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Thermal transport in warm dense matter revealed
by refraction-enhanced x-ray radiography with a
deep-neural-network analysis
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Transport properties of high energy density matter affect the evolution of many systems,

ranging from the geodynamo in the Earth’s core, to hydrodynamic instability growth in inertial

confinement fusion capsules. Large uncertainties of these properties are present in the warm

dense matter regime where both plasma models and condensed matter models become

invalid. To overcome this limit, we devise an experimental platform based on x-ray differential

heating and time-resolved refraction-enhanced radiography coupled to a deep neural net-

work. We retrieve the first measurement of thermal conductivity of CH and Be in the warm

dense matter regime and compare our measurement with the most commonly adopted

models. The discrepancies observed are related to the estimation of a correction term from

electron-electron collisions. The results necessitate improvement of transport models in the

warm dense matter regime and could impact the understanding of the implosion performance

for inertial confinement fusion.
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Warm dense matter (WDM) physics has been identified
as a challenging research area in high-energy-density
physics1. The challenges lie in both theoretical mod-

eling and experimental measurements. Due to its unique location
in the density-temperature map at the junction of plasma, solid
and liquid states, many of the assumptions and approximations
that have been successfully applied either in plasma physics or in
condensed matter theory, such as the adiabatic assumption
between electrons and ions, statistical equilibrium treatments of
electron temperature, and negligible potential energy compared
to kinetic energy (or vice versa), do not apply, making it difficult
to develop a consistent model for WDM. On the other hand, the
high-energy-density nature results in fast-evolving states and
transient phenomena, making experimental study also challen-
ging. This has left WDM a largely uncharted frontier. None-
theless, WDM has been drawing increasing attention, driven by
its central role in bridging the gap between condensed matter and
plasma physics. The properties of WDM are important for the
success of ICF experiments, and understanding them will sig-
nificantly extend the limits of knowledge in plasma physics as
well as in other areas, such as astrophysics, planetary physics,
geophysics, and material science.

The thermal conductivity in the WDM regime is of particular
interest as it can impact the growth of hydro-instabilities at the
ablator-fuel interface of the imploding ICF capsule2. During the
implosion around peak velocity, the ablator-fuel interface reaches
~10 g/cc and ~20−30 eV in the ablator versus <10 eV in the DT
fuel. Rayleigh–Taylor instabilities that occur at the interface can
lead to the mixing of ablator material into the fuel, and if severe
enough, in the central hot spot it can substantially reduce the
implosion confinement and fusion yield. Thermal conduction
across the temperature gradient at the interface leads to a predicted
development of a density gradient near the interface, which can
stabilize high-mode instabilities with wavelengths shorter than the
scale length. Therefore knowing the thermal conductivity is critical
for the correct prediction of the mix width. Besides the impact on
ICF ignition, conductivity also plays an essential role in many other
energy transport processes, such as MeV electron transport for fast
ignition, generation of magnetic fields, and the formation of return
current for resistive heating in WDM.

Despite the importance of conductivity in WDM, a scarcity of
experimental data in the relevant regime has left all models
unverified. Such experiments require creation, careful character-
ization, and correct measurements of WDM. In this paper, we
present measurements using an experimental platform based on
x-ray differential heating3 and phase contrast imaging. The concept
of the experiment is illustrated in Fig. 1. First, the target is iso-
chorically heated by judicious choice of x-rays energy such that
lower-density CH absorbs more than Be due to their different
opacities. As a result, a temperature jump is induced initially
between CH and Be. The subsequent thermal conduction leads to
the development of a temperature gradient at the interface. Rapid
pressure balance across the interface drives the density to com-
pensate the temperature slope, and the density profile change is
measured by refraction-enhanced radiography. Higher con-
ductivity will result in a longer density gradient, and less contrast in
the radiograph. Therefore thermal conductivity can be determined
from the evolution of the density gradient near the interface.

Results
The experiments were performed on the OMEGA laser at
Laboratory for Laser Energetics (LLE) at the University of
Rochester. The experiment is illustrated in Fig. 2a. The experi-
mental configuration was similar to that of a previous
experiment4 with a vanadium backlighter and a CH/Be target

