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Abstract The thermal vibration of functionally graded (FG) porous nanocomposite
beams reinforced by graphene platelets (GPLs) is studied. The beams are exposed to
the thermal gradient with a multilayer structure. The temperature varies linearly across
the thickness direction. Three different types of dispersion patterns of GPLs as well as
porosity distributions are presented. The material properties vary along the thickness
direction. By using the mechanical parameters of closed-cell cellular solid, the variation
of Poisson’s ratio and the relation between the porosity coefficient and the mass density
under the Gaussian random field (GRF) model are obtained. By using the Halpin-Tsai
micromechanics model, the elastic modulus of the nanocomposite is achieved. The equa-
tions of motion based on the Timoshenko beam theory are obtained by using Hamilton’s
principle. These equations are discretized and solved by using the generalized differential
quadrature method (GDQM) to obtain the fundamental frequencies. The effects of the
weight fraction, the dispersion model, the geometry, and the size of GPLs, as well as the
porosity distribution, the porosity coefficient, the boundary condition, the metal matrix,
the slenderness ratio, and the thermal gradient are presented.
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1 Introduction

A porous medium refers to any material consisting of a substrate having a set of pores and
multifunctional properties which could be promoted by introducing fillers. Metal foams have
been known as a rather new type of materials. They have good features for applications such as
low weight structure, energy absorption, and thermal handling[1–3]. The first attempt to apply
porous metals for engineering applications dates back to the beginning of the 20th century.

Some researchers have studied the mechanical behavior of porous materials in recent years.
Magnucki and Stasiewicz[4] studied a porous beam under elastic buckling load. They considered
an isotropic porous beam with properties varying across the beam thickness, and studied the
effects of porosity on the strength and buckling load of the beam analytically and numerically.
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Grygorowicz et al.[5] investigated a sandwich beam with a metal foam core under buckling
load. The mechanical parameters varied across the thickness direction, and two deformation
hypotheses of the smooth cross-section including the classical broken line hypothesis and the
non-linear hypothesis were considered. Chen et al.[6] investigated a functionally graded (FG)
porous beam under buckling and bending loads. They used two different porosity distributions,
derived the governing equations with the Timoshenko beam theory, and studied the effects of
the porosity coefficient and the slenderness ratio on the critical buckling load, the maximum
deflection, and the stress distribution.

Given the importance of vibrations in different practical and industrial applications and the
development of porous material usage, the vibrations of porous materials have drawn increasing
interest from researchers. Chen et al.[7] analyzed the FG porous beams made of open-cell
metal foams. Ebrahimi et al.[8] inspected the thermal vibration of a temperature-dependent
FG porous beam subjected to the uniform, linear, and non-linear thermal fields based on the
Euler-Bernoulli beam theory, and studied the effects of the thermal effect, the porosity volume
fraction, the material distribution profile, and the mode shape on the fundamental frequency
of the beam.

Nanofillers added to porous materials must simultaneously have three features, viz., they
should be ultra-lightweight so that the reinforced materials could remain in the light-weight
structure category with their addition, they should be conducive to improve the mechanical
properties of the reinforced materials, and they should have stable structure in the chemical
viewpoint. Carbon nanotubes (CNTs)[9] and graphene platelets (GPLs)[10–11] have exception-
ally the above-mentioned three features, and are appropriate candidates for nanofillers.

Numerous studies have been carried out to reveal the behaviors of nanocomposite struc-
tures strengthened by CNTs. Wu et al.[12] presented the non-linear vibration behavior of
FG-CNT beams with initial geometric imperfections, and used the first-order shear deforma-
tion theory and the von Kármán geometric nonlinearity to derive the governing equations.
Wattanasakulpong and Ungbhakorn[13] studied CNT beams under bending, buckling, and vibra-
tion, and used several shear deformation theories to derive the analytical solution. Mohammadi
and Yas[14] used a three phase scale to model the elastic behavior of CNT strengthened polymers
by considering the interfacial debonding. Yas et al.[15] studied the thermo-mechanical properties
of multi-walled CNT/epoxy, functionalized the multi-walled CNTs by using the combination of
H2SO4/HNO3, and carried out several tests to obtain the temperature-dependent mechanical
and thermal properties. Yas and Samadi[16] investigated the behavior of nanocomposite beams
reinforced by single-walled CNTs under buckling and free vibration. Lai and Dangi[17] used the
nonlocal theory of elasticity to present the thermal vibration of a temperature-dependent FG
nonuniform Timoshenko nanobeam. Arefi et al.[18] studied the free vibration of FG polymer
composite nanoplates reinforced by graphene nanoplatelets. Shahrjerdi and Yavar[19] studied
the effects of temperature-dependent properties on the free vibrations of FG grapheme rein-
forced nanocomposite beams, and concluded that the natural frequency of temperature depen-
dent materials was less than that of temperature independent materials. Song et al.[20] presented
a dynamic analysis of FG polymer composite plates reinforced by graphene nanoplatelets.

