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It has previously been suggested that small subsystems of closed quantum systems thermalize un-
der some assumptions; however, this has been rigorously shown so far only for systems with very
weak interaction between subsystems. In this work, we give rigorous analytic results on thermal-
ization for translation-invariant quantum lattice systems with finite-range interaction of arbitrary
strength, in all cases where there is a unique equilibrium state at the corresponding temperature.
We clarify the physical picture by showing that subsystems relax towards the reduction of the global
Gibbs state, not the local Gibbs state, if the initial state has close to maximal population entropy and
certain non-degeneracy conditions on the spectrum are satisfied. Moreover, we show that almost all
pure states with support on a small energy window are locally thermal in the sense of canonical typi-
cality. We derive our results from a statement on equivalence of ensembles generalizing earlier results
by Lima, and give numerical and analytic finite-size bounds, relating the Ising model to the finite de
Finetti theorem. Furthermore, we prove that global energy eigenstates are locally close to diagonal in
the local energy eigenbasis, which constitutes a part of the eigenstate thermalization hypothesis that
is valid regardless of the integrability of the model.
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I. INTRODUCTION

How do closed quantum systems thermalize? The last few years have seen a resurgence of interest in this old
question, motivated by new experimental [1] and numerical [2] methods, relying on new ideas and methods from
quantum information theory [3–10]. Clearly, closed quantum systems in any given pure initial state cannot literally
thermalize: unitary time evolution enforces that the global state remains pure and will never become thermal, unless
there is at least a tiny interaction with some environment. However, small subsystems of closed quantum systems
can equilibrate in a certain sense, as entanglement between the subsystem and its remainder will lead to locally
mixed states, and one may hope that these will in many cases resemble the ensembles of statistical physics.

Along these lines, it was suggested in [3] that typical pure quantum states in many-body systems resemble thermal
states on small subsystems due to entanglement, a property called “canonical typicality”. However, no rigorous
mathematical formulation of this was given in [3]. Almost at the same time, it was rigorously proven in [4] that
typical pure quantum states in subspaces of bipartite Hilbert spaces are locally close to some equilibrium state.
However, this equilibrium state is not thermal in general. This raises the question what conditions are needed to
ensure that the local equilibrium state will be thermal, i.e. a Gibbs state.

In addition to these kinematical results, there has been major progress in understanding how closed quantum
systems equilibrate dynamically [5–9]. Regarding the emergence of the Gibbs state, the situation is similar to the
kinematical case: the subsystems approach some equilibrium state (for most times in some time interval), which is
however not thermal in general. The question is thus the same: under what conditions will the equilibrium state be
thermal?

Important progress on this question was made in [10]: a rigorous bound on the distance D between the local
equilibrium state and a thermal state was established. This result has two drawbacks, however. First, the given
bound is rather cumbersome, which is due to the great generality of considering arbitrary Hamiltonians. Second, and
more importantly, the upper bound on the distance D grows with the operator norm of the interaction Hamiltonian
which couples the subsystem to its surroundings. Thus, the bound becomes trivial as soon as the boundary of the
subsystem becomes moderately large, or the interaction becomes strong.

In this work, we give rigorous analytic proofs of dynamical and kinematic formulations of thermalization for
interactions of finite range, but arbitrary strength. By restricting to the special case of translation-invariant lattice
systems as in Fig. 1, we are able to prove the common belief that small subsystems are indeed close to thermal,
under various natural conditions on the spectrum and the initial state that depend on the specific setup and boundary
conditions. Our work also clarifies how thermalization should generally be formalized by showing that the resulting
state will in general not be the local Gibbs state; rather, it is the reduction of the global system’s Gibbs state. This
identification is made clear from the fact that the expected distance between the local reduced state and the thermal
state goes to zero in the thermodynamic limit. In contrast, we show that boundary effects cause the local Gibbs state
in general to remain distinct from the thermal state even in the thermodynamic limit. This shows why earlier work
led to bounds on the distance that necessarily grow with the interaction strength.