containing a cylindrical interface with a radius of curvature of
1.0 mm. The CH/Be target was heated by x-rays from both sides:
one side with Ag L-band emission around 3.5 keV generated by a
silver foil attached to the Be side, the other side with Sn L-band
around 4 keV. Each side was irradiated by 14 laser beams (1 ns
flat-top pulse shape and total energy of 7 kJ). The X-rays heat
lower-density CH to a higher temperature since it has a higher
absorption coefficient per atom than Be. The radius of the curved
interface was chosen for easy alignment, contrast enhancement5,
and quasi-1D geometry. The thicknesses of the Be, 500 μm at one
side and 300 μm at the other side, were chosen to delay the laser-
generated shocks reaching the interfaces and to isolate the CH/Be
interfaces from the laser-plasma interaction (LPI) regions. The
vanadium backlighter foil was irradiated by ten beams with 1 ns
flat-top pulse shape and total energy of 5 kJ. A ~5 μm slit in front
of the V foil created an effective line source for the radiography.
The backlighter X-rays were bent due to refraction at the CH/Be
interface, forming bright and dark fringes in the radiograph.
Because the conduction-induced density gradient only exists
within a few microns from the interface, a large magnification
(~60) was necessary to resolve the fine features. The radiographs
were recorded by an X-ray framing camera (XRFC) with a gate
pulse of 200 ps. The delay between the backlighter beams and the
heater beams was varied to probe the evolution of the interface.

An unheated radiograph is displayed in Fig. 2b, showing the
gold grid at the right for spatial calibration, a Mylar strip at the
left edge for checking backlighter spectral purity, and the back-
ground obtained by differential filtering through a V/Ti Ross-pair
filter on the bottom. The transmission of the Mylar step is 41-48%
after background subtraction, corresponding to an x-ray energy
range of 5.2−5.5 keV. This is consistent with Vanadium line
emissions at 5.2 keV (Heα) and 5.4 keV (Lyα). Ray-tracing results
at 5.2 and 5.5 keV for our CH/Be targets show that the difference
is much less than the noise level. This x-ray energy is also well
above any absorption edges in CH and Be so that the refractive
index is a function of the total electron density6. The unheated
radiograph shows a clear refractive fringe corresponding to the
interface. The contrast mainly depends on the backlighter source
size, set by the 5-μm slit, and the CH/Be target surface quality and
provides a baseline for data analysis. The root mean square sur-
face roughness of the CH/Be interface has been measured by
scanning electron microscopy to be 0.23 μm4. Therefore the 5-μm
source size is the major factor determining the contrast of the
unheated fringe. The source function can be accurately obtained
from the Au grid image (see Instrument function in Methods).
Besides the unheated data, a flatfield of the XRFC was also taken
to provide the correct normalization of the radiographs.

Figure 2c shows an example of a heated radiograph. Three
fringes show up in the image, the middle one representing the
interface, and two side ones corresponding to the waves propa-
gating in CH and Be, respectively. A shock wave driven by the
laser, traveling from right to left, is also visible. The thicknesses of
the Be layers have been chosen to delay the laser-driven shocks to
allow for thermal conduction to occur at the interface while being
still transmissive for heating X-rays. Radiographs up to 6.8 ns are
recorded before the laser shock interferes with the interface.

The radiograph lineouts at six delays are plotted in the left column
in Fig. 3, revealing the interesting evolution of the CH/Be interface.
The first row at 0 ns corresponds to the unheated target, providing a
baseline for the interface before heating. The x-ray heating induced
an initial temperature jump between CH and Be, which resulted in
an initial pressure jump, creating weak compression and rarefaction
waves propagating away from the interface. The high sensitivity of
the refraction-enhanced radiography to discontinuities has enabled
observation of these waves7. From the intensity lineouts at early time
2.1 and 2.8 ns in Fig. 3, we can clearly see waves forming and
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Fig. 1 Methodology for measuring thermal conductivity. a Three sequential events in the experiment. b Profiles of temperature, density, and pressure
across the interface once a gradient is developed by conduction, showing that the density profile compensates the temperature slope to balance the
pressure (from 1D HYADES30 simulations).

Fig. 2 Schematic of the experimental setup. a Experimental schematic. The thickness of the layers was 500 μm Be, 200 μm CH, and 300 μm Be,
respectively, to allow heating from both sides. The length of the target is 3 mm. b A radiograph of an undriven target, showing the gold grid for spatial
calibration, a Mylar strip at the left edge for checking backlighter spectral purity, and the background obtained by a V/Ti Ross-pair filter. c An example
radiograph of the heated CH/Be target.
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Fig. 3 The density profiles retrieved from the measured refraction-enhanced radiograph (RER) intensities using a deep neural network. a Shows the
RER intensity lineouts and b Shows the retrieved density profiles. The red dashed curves are calculated intensity lineouts from the densities. The CH/Be
interface is located at r= 1000 μm. The corresponding time delays are labeled as unheated, 2.1, 2.8, 4.1, 6.1, and 6.8 ns.
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Fig. 3 Continue
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propagating. At a later time, the waves have propagated farther away
and decayed, and a density gradient across the interface is created to
compensate for thermal conduction. The density scale length at the
interface increases so that the fringe contrast at the interface
decreases as expected.