In Refs. [10], [21], and [22], the performance of GPLs and CNTs in the modification of the
mechanical parameters of structures was studied. It was deduced that the performance of GPLs
was better. Among the good properties of graphene and its associated two-dimensional ma-
terials, the high thermal conductivity[23] shows high capacity to address the thermal handling
challenge in electrical devices. Graphene holds high capacity in metal matrix composites for
thermal handling because of its excellent thermal properties. However, the graphene/metal com-
posites having both great thermal conductivity and low coefficient of thermal expansion have
not yet been fully figured out. Currently, critical CNT-reinforced issues, including processing
techniques, nanotube dispersion, interface, strengthening mechanisms, and mechanical proper-
ties, have been reviewed with an objective to achieve the homogeneous distribution of CNTs in
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the matrix[24]. Since porous metals can be made into materials and used widely because of low
weight, heat resistance, and non-combustibility, research on porous metals reinforced by GPLs
in thermal environments can be interesting and useful. Although a lot of research has been
done on the mechanical behaviors of nanocomposites reinforced by graphene and its deriva-
tives, this set of research is still in the early stage. The main contribution of this research is to
study the thermal vibration responses of porous like structures reinforced by GPLs. For this
purpose, we consider three different porosity distributions as well as three different GPL disper-
sion models across the thickness direction. The theoretical formulation is derived according to
the Timoshenko beam theory. The frequency is calculated by using the generalized differential
quadrature method (GDQM). The effects of the GPL models and the porosity distributions
on the beam vibration are highlighted. To accomplish the most effective beam stiffness, the
best porosity distribution and the best GPL model are investigated. Finally, the effect of the
thermal gradient is studied.

2 Porosity distributions, GPL models, and mechanical properties

A multilayer beam with the thickness h, the width b, and the length L in the (x, y, z)
coordinate system is considered, as shown in Fig. 1. The x-axis is on the mid-plane, and the
z-axis is across the thickness direction.

Fig. 1 Configuration of the studied beam

Figure 2 shows three different GPL distribution models, i.e., A, B, and C, for the non-uniform
porosity distribution 1 (Distribution 1), the non-uniform porosity distribution 2 (Distribution
2), and the uniform porosity distribution 3 (Distribution 3). The GPL volume content VGPL

changes along the z-axis smoothly, and the maximum value of VGPL is determined according
to the specific porosity distribution. It is supposed that the total amounts of GPLs in three
different GPL dispersion models are the same, which leads to Si1 �= S2i �= S3i.

It should be noticed that E′
1 and E′

2 are the maximum and the minimum Young’s moduli
of the non-uniform porous beams without GPLs, respectively, and E′ is Young’s modulus of
the beam with a uniform porosity distribution. As shown in Fig. 2, the following relations are
used to determine the mechanical properties of the FG porous nanocomposite beams with three
different porosity distributions:

ρ(z) = ρ1(1 − emλ(z)), E(z) = E1(1 − e0λ(z)), G(z) =
E(z)

2(1 + ν(z))
. (1)

According to Ref. [25],

α(z) = α1, (2)
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Fig. 2 Porosity distributions and GPL dispersion models

where

λ(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(πz/h) for Distribution 1,

cos(πz/(2h) + π/4) for Distribution 2,

λ for Distribution 3.

(3)

In the above equations, E1, ρ1, and α1 are the maximum values of Young’s modulus, the mass
density, and the thermal expansion coefficient of the porous beam, respectively. The porosity
coefficient is defined by

e0 = 1 − E′
2

E′
1

. (4)
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According to Ref. [26], in the Gaussian random field (GRF) model, the mechanical property
of closed-cell cellular solid is expressed as

E(z)
E1

=
(ρ(z)/ρ1 + 0.121

1.121

)2.3

, 0.15 <
ρ(z)
ρ1

< 1. (5)

Using Eq. (5), the mass density coefficient em is determined by

em =
1.121(1− 2.3

√
1 − e0λ(z))

λ(z)
. (6)

Also, Poisson’s ratio ν(z) can be obtained based on the closed-cell GRF model[27] as

ν(z) = 0.221p′ + ν1(0.342p′2 − 1.21p′ + 1), (7)

where ν1 refers to Poisson’s ratio of the non-porous matrix, and

p′ = 1 − ρ(z)
ρ1

= 1.121(1 − 2.3
√

1 − e0λ(z)). (8)

Assume that the beam total mass is the same under different porosity distributions. Then,
the related term λ in Eq. (3) can be derived as

λ =
1
e0

− 1
e0

(M/h + 0.121
1.121

)2.3

, (9)

where M is identical for all porosity distributions, and is obtained by

M =
∫ h/2

−h/2

(1 − p′)dz. (10)

In accord with the porosity distributions in Fig. 2, the volume fraction of GPLs can be shown
as follows:

VGPL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Si1

(
1 − cos

πz

h

)
for Pattern A,

Si2

(
1 − cos

(πz

h
+

π

4

))
for Pattern B,

Si3 for Pattern C,

(11)

where i = 1, 2, 3.
The weight fraction of GPLs WGPL is related to VGPL via

WGPL

WGPL + ρGPL
ρM

− ρGPL
ρM

WGPL
×
∫ h/2

−h/2

(1 − emλ(z))dz =
∫ h/2

−h/2

VGPL1 − emλ(z)dz. (12)

In order to determine the elastic modulus of the non-porous nanocomposites, the Halpin-Tsai
micromechanics model[10,28–30] is applied.