Figure 1: Canonical typicality. A rectangular lattice Λn evolves according to a translation-invariant finite-range interaction Hamiltonian Hp
Λn

,
where “p” is for periodic boundary conditions (the case of arbitrary boundary conditions is treated in the Section III). If |ψ〉 is a generic state
occupying only energies E with u − δ ≤ E/|Λn| ≤ u, then small subsystems Λ ⊂ Λn will, for large n, behave as if the full system was
in a Gibbs state of the corresponding temperature, for all possible measurements in the subsystem. Dynamically, the same will be true for
|ψ(t)〉 for most times t if the initial state |ψ(0)〉 has close to maximal population entropy, and the spectrum satisfies certain non-degeneracy
conditions.
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We are further able to provide concrete finite-size bounds, rather than asymptotic bounds, for two cases of interest.
We give tight analytic bounds for the distance between the reduction of a typical global pure state and the local Gibbs
state in the non-interacting case, which already turns out to be a non-trivial problem, and we give numerical finite-
size estimates for interacting models in one lattice dimension. Building on the results by Low [26], we also show
that the kinematical result on canonical typicality remains true if global pure states are not drawn with respect to
the unitarily invariant measure (which is hard to implement), but according to an approximation of this measure (an
“8-design”) that can be sampled efficiently.

Finally, we address the question whether the given thermalization results can hold even on the level of single
energy eigenstates, as conjectured in the eigenstate thermalization hypothesis (ETH) [33, 34]. In a nutshell, the ETH
claims that global energy eigenstates are locally close to a thermal state. It is easy to see that the ETH cannot be true
for all the models that we consider, and that additional assumptions (along the lines of nonintegrability) are needed.
However, we prove a result that constitutes a part of the ETH which is true for all models with finite interaction
range: global energy eigenstates are locally close to diagonal in the local energy eigenbasis. We hope that this result
(proven via Lieb-Robinson bounds) may serve as a first step towards a complete resolution of the ETH in future
work.

II. SUMMARY OF THE MAIN RESULTS

We provide a self-contained summary of the main results of this paper in this section, focusing on periodic bound-
ary conditions. The case of arbitrary boundary conditions will be treated in Section III. While the detailed definitions
will be given in Section III (and are close to [13]), here we describe the setup and notation in a less formal way.

Our work considers the thermalization of interacting d-dimensional systems in a cubic or rectangular lattice in ν
spatial dimensions. These spins are constrained to interact with each other via finite-range translationally invariant
Hamiltonians with arbitrary boundary conditions. Although these restrictions are stringent, many models relevant
to condensed matter physics, such as the Ising and Heisenberg models, satisfy these requirements.

We introduce the following notation to describe the lattice. We define the set of lattice sites to be Λ := [λ1, µ1] ×
. . . × [λν , µν ], where [λ, µ] ⊂ Z denotes the interval of integers between λ and µ ≥ λ. In particular, we consider
sequences of regions Λ1 ⊂ Λ2 ⊂ Λ3 . . . that converge to the full infinite lattice Zν ; for example, we may have the
sequence of hypercubes Λn = [−n, n]ν . The physical interpretation is that a region Λn describes the actual physical
system in the laboratory, and a subregion Λ ⊂ Λn describes a small subsystem, cf. Fig. 1. The number of sites in a
region Λ is denoted |Λ|. The “particles” located at each of these sites carry a d-dimensional Hilbert space Cd.

Time evolution in Λn is determined by a Hamiltonian HBC
Λn

where the superscript explicitly denotes the type of
boundary conditions that the Hamiltonian satisfies. The choice of Hamiltonian is subject to some conditions defined
as follows. To every finite region X ⊂ Zν , we associate a self-adjoint operator hX , and define the Hamiltonian
with open boundary conditions to be HΛ :=

∑
X⊂Λ hX . We assume translation-invariance, i.e. hX+y equals hX

(translated to the corresponding lattice sites), and finite-range of interaction, i.e. there is some r < ∞ such that
hX = 0 whenever the diameter of X is larger than r. In the following, we will exclude the case that the map
X 7→ hX is, up to physical equivalence [13], everywhere identically zero. As a simple example in one dimension,
the Heisenberg model H[1,n] = −J

∑n−1
i=1 ~σi · ~σi+1 − h

∑n
i=1 σ

Z
i , with Pauli matrices ~σ = (σX , σY , σZ), fits into this

framework, if we define hX as −hσZi if X = {i} for some integer i, as −J~σi · ~σi+1 if X = {i, i+ 1}, and as zero for all
other X .