We use a deep neural network analysis to reconstruct the
detailed density profiles at these time delays (see Density retrieval
in Methods). The right column in Fig. 3 shows the retrieved
profiles of total electron density ne. The red dashed curves in the
left column are calculated intensity lineouts from the recon-
structed densities. The good agreement with the measured line-
outs confirms the validity of our density retrieval process. We first
quantify the density scale lengths in both CH and Be at times
after 4 ns when the waves have propagated away from the
interface so that the density gradient evolution is dominated by
thermal conduction. The density profiles near the interface in the
range of 980−1020 μm are fit by two Fermi-like functions to
define the density scale lengths in CH and Be, LCH, and LBe,
respectively.

neðrÞ ¼
ne1a

e�ðr�r0 Þ=LCHþ1
þ ne2a; for r < r0

ne1b
e�ðr�r0 Þ=LBeþ1

þ ne2b; for r ≥ r0

(
ð1Þ

Here r0 is the radius of the interface. Two independent Fermi
functions were used to fit the CH side (r < r0) and the Be side

(r > r0) separately, while keeping ne continuous at r= r0. Para-
meters ne1a, ne2a, LCH, ne1b, ne2b, and LBe were all determined by
the Fermi fitting. LCH and LBe, therefore, stands for the fitting
scalelengths for the electron densities on the CH and Be sides
correspondingly. At 6.8 ns for example, LCH= 1.3 μm and LBe=
1.1 μm. In order to test the sensitivity of the measured RER
lineout to the scale lengths, we vary these scale lengths while
maintaining the detailed features of the density profile, as is
shown in Fig. 4. As the CH scale length varies, both amplitudes of
the peak and the valley in the radiograph lineout change. On the
other hand, LBe mainly affects the valley amplitude. The scale
length uncertainties are about 20%, determined as when the
variation in the amplitude is comparable to the noise level .

The next step is to determine the heated temperatures in both
CH and Be. We did not have direct temperature diagnostics but
found that the sound speed is sensitive to the bulk temperature
under the conditions of our experiments. The sound speed in CH
is measured from the propagating waves at early time delays.
Figure 5a shows the reconstructed density profiles at 2.1 and
2.8 ns to highlight the wave propagation in CH. The wavelets at
these two delays overlap reasonably well if we shift the profile at
2.1 ns by −14 ± 0.8 μm as shown in the inset, indicating a sound
speed of 20 ± 1 μm/ns in CH. This speed also matches the loca-
tion of the wave at 2.1 ns compared to the interface. The CH
temperature as a function of sound speed from various CH

Fig. 4 Sensitivity of the data fits the scale length of CH and Be. a1, b1 Shows the density profiles when we change the scalelengths on the CH and the Be
side correspondingly. The curves in (a2, b2) are intensity lineouts from data (black dashed lines), best fit (red solid lines), shorter scale lengths (blue solid
lines), and longer scale lengths (green solid lines). The variation is ± 20% in LCH and LBe.
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equation of state (EOS) tables8,9 is plotted in Fig. 5b. The curves
are at a constant density of 0.9 g/cm3, which is measured from the
unheated radiograph. These differences between these curves are
taken as the uncertainty in the T−Cs relationship. The vertical

red bars indicate the range in the measured CH wave velocity. By
comparing it with the EOS curves the temperature for CH is
determined to be 7.8 ± 1.8 eV. On the Be side of the interface, the
wave propagation is not as well defined as in CH. Therefore we
need to use other observables to constrain the temperature in Be.

It is apparent in Fig. 5a that the interface did not move within
our experimental precision, which indicates a pressure balance
between CH and Be during this time. These two radiographs were
taken in the same shot using a two-strip framing camera so that
there is no ambiguity in the alignment between these two density
profiles. This pressure equilibration between CH and Be is uti-
lized to determine the temperature in Be. Figure 5c shows the CH
sound speed vs pressure (left y-axis) and Be temperature vs
pressure (right y-axis) at the measured mass densities of 0.9 g/cm3

in CH and 1.84 g/cm3 in Be. A recent EOS table L42 based on
QMD simulations was used for Be10. The measured CH sound
speed corresponds to a pressure of 214 ± 40 GPa. According to
pressure balance, the Be temperature is determined to be
4.4 ± 0.7 eV, which is shown as the blue shaded area in Fig. 5c.