E1 =
3
8

(1 + ξGPL
L ηGPL

L VGPL

1 − ηGPL
L VGPL

)
EM +

5
8

(1 + ξGPL
W ηGPL

W VGPL

1 − ηGPL
W VGPL

)
EM, (13)

where ⎧⎪⎪⎨
⎪⎪⎩

ξGPL
L =

2lGPL

tGPL
, ξGPL

W =
2wGPL

tGPL
,

ηGPL
L =

EGPL/EM − 1
EGPL/EM + ξGPL

L

, ηGPL
W =

EGPL/EM − 1
EGPL/EM + ξGPL

W

.

(14)
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In the above equations, wGPL, lGPL, and tGPL denote the average width, the average length,
and the average thickness of GPLs, respectively, and EM is Young’s modulus of the metal. The
mass density ρ1, the Poisson’s ratio ν1, and the thermal expansion coefficient α1 of the metal
matrix reinforced by GPLs are calculated by

ρ1 = ρGPLVGPL + ρMVM, ν1 = νGPLVGPL + νMVM, α1 = αGPLVGPL + αMVGPL, (15)

in which ρGPL, νGPL, αGPL, and VGPL are the mass density, the Poisson’s ratio, the thermal
expansion coefficient, and the volume fraction of GPLs, respectively, and ρM, νM, αM, and
VM = 1−VGPL are the mass density, the Poisson’s ratio, the thermal expansion coefficient, and
the volume fraction of the metal, respectively.

3 Theory and formulation

3.1 Equations of motion
Using the Timoshenko beam theory, the formulas of the deflection field of the beam are

expressed in the x- and z-directions as follows:

U(x, z, t) = u0(x, t) + zφ(x, t), W (x, z, t) = w0(x, t), (16)

where u0(x, t) and w0(x, t) stand for the axial and transverse displacement components on the
mid-plane (z = 0), respectively. φ(x, t) represents the transverse normal rotation about the
y-axis, and t is time. The normal and transverse stresses can be represented as follows:

σx = Q11(z)(εx(x) − α(z)ΔT (z)), τxz = Q55(z)γxz(x), (17)

where the elastic elements Q11(z) and Q55(z) are

Q11(z) =
E(z)

(1 − υ2(z))
, Q55(z) =

E(z)
2(1 + υ(z))

= G(z). (18)

The governing equations of motion are derived from Hamilton’s principle as follows:

δ

∫ t

0

(T − Π + γp)dt = 0, (19)

where T , Π, and γp are the kinetic, potential (or elastic), and external potential energy, respec-
tively. Finally, the differential equations of motion are obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A11
∂2u0

∂x2
+ B11

∂2φ

∂x2
+

∂NT
x

∂x
= I1

∂2u0

∂t2
+ I2

∂2φ

∂t2
,

KA55

(∂2w0

∂x2
+

∂φ

∂x

)
+ Nx0

∂2w0

∂x2
= I1

∂2w0

∂t2
,

B11
∂2u0

∂x2
+ D11

∂2φ

∂x2
− KA55

(∂w0

∂x
+ φ

)
+

∂MT
x

∂x
= I2

∂2u0

∂t2
+ I3

∂2φ

∂t2
.

(20)

A11, B11, D11, A55 and also the inertia terms I1, I2, I3 are non-linear functions of x and
are defined by ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(A11, B11, D11) =

∫ h/2

−h/2

Q11(z)(1, z, z2)dz,

A55 =
∫ h/2

−h/2

Q55(z)dz, (I1, I2, I3) =
∫ h/2

−h/2

ρ(z)(1, z, z2)dz.

(21)
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In this study, the bottom surface temperature of the beam is ascribed to the reference
temperature, i.e., TRef = Tb, and

T (z) = T (z)− TRef . (22)

The following nondimensional quantities make it possible that these studied results are
independent of dimensions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
x

L
, (u, w) =

(u0

h
,
w0

h

)
, η =

L

h
, τ =

t

L

√
A110

I10
, M∗

x =
MT

x h

D110
,

(N∗
x , λx0) =

( NT
x

A110
,

Nx0

A110

)
, ω = ΩL

√
I10

A110
, (I1, I2, I3) =

( I1

I10
,

I2

I10h
,

I3

I10h2

)
,

(a11, a55, b11, d11) =
( A11

A110
,

A55

A110
,

B11

A110h
,

D11

A110h2

)
,

(a11, a55, b11, d11) =
(A11h

2

D110
,
A55h

2

D110
,
B11h

D110
,

D11

D110

)
, γ =

A110h
2
0

D110
.

