for crystalline silicon membranes
of thickness 1 nm as a function of the number of atoms
in the simulation cell. We find that to obtain a converged
value of κ of the silicon membranes under consideration,
one has to use cells at least of dimension 8× 8×∆t nm3.
As shown in Fig. 7, the calculated values of κ using super-

Fig. 7. Thermal conductivity in crystalline silicon membrane
of 1 nm thickness as a function of the number of atoms in
the simulation cell at T = 300K, computed with EMD, using
the GreenKubo formula. The four data points represent four
different samples: 4 × 4 × ∆t nm3, 8 × 8 × ∆t, 16 × 16 × ∆t
nm3 and 32 × 32 ×∆t nm3, respectively. The final converged
value of κ for crystalline silicon membrane of thickness 1 nm
is given by 73.5± 8.9 W/m-K.
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Fig. 8. Normalized thermal conductivities (κ/κbulk) of silicon
membranes at T = 300K as a function of membrane thick-
ness. The filled squares represent results from EMD simulations
computed using the Green-Kubo relation: yellow squares rep-
resent crystalline membranes with 2×1 surface reconstruction.
The blue squares represent nanopatterned crystalline mem-
branes with 1 nm-high silicon nanocolumns at the surface re-
spectively. The black circles (open and closed) and the black
diamonds in the shaded area represent experimental data on
silicon membranes [22,23] and SOI thin films [19,65,20,66],
respectively.

cells with 8× 8×∆t, 16× 16×∆t nm3 and 32× 32×∆t
nm3 are the same within error bars.

The thermal conductivities at temperature T = 300K
in crystalline silicon membranes as a function of mem-
brane thickness is reported in Figure 8 (orange squares).
Each of the κ values reported in Fig. 8 was obtained av-
eraging over between 10 and 20 calculations performed
starting from independent initial conditions, and the stan-
dard error is reported as the uncertainty. The reduced κ
values are reported with respect to κbulk of bulk crys-
talline silicon computing using the same approach, 197±20
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W/m-K [62]. We note that the theoretical reference value
for κbulk is overestimated with respect to the experimen-
tal 160 W/m-K, obtained for isotopically enriched sili-
con [67], due to shortcomings of the empirical forcefield.
As can be seen from the figure, the thermal conductivity
of crystalline silicon membranes decreases with decreas-
ing thickness. A maximum of 3-fold reduction is obtained
for the 1 nm-thick membrane, although the values lie well
above the experimental results. Thermal conductivities in-
crease toward the bulk value as we increase the thickness
of the membranes as expected, but for the 20 nm thick
membrane we still observe a reduction of about 25% with
respect to κbulk. These results, in clear qualitative dis-
agreement with the experiments, provide an estimate of
how much phonon engineering by dimensionality reduc-
tion alone can affect the thermal conductivity of silicon.
It is then clear that further sources of phonon scattering
must be present in the crystalline membranes or thin films
measures experimentally.

5.2 Nanostructured silicon membranes

The surfaces of the crystalline silicon membranes do not
remain smooth during fabrication and processing but present
atomic scale roughness. To model a more realistic silicon
membrane, we introduce nanostructures at the surfaces
of the smooth membranes. Moreover, nanostructuring is
a viable and efficient way to control the phonon proper-
ties of materials and thermal transport. Our approach is
to investigate the thermal conductivities in Si-membranes
with nanopatterned surfaces that trigger local resonances.
The inclusion of local resonators is fairly advantageous
since the local resonances can be tuned to the underlying
phonon dispersion of the crystalline material so that the
thermal conductivity is reduced [68].

The microscopic configuration of the nanostructured
Si-membrane we investigated is shown in the inset in Fig.
8. The silicon membrane surfaces are decorated with a
periodic array of nanocolumns. We consider crystalline
membranes with thickness of 5 nm, 10 nm and 20 nm,
respectively. The nanocolumns on the surfaces are 2 × 2
nm2 in area and 1 nm in height. We prepared the nanopat-
terned membrane samples by cutting from bulk of silicon.
The samples are annealed by heating the sample to 1500
K and then quenching it to 300 K with a cooling rate of
∼ 1011 Ks−1 using a Langevin thermostat. The thermal
conductivities in the nanostructured silicon membranes
were calculated from EMD simulations carried out in the
NVE ensemble using the Green-Kubo formula Eq. 3. We
use a time step of 0.5 fs so to guarantee energy conserva-
tion over simulation times of several tens of ns. The total
simulation runtime is 20 ns and we use a truncation time
of 100-200 ps.