To infer the thermal conductivity from the measured density scale
lengths, we numerically solve the thermal conduction equations:

ρCHCCH
∂TCH

∂t
¼ ∂

∂x
κCH

∂TCH

∂x

ρBeCBe
∂TBe

∂t
¼ ∂

∂x
κBe

∂TBe

∂x

ð2Þ

where ρ is the mass density, C is the ideal gas heat capacity at
constant pressure, and κ is the thermal conductivity which is from
Pugatorio thermal conductivity tables11,12. The initial conditions
for numerically solving the conduction equations are TCH
(t= 0)= 7.8 eV and TBe (t= 0)= 4.4 eV. The boundary conditions
are TCH (x < < 0)= 7.8 eV, TBe (x > > 0)= 4.4 eV, ρCH
(x < < 0)= 0.9 g/cc (ambient density of CH), ρBe (x > > 0)= 1.84 g/
cc (ambient density of Be), and thermal flux conservation
κCH

dTCH
dx ðx ¼ 0Þ ¼ κBe

dTBe
dx ðx ¼ 0Þ. The numerical solution has

been verified by comparing with the analytical solution in the case
of constant ρ, C, and κ3. We found that the calculated density
profile can be fit well with a Fermi-like function with two scale
lengths LCH in CH and LBe in Be, respectively, similar to the fit to
the extracted electron density profiles. The unheated data (t= 0) in
Fig. 3 indicates an initial Fermi scale length of 0.8 μm in CH, and a
scale length in Be that is smaller than 0.15 μm. During the target
fabrication, the Be tube was precisely machined, while the CH part
was formed by filling the Be tube with melted CH. Therefore a
smaller slope at the CH interface was expected. These scale lengths
are also set as the initial conditions for the numerical calculation.

Both the measured and calculated scale lengths LCH and LBe as a
function of time are shown in Fig. 6a, b. During the experiment, we
have repeated the shot at 6.8 ns to check the reproducibility. As the
interface is differentially heated, both the LCH and the LBe increases
to ~1.1 μm at 6.8 ns. The calculated scale lengths using the con-
duction equations with Purgatorio thermal conductivity tables are
≈1.1 μm for CH but only ≈0.7 μm for Be at 6.8 ns. The faster
growth in the Be scale length indicates a larger thermal con-
ductivity than the prediction from Purgatorio. Multipliers in the
CH and Be thermal conductivity were applied to match the mea-
sured time history of the scale lengths, which is found to be about
1 × for CH and 2.5 × for Be, shown as the solid lines in Fig. 6a, b.
The dashed lines are variations of the multipliers, which is
1 ± 0.5 × for CH and 2.5 ± 1 × for Be. This range generally matches
the uncertainty in the data. We have also tested the results with the
Dulong–Petit heat capacity and the change in the fitted thermal
conductivity is well within this error bar. However, the specific heat
capacity is still model-dependent and can be different if other
models are applied. This effect deserves further investigation.

Fig. 5 Determine the temperature from the sound speed measurement.
a Electron density profile at 2.8 ns (blue curve) and 2.1 ns (red dashed curve)
for measuring the sound speed in CH. The inset shows the 2.1 ns wave profile
at the CH side shifted by −14 μm matches the 2.8 ns profile. b Black curves:
temperature as a function of sound speed for CH from various EOS tables.
Red line and shaded area: the measured sound speed with error bars. c Left y-
axis: sound speed as a function of pressure for CH from various EOS tables.
The horizontal red lines indicate the measured sound speed. The vertical red
lines show the determined pressure range. Right y-axis: temperature as a
function of pressure for Be from the L42 EOS table. The blue shaded area is
the temperature range in Be when CH and Be reaches a pressure balance.
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Figure 6c, d shows the comparison between the thermal con-
ductivity inferred from the data and various models for CH and Be,
including Purgatorio11,12, Spitzer13, Lee–More–Desjarlais
(LMD)14,15, density functional average-atom theory (DFT-AA)16,
and QMD (quantum molecular dynamics simulations based on
density functional theory DFT). The thermal conductivities derived
from the experiment is 5.4 ± 2.7 × 104W/cm/eV for CH at
7.8 ± 1.8 eV, and 16.4 ± 6.6 × 104W/cm/eV for Be at 4.4 ± 0.7 eV.
The details of the QMD calculations are explained in the DFT-MD
Simulations in Methods. For CH we have also included the QMD
calculation from ref. 17, which agrees well with our QMD simula-
tion. For the Spitzer, LMD and DFT-AA models, we have per-
formed calculations both with and without the correction from
electron-electron collisions, which is estimated with a commonly
used model from ref. 18. A reduction factor of about 0.3− 0.7 in the
calculated thermal conductivity has been found with electron-
electron collisions. The results with and without the electron-
electron collision effect represent the high and low bounds of
model predictions. The Purgatorio tables have included the
electron-electron collision by default. The details of the calculation
are described in refs. 11,12. The QMD models were performed
without this electron-electron collision term. Different models for

CH were performed at slightly different densities ranging from 0.9
to 1 g/cm3. We have confirmed that this density difference caused a
negligible change in thermal conductivity with the Purtgatorio
model. For Be, the Spitzer and LMD models were performed at the
same density as the experiment (1.84 g/cm3), while the QMD and
DFT-AA models were performed at 2.05 g/cm3. However, the
thermal conductivities from Purgatorio at 1.84 and 2.05 g/cm3 are
nearly the same, which suggests that the effect of the small density
variation is negligible.