(23)

In the above equations, Nx0 is the external axial load, A110, D110, and I10 are the same
as A11, D11, and I1 in the pure metal beam without porosity and nanofillers. According to
Eq. (23), the governing equation (20) is rewritten in the nondimensional form as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11
∂2u

∂ξ2
+ b11

∂2φ

∂ξ2
+ η

∂N∗
x

∂ξ
= I1

∂2u

∂τ2
+ I2

∂2φ

∂τ2
,

Ka55

(∂2w

∂ξ2
+ η

∂φ

∂ξ

)
+ λx0

∂2w

∂ξ2
= I1

∂2w

∂τ2
,

b11
∂2u

∂ξ2
+ d11

∂2φ

∂ξ2
− Ka55η

(∂w

∂ξ
+ ηφ

)
+ η

∂M∗
x

∂ξ
= γ

(
I2

∂2u

∂τ2
+ I3

∂2φ

∂τ2

)
.

(24)

In the same way, the boundary conditions can be nondimensional.
It is assumed that the sum of the static and dynamic displacement fields leads to the total

displacement field, i.e.,

u = uS + uD, w = wS + wD, φ = φS + φD, (25)

where the subscripts ‘S’ and ‘D’ refer to the points in the static and dynamic fields, respectively.
The primitive stress originating from the stable thermal field can be calculated by solving the
static equations.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a11

∂2uS

∂ξ2
+ b11

∂2φS

∂ξ2
+ η

∂N∗
x

∂ξ
= 0, Ka55

(∂2wS

∂ξ2
+ η

∂φ

∂ξ

)
= 0,

b11
∂2uS

∂ξ2
+ d11

∂2φS

∂ξ2
− Ka55η

(∂wS

∂ξ
+ ηφS

)
+ η

∂M∗
x

∂ξ
= 0.

(26)

Obviously, Eq. (26) is obtained by dropping the inertia terms and λx0 in Eq. (24). According
to Eqs. (24) and (25), the dynamic field equations will be as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a11
∂2uD

∂ξ2
+ b11

∂2φD

∂ξ2
= I1

∂2uD

∂τ2
+ I2

∂2φD

∂τ2
,

Ka55

(∂2wD

∂ξ2
+ η

∂φD

∂ξ

)
+ λx0

∂2wD

∂ξ2
= I1

∂2wD

∂τ2
,

b11
∂2uD

∂ξ2
+ d11

∂2φD

∂ξ2
− Ka55η

(∂wD

∂ξ
+ ηφD

)
= γ

(
I2

∂2uD

∂τ2
+ I3

∂2φD

∂τ2

)
.

(27)

The boundary conditions in the dynamic analysis become homogeneous.
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3.2 Thermal field
The beam is affected by the thermal gradient across the thickness direction before undergoing

dynamic deformation. It is considered that the upper and lower beam surfaces are held at the
temperatures Tu and Tb, respectively. Thus, the thermal boundary conditions are

T = Tb → z = −h

2
, T = Tu → z =

h

2
. (28)

�
We assume that the temperature changes linearly across the thickness direction, i.e.,

T (z) = Tb + ΔTtot

( z

h
+

1
2

)
, (29)

where

ΔTtot = Tu − Tb. (30)

3.3 GDQM
The GDQM, as a numerical solution method for initial and/or boundary problems, is imple-

mented for solving the equations of motion. The GDQM has good accuracy and a fast conver-
gence trend with the minimal computational effort vis-a-vis other numerical methods[31]. For
more details about the GDQM, the readers may refer to Refs. [31] and [32]. For the sake of pro-
viding a very accurate generalized differential quadrature (GDQ) solution here, the Chebyshev-
Gauss-Lobatto grid points are used[32], i.e.,

ξi =
1
2

(
1 − cos

( i − 1
N − 1

π
))

, i = 1, 2, · · · , N. (31)

�
3.4 Thermal vibration analysis

What should be denoted is that applying the static displacement results in a dimensionless
axial force λx0 .

λx0 =
−NT

x

A110
= −N∗

x . (32)

With respect to Eq. (27), the following thermal vibration equations of the FG porous beam
can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11
∂2uD

∂ξ2
+ b11

∂2φD

∂ξ2
= I1

∂2uD

∂τ2
+ I2

∂2φD

∂τ2
,

Ka55

(∂2wD

∂ξ2
+ η

∂φD

∂ξ

)
− N∗

x

∂2wD

∂ξ2
= I1

∂2wD

∂τ2
,

b11
∂2uD

∂ξ2
+ d11

∂2φD

∂ξ2
− Ka55η

(∂wD

∂ξ
+ ηφd

)
+ η

∂M∗
x

∂ξ
= γ

(
I2

∂2uD

∂τ2
+ I3

∂2φD

∂τ2

)
.