In Fig. 8, we show the reduced thermal conductivities
at temperature T=300K of nanostructured crystalline sili-
con membranes as a function of membrane thickness (blue
squares). The reduced κ values are computed with respect
to κbulk = 196.8± 20 W/m-K [62]. The κ values shown in
the figure are the averages of 10 or more different sample

300 500 700 900
Temperature (K)

10

100

κ
 (

W
/m

-K
)

1 nm
3 nm
5 nm
10 nm
5 nm
10 nm

~T
-1

~T
-0.61

~T
-0.55

Fig. 9. Temperature dependences of thermal conductivities
(reduced with respect to the bulk crystalline silicon) in crys-
talline silicon membranes. We considered four membranes with
thicknesses: 1nm (green squares), 3 nm (blue circles), 5 nm (red
diamonds) and 10 nm (black triangles), and 5 and 10 nm thick
membranes with rough surfaces (filled symbols). The dashed
lines represent the fitting with a function A/Tα. α is about
1 for crystalline membranes and < 1 for those with nanoscale
surface roughness.

runs with randomly chosen initial velocities. The thermal
conductivity of crystalline Si membranes decreases with
the introduction of resonating nanopatterns at the two
free surfaces. The reduction of the thermal conductivities
is more pronounced for thinner membranes, which have a
larger surface-to-bulk ratio, reaching a 10-fold reduction
for the 5 nm thick nanopatterned membrane. It is worth
noting that even though the simulated κ values lie above
the experimental measurements, nanostructuring is quite
efficient in reducing the thermal conductivity of silicon
membranes.

5.3 Temperature dependence of thermal conductivities

In order to investigate the effect of temperatures on the
thermal transport properties in the crystalline silicon mem-
branes, we carried out simulations on silicon membranes at
different temperatures T = 300K, T = 500K, T = 700K,
T = 900K. We needed to use a time step of 0.5 fs for the
EMD simulations performed at T = 500K, T = 700K,
T = 900K so that the total energy is conserved during
the total duration of the simulation with the NVE en-
semble. We ran the simulations for a total of 20 ns and
use a truncation time of the order of 100-200 ps. In Fig.
9, we show the thermal conductivities of crystalline sili-
con membranes of four different thicknesses 1, 3, 5 and 10
nm, as a function of temperature. The points in the graph
were fitted with a power-law function and the exponents
were found to be in the range of -1.05 to -1. The inverse
proportionality between κ and temperature implies that
anharmonic phonon-phonon scattering is the only mecha-
nism that limits heat transport in crystalline silicon mem-
branes. The same quantity κ(T ) for rough membranes de-
cays as 1/Tα, with α < 1, indicating that temperature-
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independent surface scattering takes over phonon-phonon
scattering in controlling the thermal conductivity of the
membranes. Similar trends were observed in thin silicon
nanowires upon surface amorphization [69].

6 Conclusions

In summary, we computed the phonon properties and the
thermal conductivity of Si membranes with thickness rang-
ing from 1 nm to 20 nm by atomistic methods. The ef-
fect of dimensional reduction can be distinguished in the
phonon dispersion in the crystalline Si membranes by the
flattening of phonon bands and the appearance of flexu-
ral or breathing modes. The flattening of phonon bands
leads to a reduction in the phonon group velocities and
consequently, up to a 3-fold reduction in thermal con-
ductivities in crystalline Si membranes. The insertion of
nanopatterns at the silicon membrane surface significantly
effects the thermal transport properties of the membranes.
The thermal conductivity decreases with the insertion of
nanopatterns. The reduction in the thermal conductivi-
ties is more pronounced for nanopatterned surfaces with
a larger surface-to-bulk ratio. A 10-fold reduction of κ is
observed upon nano-patterning of the surfaces. Thermal
conductivity in the crystalized Si membranes is propor-
tional to 1T, while the temperature decay of κ is slower
for nanopatterned membranes. This implies that phonon-
phonon scattering is the only scattering mechanism in
crystalline Si membranes, while surface scattering plays a
significant role in the thermal transport in nanopatterned
silicon membranes.
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