The values for the thermal conductivity in the Purgatorio
code11,12 depend strongly on the choice of structure factor used in
the extended Ziman formulation19. The range of the Purgatorio
prediction for Be with different structure factors is displayed as
the pink shaded area in Fig. 6d, while the recommended value is
plotted as the red curve. The recommended value is based on the
inelastic scattering component as described in refs. 20,21. The
maximum thermal conductivity value is given by the
Debye–Hückel model22, which has been shown to give a mini-
mum bound for the structure factor, and hence a maximum for
the conductivity23. In this work, the structure factor responsible
for the minimum conductivity at lower temperatures is the one-
component plasma (OCP) model24. Above 2.5 eV, the model in

Fig. 6 Thermal conductivities for CH and Be. Best-fit CH (a) and Be (b) scale lengths vs time. Also shown are calculated scale lengths using the
conduction equations with a multiplier of 1 × for CH and 2.5 × for Be (solid lines), and varying the CH multiplier by ±0.5× and the Be multiplier by ±1×
(dashed lines). c, d Comparison between the thermal conductivity inferred from the data and various models. The horizontal error bars are the temperature
uncertainties shown in Fig. 5. The vertical error bars are the uncertainties in thermal conductivities shown in (a) and (b).
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ref. 20 retaining the elastic term provided a lower thermal con-
ductivity than the OCP. Note that these minimum values are
limited primarily by the available structure factor models
implemented in the Purgatorio code; while they are chosen to
provide a representative sampling of possible structure factors,
they are not guaranteed to provide a rigorous lower bound on the
thermal conductivity. Additional details on the selection of
structure factors are provided in ref. 25.

We find that the inferred CH thermal conductivity is in rea-
sonable agreement with Purgatorio, QMD, and both the Spitzer
and the LMD models with electron-electron collisions. Without
this correction term, the predictions from Spitzer and LMD are
too high for CH. For Be, the QMD prediction falls within the
error range. The LMD and the DFT-AA predictions spanned by
the solid and the dashed curves also overlap with our measure-
ment, while the Spitzer prediction does not agree with the data.
Model predictions with the electron-electron correction, includ-
ing Spitzer+ ee, LMD+ ee, DFT-AA+ ee, and Purgatorio (with
the recommended structure factor), all appear to be lower than
the value inferred from the data. The comparison indicates that
the correction from electron-electron collisions has been over-
estimated for Be. Recent researches indicate that the current way
of estimating this correction term has a lot of uncertainties26–28.
On the other hand, the measured Be thermal conductivity falls
within the range of the Purgatorio predictions using different
structural factors, which suggests another possible explanation for
the disagreement. In fact, the measured value is close to the upper
bound of the Purgatorio prediction given by ref. 22. Our results
motivate further investigation into the electron-electron collision
effect, the structure factor, as well as other aspects of thermal
transport in a warm dense matter regime.

Discussion
Besides thermal conduction, there are other processes that could
affect the density scale lengths near the interface. We have
thoroughly examined a list of these processes as discussed below,
and confirmed that thermal conduction is the dominant process.

Hydro-instabilities at the interface could modify the scale
lengths. The growth rate is σRT ¼ ffiffiffiffiffiffiffiffiffiffi

Atak
p

for classical
Rayleigh–Taylor instability and σRM= AtkΔu for
Richtmyer–Meshkov instability, where At is the Atwood number,
At= (ρ2− ρ1)/(ρ2+ ρ1), k is the wavenumber of the surface
perturbation, a is the acceleration, and Δu is the velocity change.
Because the motion of the interface is very little, as observed in
the experiments, the growth rate of the instabilities is very small.
The scanning electron microscopy (SEM) characterization of the
surface shows k ~ 0.05 μm−1. Given At= 0.34 and an upper limit
of the velocity 1 μm/ns, the growth rates are estimated to be less
than 0.017 ns−1. The amplitude of the instabilities at 7 ns will be
less than 0.26 μm, much smaller than the measured scale lengths
at 6.8 ns. This conclusion has been confirmed by 2D hydro-
dynamic simulations performed with the code HYDRA29 which
showed negligible instability growth at the interface.