(33)

Since vibration is harmonic, the deflections can be stated as follows:

u(x, t) = w(x)e−iωt, w(x, t) = u(x)e−iωt, φ(x, t) = ϕ(x)e−iωt, (34)

where i =
√−1, and ω is the nondimensional fundamental frequency. Applying the GDQ to

the equations of motion and the related boundary conditions leads to the following set of linear
algebraic equations:(

Sbb Sbd

Sdb Sdd

)(
Ub

Ud

)
− N∗

x

(
0 0

Adb Add

)(
Ub

Ud

)
= ω2

(
0 0

0 Ii

)(
Ub

Ud

)
, (35)
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where

Ub = (ub, wb, φb)T, (36)

Ud = (ud, wd, φd)T. (37)

In Eqs. (35)–(37), the subscripts ‘b’ and ‘d’ refer to the points on the boundary and in the
interior domain, respectively, and Ii is the nondimensional inertia term matrix. Eliminating
the boundary degrees of freedom provides the underlying equation as follows:

(S − ω2I)ud = 0, (38)

where

S = (Sdd + Add) − (Sdb + Adb)S−1
bb Sbd. (39)

Clearly, the square of the lowest positive eigenvalue of Eq. (39) gives the frequency of the
considered beam. By solving the generalized eigenvalue problem of Eq. (39), the beam frequency
can be obtained.

4 Numerical results and discussion

First, we consider the effects of GPLs, porosity, and temperature on the vibrations of the
nanocomposite beams. The main parameters assessed in this paper are the distribution model,
the weight fraction WGPL, the geometry, the size of GPLs, the porosity coefficient, the porosity
distribution, the boundary condition, and the thermal loading. Aluminum, copper, nickel,
magnesium, and titanium metals play the role of material matrix in this study. According to
Refs. [24] and [33]–[36], the properties of these materials are shown in Table 1. The material
properties and geometric parameters of GPLs are as follows[10,37–38]:⎧⎨

⎩
wGPL = 1.5 μm, lGPL = 2.5 μm, tGPL = 1.5 nm, EGPL = 1.01 TPa,

ρGPL = 1 062.5 kg · m−3, νGPL = 0.186, αGPL = −3.75 × 10−6 K−1.

Table 1 Typical material properties of metals

Material Density/(kg·m−3) Poisson’s ratio Young’s modulus/GPa Thermal expansion coefficient/K−1

Aluminum 2 689.8 0.34 68.3 23×10−6

Copper 8 960 0.34 130 17×10−6

Nickel 8 908 0.31 210 13×10−6

Magnesium 1 740 0.35 45 25×10−6

Titanium 4 506 0.33 116 8.6×10−6

4.1 Validation and convergence study
The free vibration and elastic buckling of FG porous nanocomposite beams have been inves-

tigated by Kitipornchai et al.[39]. The results obtained in this study for ΔTtot = 0 are compared
with those in Ref. [39].

Similar to the analysis of the free vibration, the critical buckling load is obtained through
solving the concluded algebraic system. The nondimensional critical buckling load and natural
frequency attained in the present analysis are compared with the similar ones given in Ref. [39]
in Tables 2 and 3. The data show that our results are in good agreement with the previously
reported ones. The differences are in the range from 0% to 0.36%.

Figure 3 shows the convergency of the results. As observed, the convergence rate of the GDQ
is obviously high. At N = 7, the beam frequency converges to a certain desirable amount.
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Table 2 Nondimensional buckling load of the porous copper-matrix beams reinforced by GPL
model A with Distribution 1 under clamped-clamped conditions, where l/h = 20

WGPL/% n
e0 = 0.0 e0 = 0.2 e0 = 0.4 e0 = 0.6

Present study Ref. [39] Present study Ref. [39] Present study Ref. [39] Present study Ref. [39]

1

2 0.008 526 0.008 550 0.007 215 0.007 218 0.005 924 0.005 917 0.004 650 0.004 647

6 0.014 274 0.014 323 0.013 049 0.013 057 0.011 794 0.011 784 0.010 496 0.010 486

10 0.014 746 0.014 798 0.013 567 0.0135 72 0.012 347 0.012 333 0.011 067 0.011 063

14 0.014 875 0.014 929 0.013 705 0.013 714 0.012 503 0.012 486 0.011 232 0.011 224

18 0.014 931 0.014 982 0.013 760 0.013 773 0.012 568 0.012 549 0.011 296 0.011 290

10 000 0.015 014 0.015 065 0.013 853 0.013 863 0.012 660 0.012 645 0.011 397 0.011 392

0
14 0.007 946 0.007 946 0.007 313 0.007 316 0.006 696 0.006 693 0.006 076 0.006 076

10 000 0.007 983 0.007 986 0.007 359 0.007 362 0.006 742 0.006 745 0.006 132 0.006 135

Table 3 Nondimensional frequency of the porous copper-matrix beams reinforced by GPL model A
with Distribution 1 under clamped-clamped conditions, where l/h = 20

WGPL/% n
e0 = 0.0 e0 = 0.2 e0 = 0.4 e0 = 0.6

Present study Ref. [39] Present study Ref. [39] Present study Ref. [39] Present study Ref. [39]