Ballistic transport and radiation transport are also negligible
under our experimental conditions. Figure 7 shows the time
history of scale lengths in CH (a) and Be (b) from a series of 1D
hydrodynamic simulations using HYADES30 with radiation
transport turned on/off and various electron flux limiters. The
initial density profile was a step function between CH and Be.
These simulations employ a built-in Lee–More model for thermal
conductivity. The three curves for radiation on/off and electron
flux limiters ranging from 0.01 to 0.4 are overlapped, showing
that radiation and ballistic transport have a negligible effect on
the evolution of the density scale lengths. Both LCH and LBe stay
almost constant when the electron thermal conduction is turned
off, and increase significantly over time when the electron thermal
conduction is multiplied by 3 ×, indicating that electron thermal
conduction is the dominant process here.

Hot electrons generated at the laser-plasma interaction (LPI)
region could contribute to the heating of the interface. The laser
intensity is 2 × 1015W/cm2 on the target in these experiments.
Using the conversion efficiency in ref. 31, we carried out
LASNEX32 simulations with three hot electron temperatures, 10,
60, and 200 keV. If Thot= 10 keV, hot electrons will not affect the
interface as they are stopped inside the 500-μm-thick Be foil. For

Fig. 7 Effect of radiation transport and ballistic transport. a LCH vs time. b LBe vs time. Rad off radiation is turned off. Rad on radiation is included. Flxe
0.01–0.4: the electron flux limiter is varied from 0.01 to 0.4. Conde 0: electron thermal conduction is turned off. Conde 3x: electron thermal conduction is
multiplied by 3 ×. Numerical: the numerical solution of the conduction equations as described in the text. The numerical results agree with the HYADES
simulations.
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more energetic electrons, the hot electron-induced heat is ~0.5 eV
for Thot= 60 keV and ~2 eV for Thot= 200 keV. The lifetime of
these hot electrons is only 10−20 ps, hence we do not expect
them to play a role after a few ns when the measurements are
made. Furthermore, the temperature near the interface is deter-
mined in situ using the local wave velocities, independent of the
source of the heating. There could be photoelectrons generated by
the 3 keV heating x-rays. Their stopping distance is less than
0.3 μm therefore, this effect is negligible as well.

There can be an oxidation layer at the Be surface, modifying the
local opacity and, thus, the temperature after the x-ray heating. The
thickness of the oxidation layer is about 5 nm.We included this layer
of BeO in HYADES runs, and the effect turned out to be negligible,
mainly because the layer is so thin that the modification is limited to
a spatial scale much less than the observed scale lengths.

It should be noted that ionic contributions are not included in
the Pugatorio table. However, ionic conduction is expected to be
much smaller than electronic conduction at a few eV tempera-
tures. Thermal convection carried by collective particle motion at
the atomic scale is not considered here. We hope that these results
will motivate both experimental and theoretical efforts to improve
our knowledge of the transport properties of warm dense matter.

Methods
Instrument function. The contrast of the refractive fringe is affected by three
factors: x-ray source size or the instrument function of the imaging system, density
at each side of the interface, and the density scale length near the interface. All
these factors can be obtained in situ from the radiographs. The instrument function
of the system can be determined by the Au grid shown in Fig. 2b. We have taken a
total of 8 grid measurements. The average intensity lineout with error bars is shown
in Fig. 8a. We can fit the average intensity when we convolute the theoretical
intensity with a Gaussian function that has an FWHM of 6.1 μm, which also
suggests that the resolution of the system is around 6 μm. This value is quite close
to the ~5 μm slit size. The instrument function can further be confirmed with the
unheated radiograph. An ideal interface is a step function with cold CH and Be
densities. The RER lineout it generates with the Gaussian instrument function is
the black dashed curve in Fig. 8b. It agrees with the measured blue curve reasonably
well, but with some subtle differences, as the fringe peak of the black curve is higher
than that of the blue curve. For a better fit, we have to have a smaller slope on the
CH side. The density profile that best fits the data were shown in the top row of
Fig. 3. It was extracted with the density retrieval method described in the next
section (see Density retrieval). The corresponding intensity is shown as the red
dashed curve in Fig. 8b, which agrees very well with the data. The interface can be
fitted using a Fermi function with a small density scale length of 0.8 μm on the CH

side, while keeping a sharp interface on the Be side. The targets were fabricated
when we filled melted CH into precisely machined Be tubes and let it solidify, so we
did expect an imperfect interface on the CH side.

Density retrieval. Extracting the density profile from the RER lineout appears to
be similar to a phase retrieval problem, as the electron density profile directly
determines the phase. Retrieving the phase information from one single intensity
measurement is usually considered an ill-defined problem, as there could be an
infinite number of amplitude and phase combinations at the object plane that can
result in the same intensity at the image plane. However, our problem here is
intrinsically different. At low temperatures, the real part (δ) and the imaginary part
(β) of the index of refraction for both CH and Be at regular electron density ne0 are
known, and the index of refraction is linearly proportional to the electron density.
δCH+ iβCH= ne,CH/ne0,CH(δ0,CH+ iβ0,CH), δBe+ iβBe= ne,Be/ne0,Be(δ0,Be+ iβ0,Be).
Therefore, the phase ϕ at the object plane is proportional to the Abel transform of
the electron density, specifically we have

ϕðxÞ ¼

2kδ0;CH
ne0;CH

R r0
x

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr

þ 2kδ0;Be
ne0;Be

R R
r0

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr; if x < r0
2kδ0;Be
ne0;Be

R R
x

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr; if x ≥ r0

8>>>><>>>>: ð3Þ

Here r0 is the radius of the CH/Be interface, R is the outer radius of the target
cylinder, and k is the wavenumber of the backlighter X-ray. Similarly, the
amplitude change at the object plane can be written as

AðxÞ ¼

exp � 2kβ0;CH
ne0;CH

R r0
x

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr
�

� 2kβ0;Be
ne0;Be

R R
r0

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr
�
; if x < r0

exp � 2kβ0;Be
ne0;Be

R R
x

neðrÞrffiffiffiffiffiffiffiffiffi
r2�x2

p dr
� �

; if x ≥ r0

8>>>><>>>>: ð4Þ

Or we can write the amplitude as

AðxÞ ¼
exp � β0;CH

δ0;CH
½ϕðxÞ � ϕðr0Þ� �

β0;Be
δ0;Be

ϕðr0Þ
n o

; if x < r0

exp � β0;Be
δ0;Be

ϕðxÞ
� �

; if x ≥ r0

8><>: ð5Þ

Unlike traditional phase retrieval problems, in our case, there can only be one
amplitude corresponding to a certain phase lineout. We cannot have arbitrary
(phase, amplitude) combinations at the object plane. Another obvious constraint in
our problem is the boundary condition. Both CH and Be that are further away (say
>100 μm) from the interface would stay intact, which sets fixed values for the
retrieved electron density profile.

With traditional phase retrieval algorithms33,34, it is very difficult to implement
the physics constraints; therefore, they tend to produce unphysical density profiles.
Recently, deep learning has shown great potential for solving phase imaging
problems, but most work requires a large amount of labeled experimental and
synthetic data to train the neural network35. Wang et al.36 has demonstrated a
method to recover phase using a neural network combined with a Fresnel

Fig. 8 Instrument function of the system. a Determine the system instrument function with Au grid radiographs. The black curve is an average intensity
lineout from eight Au grid radiographs and the shaded areas are the error bars. The blue line is the best fit when we convolute the theoretical intensity with
an instrument function. We found that the instrument function is a Gaussian with an FWHM of 6.1 μm. b The blue curve is the measured RER lineout for an
unheated target. The black dashed curve is the calculated intensity using an unperturbed step function as the density profile and a Gaussian with an FWHM
of 6.1 μm as the instrument function. The red dashed curve is the intensity calculated using the extracted undriven density profile shown in Fig. 3 that best
fits the data.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01190-4

10 COMMUNICATIONS PHYSICS |            (2023) 6:98 | https://doi.org/10.1038/s42005-023-01190-4 | www.nature.com/commsphys

www.nature.com/commsphys


Fig. 9 Density retrieval algorithm. Schematic diagram showing the procedures to retrieve electron density profile from measured intensity lineout.

Fig. 10 Electrical and thermal conductivities from quantum molecular dynamics (QMD) calculations. a1, a2 Electrical conductivities of Be and CH from
QMD/KG. b1, b2 Thermal conductivities of Be and CH from QMD/KG. Here (a1) and (b1) were calculated for Be at a temperature of 3 eV and CH at a
temperature of 5 eV. Various system sizes were used to check the convergence. Electrical and thermal conductivities for Be and CH at two different
temperatures are shown in (a2), (b2).
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propagator. We have adopted a similar method, but the electron density profile
came out as a direct prediction of the neural network so that we could calculate
both the phase and the amplitude directly from the electron density, and apply
physics constraints inside our optimization routine. The process is illustrated in
Fig. 9. Similar to ref. 36, a conventional artificial network U-Net37 was used (we
have modified it to 1D to accommodate our problem), but this network does not
need to be trained beforehand. A single measured RER lineout is the only input and
the predicted electron density profile would be the output. We can then, in general,
apply any physics constraints to the predicted density profile, and in this particular
problem, we set the boundary conditions. The amplitude and phase at the object
plane are calculated according to Equations (3) and (4), and the wavefunction is
just Φ(x)= A(x)exp−iϕ(x). The wavefunction is then propagated to the image plane
with the Fresnel propagator