1

2 0.337 1 0.337 6 0.321 7 0.321 7 0.304 4 0.304 2 0.284 6 0.284 5

6 0.438 1 0.439 0 0.433 4 0.433 6 0.429 1 0.428 9 0.426 1 0.425 9

10 0.445 5 0.446 4 0.442 0 0.442 1 0.439 0 0.438 8 0.437 3 0.437 2

14 0.447 5 0.448 4 0.444 2 0.444 4 0.441 8 0.441 5 0.440 5 0.440 3

18 0.448 3 0.449 2 0.445 1 0.445 4 0.442 9 0.442 6 0.441 7 0.441 6

10 000 0.449 6 0.450 5 0.446 6 0.446 8 0.444 5 0.444 2 0.443 7 0.443 6

0
14 0.315 9 0.315 9 0.313 4 0.313 4 0.312 2 0.312 1 0.312 8 0.312 8

10 000 0.316 6 0.316 7 0.314 3 0.314 4 0.313 2 0.313 2 0.314 2 0.314 2

Fig. 3 Convergency of the nondimensional frequency of the nanocomposite copper-matrix beams
reinforced by GPL model A with Distribution 1 under clamped-clamped conditions, where
l/h = 20, and ΔTtot = 250 K (color online)

4.2 Analysis of the thermal vibration for ΔTtot = 250K
As mentioned before, we consider a multilayer beam because the multilayer structure makes

the beam construction process easier. Two points are considered based on the multilayer
structure of the beam. First, the results obtained from the vibration of the multilayer beam
should be close to the results of the continuous one (n = 1 000). Second, to save cost and time,
the number of beam layers should be kept to be the minimum. To achieve these purposes, the
thermal vibration of the beams with various numbers of layers is investigated (see Table 4).
The results show that n = 14 meets the aforementioned points. Figure 4 displays the reinforced
effects of GPLs on the thermal vibration frequency.
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Table 4 Nondimensional frequency of the porous copper-matrix beams reinforced by GPL model A
with Distribution 1 under clamped-clamped conditions, where l/h = 20, and ΔTtot = 250 K

WGPL/% n e0 = 0.0 e0 = 0.2 e0 = 0.4 e0 = 0.6

1

2 0.542 7 0.517 9 0.489 5 0.456 1

6 0.377 9 0.376 8 0.376 3 0.377 3

10 0.4110 0.409 7 0.408 9 0.409 4

14 0.423 3 0.421 5 0.420 6 0.420 9

20 0.440 7 0.439 6 0.439 8 0.440 0

1 000 0.449 2 0.446 3 0.444 3 0.443 4

0
20 0.311 5 0.310 8 0.311 4 0.312 1

1 000 0.316 3 0.314 0 0.312 9 0.313 9

Another investigated case is the comparison of the reinforced effects of GPLs on the beams
with various metal matrices. As observed in Fig. 5, by adding GPLs to the beams, the frequency
increases for all beams with various metal matrices. Regarding the rather high mass density
of copper, it is predictable that the frequency increase in the copper beam is higher than the
frequency increase in any of the other beams. The reason is that, under the same weight fraction,
the added volume content of GPLs in the copper beam is larger, which means that more GPLs
are used in this case. Although the mass density of nickel is as large as that of copper, its Young’s
modulus is much higher than that of copper, indicating that the enhancement of the effective
Young’s modulus of the nickel nanocomposite beam is relatively limited. As a consequence of
the above-mentioned reasons, we concentrate on the copper matrix porous nanocomposites in
the following discussion. Figure 5 shows the effects of different GPL models on the thermal
vibration frequency of the porous beams with various porosity coefficients.

Fig. 4 Effects of GPLs on the thermal fre-
quency variation of the porous beams
reinforced by GPL model A with Dis-
tribution 1 versus different metal ma-
trices under clamped-clamped condi-
tions, where e0 = 0.5, l/h = 20, and
ΔTtot = 250 K (color online)

Fig. 5 Effects of the porosity coefficient and
GPL models on the thermal fre-
quency variations of the nanocom-
posite opper-matrix beams with Dis-
tribution 1 under clamped-clamped
conditions, where l/h = 20, and
ΔTtot = 250 K (color online)

For Distribution 1, in the three GPL models, introducing a small amount of GPLs signifi-
cantly grows the frequency and stiffness of the beams. Besides, the GPL models have a great
effect on the GPL reinforced property. GPL model A has the most reinforced effect on the
porous beams, while GPL models C and B are in order of the second and the third, respec-
tively. The last point is that the porosity coefficient does not have a sensible effect on the
thermal vibration frequency change. As the porosity coefficient climbs, the stiffness decreases
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negligibly. The beam reinforced by GPL model C is approximately independent of the porosity
coefficient. Therefore, in this certain model, the plots with various porosity coefficients coin-
cide with each other. Figure 6 shows the effects of the GPL models as well as the porosity
distributions on the thermal vibration frequency of the nanocomposite beam. In Fig. 6 and the
following figures, Dis. is the abbreviation of Distribution.

The beam reinforced by GPL model A with Distribution 1 has the maximum frequency,
which means that at the same weight fraction, most effective stiffness belongs to the beam
that has either Distribution 1 or GPL model A. The effects of the porosity distribution on the
frequency variations in the beams reinforced by various GPL models are shown in Fig. 7. It can
be seen that the frequency increment is affected by the porosity distributions in GPL models
A and B, whereas is independent of the porosity distribution in GPL model C. By comparing
Figs. 5, 6, and 7, it can be deduced that both the GPL models and the porosity distributions
are effective in the frequency increment, but the effects of the former are much greater than
the effects of the latter. Figure 8 indicates the effects of the geometry and size of GPLs on the
thermal vibration frequency of the porous nanocomposite beams.

Fig. 6 Effects of the GPL models and the
porosity distributions on the ther-
mal frequency of the copper-matrix
beams under clamped-clamped con-
ditions, where e0 = 0.5, l/h = 20,
and ΔTtot = 250 K (color online)

Fig. 7 Effects of the GPL models and
the porosity distributions on the
thermal frequency variations of
the copper-matrix beams un-
der clamped-clamped conditions,
where e0 = 0.5, l/h = 20, and
ΔTtot = 250 K (color online)

As observed in Fig. 8, the effects of lGPL/tGPL and lGPL/wGPL (assuming constant lGPL)
on the thermal vibration frequency are investigated. The thermal frequency is shown against
lGPL/tGPL. As lGPL/tGPL rises, the frequency enhances. For a certain lGPL/tGPL, by growing
lGPL/wGPL, the frequency decreases because the surface area of the platelets diminishes. As
noticed around lGPL/tGPL > 100, there is an inflection point showing the decrease in the rate
of increasing the thermal frequency. This is because the distribution of the graphene in the
composite may be poor. When lGPL/tGPL > 104, the frequency orients to a certain amount,
and is independent of lGPL/wGPL. In other words, the thermal frequency is independent of
the size of graphene due to the poor dispersion of graphene for lGPL/tGPL > 104. A similar
trend of Fig. 8 is obtained for free vibration and critical buckling load in Ref. [37]. The effects of
boundary conditions on the frequency change of the porous beams reinforced by various GPL
models are depicted in Fig. 9, where C represents clamped, F represents free, and H represents
hinged.
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�
Fig. 8 Effects of the size and geometry of

GPLs on the dimensionless frequency
of the nanocomposite copper-matrix
beams reinforced by GPL model A
with Distribution 1 under clamped-
clamped conditions, where e0 = 0.5,
l/h = 20, WGPL = 1%, and ΔTtot =
250 K) (color online)

-
-
-
-
-
-
-
-
-

Fig. 9 Effects of boundary conditions on the
thermal frequency increment of the
copper-matrix beams with Distribu-
tion 1, where e0 = 0.5, l/h = 20, and
ΔTtot = 250 K (color online)

Distribution 1 is taken for all of the beams. As pointed out, introducing GPLs leads to the
frequency increase for all boundary conditions. Also, it is evident that the boundary conditions
have few effects on the frequency increment for all types of GPL models. The effects of the
boundary conditions on the frequency increment in beams reinforced by GPL model A are
more remarkable than the other beams. The nondimensional frequency amounts of the porous
nanocomposite beam reinforced by GPLs are listed for different slenderness ratios in Table 5.
Clearly, the frequency decreases with increasing the slenderness ratio.

Table 5 Nondimensional frequency in the copper-matrix beams reinforced by GPL model A with
Distribution 1 and various slenderness ratios under clamped-clamped conditions, where e0 =
0.5, and ΔTtot = 250 K

L/h
WGPL/%

0.0 0.2 0.4 0.6 0.8 1.0

20 0.280 0 0.312 4 0.341 8 0.363 5 0.394 3 0.418 6

30 0.143 2 0.176 4 0.194 1 0.210 6 0.225 5 0.240 6

40 0.072 3 0.089 4 0.105 6 0.120 2 0.133 6 0.146 4

4.3 Effects of the thermal gradient (ΔTtot) on the vibration
In the beams reinforced by different GPL models and with various porosity distributions,

the dimensionless frequency versus the thermal gradient is depicted in Fig. 10. It is shown that
the frequency drops with the surge of the thermal gradient.