eΦðxÞ ¼
Z

ΦðξÞhðx � ξÞdξ

hðxÞ ¼ z
iλ
expðik ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ x2
p Þ

z2 þ x2

ð6Þ

where z is the effective propagation distance determined by zdzs/(zd+ zs). Here zs is
the distance between the target and the source, and zd is the distance between the
target and the detector. λ is the X-ray wavelength. We can calculate the predicted
intensity at the image plane as jeΦj2, and convolute it with the instrument function
that we have predetermined using the Au bar data to get the predicted intensity
lineout Ipred. Ipred can now be directly compared to the experimental data I, and we
train the neural network to minimize the difference between Ipred and I. The
electron density profile ne ¼ argminne jjIpred � Ijj2.

DFT-MD simulations. Our DFT-MD simulations were carried out with the Vienna
ab initio Simulation Package (VASP)38–41. We performed Born-Oppenheimer MD
within the NVT ensemble with a Langevin thermostat42 with a friction coefficient
of 10 ps−1. The generalized gradient approximation (GGA) of DFT with the
Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional43,44 and the asso-
ciated projector-augmented wave (PAW) pseudopotentials45,46 were used. The
electronic density was constructed from a single-particle wavefunction sampled at the
(1/4, 1/4, 1/4) point of the Brillouin zone. The Mermin formulation of DFT is used
where the Kohn-Sham single-particle states are occupied according to a Fermi-Dirac
distribution at the chosen average ionic temperature47. For beryllium, we ran
simulations at a density of 2.05 g/cm3, a temperature of 3 and 5 eV with three system
sizes (64, 128, and 512 atoms) in order to explore the impact of system size on the DC
limit of the electrical and thermal conductivities. For the plastic, we used a stochio-
metry of C1H1.36, a density of 0.95 g/cm3, a temperature of 5 and 8 eV, and three
system sizes (59, 118, and 472 atoms). The simulations were run for 5 ps after
equilibration. For the small and medium-size calculations, 200 well-spaced config-
urations were used for the conductivity calculations, while 100 were used for the
larger calculations. For the larger simulations, the molecular dynamics was acceler-
ated using the machine-learned force field in VASP 6.348–50.

To calculate optical and transport properties, the Onsager coefficients Lmn were
computed according to the Kubo–Greenwood formulation51–53:

LmnðωÞ ¼ ð�1Þmþn 2πe
4�m�n

3Vm2
eω

´ ∑
i;j;α;k

ϵi;k þ ϵj;k
2

� he

� �mþn�2

´ j<ψi;kjpαjψj;k > j2

´ ½ f ðϵi;kÞ � f ðϵj;kÞ�δðϵj;k � ϵi;k � _ωÞ;

ð7Þ

where m, n= 1, 2. i and j are band labels. α, k denotes the Cartesian directions and
k points. e, me, V, ω, and he are the electronic charge, mass, cell volume, frequency
and enthalpy per electron, respectively. ψi,k and ϵi,k are the electronic eigenstates
and eigenvalues of the electronic band i at a given k point. f(ϵi,k) is the Fermi
distribution function. Here, the sum is over all k-points within the Brillouin zone,
all bands included in the calculation, and the three Cartesian coordinates. The
parameter L11 equals the real component of the frequency-dependent electrical
conductivity (σ), i.e. σ(ω)= L11(ω). The thermal conductivity K is defined as:

KðωÞ ¼ 1
T

L22ðωÞ �
L12ðωÞL21ðωÞ

L11ðωÞ

� �
: ð8Þ

and the ratio of thermal and electrical conductivities divided by temperature is
known as the Lorenz number:

L ¼ e2

k2BT

K
σ

ð9Þ

which is constant (and equal to π2/3) in the limit of high density according to the
Wiedemann-Franz law.

Figure 10a1, b1 shows the frequency dependence of the conductivities for Be
and CH as a function of the number of atoms used in the QMD simulations. For
these disordered systems, the larger the simulation, the smaller the excitation
energies that can be calculated and the closer we can get to the DC limit. Similar

trends have been seen in warm dense hydrogen54 and iron55. We get the DC limit
of the electrical and thermal conductivities by extrapolating to 0 frequency, as is
shown in Fig. 10a2, b2. Given the larger simulations that were performed, we have
a very good estimate the DC limit.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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