Figures 11, 12, and 13 represent the effects of ΔTtot on the frequency of the beams rein-
forced by various GPL models and with different porosity coefficients. In all beams reinforced
by various GPL models, the frequency and the porosity coefficient have an inverse relation if
ΔTtot = 0. The boosting porosity coefficient results in the enhancement of the frequency for
each certain non-zero ΔTtot. For zero thermal gradient, the differences among the frequen-
cies of the beams of various porosity coefficients are small. However, when ΔTtot increases,
the differences steadily increase. These findings clarify the fact that porous materials are
appropriate candidates for structures used in cases of high thermal gradients. The frequency
variations of the nanocomposite beams for various thermal gradients are shown in Fig. 14.
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D

Fig. 10 Nondimensional frequency varia-
tions of the copper-matrix beams
reinforced by different GPL models
with different distributions under
clamped-clamped conditions, where
e0 = 0.5, and l/h = 20 (color on-
line)
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Fig. 11 Nondimensional frequency varia-
tions of the copper-matrix beams
reinforced by GPL model A with
Distribution 2 under clamped-
clamped conditions, where l/h = 20
(color online)
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Fig. 12 Nondimensional frequency varia-
tions of the copper-matrix beams
reinforced by GPL model B with
Distribution 2 under clamped-
clamped conditions, where l/h =
20) (color online)
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Fig. 13 Nondimensional frequency varia-
tions of the copper-matrix beams
reinforced by GPL model C with
Distribution 1 under clamped-
clamped conditions, where l/h = 20
(color online)

The frequency increment rises with the increase in the thermal gradient for a certain GPL
weight fraction except the beam reinforced by GPL model B. This trend for GPL model A is
more obvious than that for GPL model C. The frequency variations of the beams of various
porosity coefficients reinforced by the GPL weight fraction are illustrated in Fig. 15.

The results show that the slope of the frequency curve increases when the thermal gradient
for a pair of specified values of the porosity coefficient and the weight fraction increases. In-
creasing the thermal gradient leads to an inverse relation of the porosity coefficient and the
frequency increment. For a specified GPL weight fraction, the frequency increment is the
biggest for a beam with the minimum porosity coefficient. Figures 16, 17, and 18 display the
effects of the porosity distribution on the frequency increment for various thermal gradients. In
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Fig. 14 Nondimensional frequency variations
of the copper-matrix beams rein-
forced by different GPL models
with Distribution 1 under clamped-
clamped conditions, where e0 = 0.5,
and l/h = 20 (color online)
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Fig. 15 Nondimensional frequency variations
of the copper-matrix beams rein-
forced by GPL model A with Dis-
tribution 1 under clamped-clamped
conditions, where l/h = 20 (color on-
line)
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Fig. 16 Nondimensional frequency variations
of the copper-matrix beams rein-
forced by GPL model A under
clamped-clamped conditions, where
e0 = 0.5, and l/h = 20 (color online)
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Fig. 17 Nondimensional frequency variations
of the copper-matrix beams rein-
forced by GPL model B under
clamped-clamped conditions, where
e0 = 0.5, and l/h = 20 (color online)

the beams reinforced by GPL models A and C, the frequency increment enhances when the
thermal gradient for all porosity distributions increases. Moreover, when the thermal gradient
increases, the frequency variations of the beams with Distribution 2 are greater than those
with any other porosity distribution. As observed in Fig. 17, the frequency increment descends
gradually in the nanocomposite beams reinforced by GPL model B by growing the thermal
gradient. In Distribution 2, this descending rate is higher than any other porosity distribution.

Figure 19 shows the variations of the nondimensional frequency versus the GPL weight
fraction for different ΔTtot and boundary conditions, where C represents clamped, F represents
free, and H represents hinged. According to Fig. 19, the frequency increment goes up due to the
increase in the thermal gradient for all types of boundary conditions. But this increasing value
is not the same. The maximum enhancement and the minimum enhancement of the frequency
increment belong to the clamped-clamped and clamped-free beams, respectively.
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Fig. 18 Nondimensional frequency variations
of the copper-matrix beams rein-
forced by GPL model C under
clamped-clamped conditions, where
e0 = 0.5, and l/h = 20 (color online)
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Fig. 19 Nondimensional frequency variations
of the copper-matrix beam reinforced
by GPL model A with Distribution 1
versus the GPL weight fraction under
different boundary conditions, where
e0 = 0.5, and l/h = 20 (color online)

5 Conclusions

In this work, the thermal vibration of FG porous nanocomposite beams reinforced by GPLs
is presented by using the Timoshenko beam theory. This study concentrates on the effects of
porosity distributions and GPLs on the thermal vibration. The numerical results suggest that
introducing a small amount of GPLs significantly improves the stiffness of the present struc-
ture. According to the mixture rule, the proposed beam behaves acceptably in high thermal
gradients because of the negative thermal expansion coefficient of the nanofillers. Both the
porosity distributions and the GPL models obviously affect the frequency increment, and the
effects of the GPL models are greater. The effects of boundary conditions on the frequency in-
crement are slightly negligible. According to the results, there is an inverse relation between the
slenderness ratio and the frequency. The analysis of the effects of ΔTtot on the beam frequency
suggests that the beam frequency diminishes by growing the thermal gradient. Besides, it is
concluded that the higher the porosity coefficient is, the greater the frequency for the non-zero
thermal gradient is. Meanwhile, the effect of ΔTtot on the frequency increment is different
for those beams reinforced by GPL models and with various porosity distributions. Owing to
the lightweight and high-strength properties, as well as the desirable behavior at high thermal
gradients, these beams are recommended in new constructions.
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