The Hamiltonian with open boundary conditions, HΛn , can be augmented with additional non-translationally
invariant terms on the boundary of Λn to obtain someHBC

Λn
. The case of periodic boundary conditions is of particular

importance to the remainder of the discussion and we denote such Hamiltonians by Hp
Λn

. More general boundary
conditions are also permitted. The only assumption will be that ‖HBC

Λn
−HΛn‖∞/|Λn| → 0 as n → ∞, where ‖ · ‖∞

is the operator norm. That is, the boundary terms only contribute a vanishing energy density.
While we aim at statements for finite regions Λn, the thermodynamic limit n → ∞ becomes important as a proof

tool and an indicator of phase transitions [13, 14]. We make extensive use of the following properties, which char-
acterize the system’s behavior in the thermodynamic limit. States ω on the infinite lattice Zν are given by families
of density matrices (ωΛ)Λ⊂Zνfinite, with ωΛ = TrΛ′\Λ ωΛ′ if Λ ⊆ Λ′. Translation-invariant states ω on Zν have en-
tropy density s(ω) := limn→∞

1
|Λn|S(ωΛn), with S(ρ) = −tr(ρ log ρ) the von Neumann entropy, and energy den-

sity u(ω) := limn→∞
1
|Λn| tr(ωΛnHΛn). A characteristic quantity for any given model and β > 0 is the equilibrium
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Helmholtz free energy density fth(β) := (−1/β) limn→∞
1
|Λn| log tr exp(−βHΛn). It holds

fth(β) = inf{f(ω) | ω translation-invariant state},

where f(ω) := u(ω)− s(ω)/β is the Helmholtz free energy density [13] of state ω. For any finite region Λ, the Gibbs
state at inverse temperature β is γBCΛ (β) := exp(−βHBC

Λ )/Z, with Z the partition function. Gibbs states on the
infinite lattice can be defined in several different equivalent ways; here we use a variational principle: a translation-
invariant state ω on the infinite lattice is by definition a Gibbs state at inverse temperature β if it minimizes the free
energy density, i.e. if f(ω) = fth(β). This definition is equivalent to the well-known KMS condition [16].

For every inverse temperature β, there is at least one Gibbs state ωβ on the infinite lattice; however, the possibility
of finite-temperature phase transitions implies that there may be more than one Gibbs state at the same β. Conse-
quently, we say that there is a unique equilibrium state around inverse temperature β if there is a small interval around
β such that for all β′ in that interval, there is only one Gibbs state at inverse temperature β′. This is true, for exam-
ple, if β is smaller than some model-dependent critical inverse temperature [18], and it is true for all β if the lattice
dimension is ν = 1 [17]. A given energy density value u will be called thermal if it is strictly larger than the ground
state energy density umin, and strictly smaller than the infinite-temperature energy density umax. These are given by
umin = limn→∞ λmin(HΛn)/|Λn| with λmin the smallest eigenvalue, and umax := limn→∞ tr(HΛn)/(|Λn|d|Λn|). If u is
thermal, then there is exactly one positive inverse temperature β ≡ β(u) such that the energy density u(ωβ) of the
corresponding Gibbs state ωβ equals u [13].

A. Canonical typicality

As suggested in [3], we show that the Gibbs state arises in translation-invariant quantum lattice systems due
to entanglement between small subsystems and the remainder. Consider any model with a given thermal energy
density u such that there is a unique equilibrium state around the corresponding inverse temperature β = β(u). For
δ > 0, define the microcanonical subspace

T pn := span {|E〉 | u− δ ≤ E/|Λn| ≤ u} , (1)

where Hp
Λn
|E〉 = E|E〉 denotes the periodic boundary condition energy eigenstates on the global region Λn. Choose

any pure state |ψ〉 ∈ T pn at random according to the unitarily invariant measure. Then, with high probability, this
state will locally in Λ ⊂ Λn be very close to the reduction of the global Gibbs state, as depicted in Fig. 1:

Theorem 1 (Summary of Theorem 25). Fix δ > 0 and u thermal. Then for every ε ≥ 0, the probability p that a state
|ψ〉 ∈ T pn sampled according to the unitarily invariant measure satisfies∥∥∥∥TrΛn\Λ |ψ〉〈ψ| − TrΛn\Λ

exp(−βHp
Λn

)

Z

∥∥∥∥
1

≥ ε+ ∆n,Λ

is doubly-exponentially small in the lattice size |Λn|; that is, p ≤ exp
(
−ε2 exp(|Λn|s+ o(|Λn|))

)
, where s = s(ωβ) is the

entropy density of the corresponding Gibbs state, and ∆n,Λ is a sequence of positive real numbers with limn→∞∆n,Λ = 0 for
every fixed Λ. Here, β can either be set equal to β(u) as defined above, or equal to the solution of tr(Hp

Λn
γpΛn(β))/|Λn| = u

(which depends on n).

As illustrated in Fig. 1, in the limit of large n, almost all pure states |ψ〉 in an energy window subspace will be
locally almost indistinguishable from the Gibbs state at the corresponding temperature, since the one-norm distance
‖ρ − σ‖1 = 2 maxP=P †=P 2 |tr(ρP ) − tr(σP )| being small means that ρ and σ give similar expectation value for
all possible measurements. The theorem does not say how quickly ∆n,Λ tends to zero with increasing n; we will
come back to the question of finite-size estimates later. Earlier work [3, 10] attempted to prove that TrΛn\Λ |ψ〉〈ψ|
is arbitrarily close to the local Gibbs state γΛ(β) = exp(−βHΛ)/Z. However, this can only be true if the interaction
across the boundary of Λ is very weak [10]; in particular, the given upper bound on the distance grows with the
boundary of Λ and is thus interesting only if Λ is small or if the lattice is one-dimensional. Our theorem shows
that in general the local Gibbs state has to be replaced by the reduction of the global Gibbs state to obtain arbitrary
closeness in the thermodynamics limit, unless one considers models that are fine-tuned such that the local Gibbs
state agrees with the reduction of the global Gibbs state.

Before we turn to the proof, we note that the unitarily invariant (Haar) measure in Theorem 1 can be replaced by a
more physically realistic measure, namely an η-approximate t-design [25, 27], for t = 8 and η = exp(−|Λn|s+o(|Λn|)).
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Here o(·) is (asymptotic) Landau notation, where fn = o(gn) means that fn/gn converges to zero in the limit n →
∞. Such t-designs are approximations to the Haar measure that can be efficiently generated in a time which is
polynomial in the lattice size |Λn|. It follows from the results of Low [26] that Theorem 1 remains valid, however with
a probability value that is only exponentially (not doubly-exponentially) small in the lattice site – see Theorem 28.

To prove Theorem 1, we invoke the results of [4], which tell us that TrΛn\Λ |ψ〉〈ψ| is with high probability close to
TrΛn\Λ τn, where τn is the uniformly mixed state on T pn . We obtain Theorem 1 directly, with all constants, if we set
∆n,Λ up to corrections of order exp

(
− 1

2 |Λn|s+ o(|Λn|)
)

(cf. eq. (36)) equal to

δn,Λ :=

∥∥∥∥TrΛn\Λ τn − TrΛn\Λ
exp(−βHp

Λn
)

Z

∥∥∥∥
1

. (2)

It remains to prove that δn,Λ → 0 as n → ∞. However, τn is nothing but the microcanonical ensemble, and the
statement left to prove is that its predictions on small subsystems Λ are equivalent to those of the canonical ensemble
in the thermodynamic limit. Thus, we are naturally led to study the problem of equivalence of ensembles in our
setting.

B. Equivalence of ensembles

To state our result, note that we can regard Λn as a torus, by identifying µi + 1 in the interval [λi, µi] with λi;
this way, we can define periodic translations of Λn as those of the resulting torus. A state τn on Λn will be called
Λn-translation-invariant if it is invariant with respect to all periodic translations of Λn. Using this notion, our main
technical result on equivalence of ensembles reads as follows:

Theorem 2 (Summary of Theorem 10). Suppose that (τn)n∈N is any sequence of Λn-translation-invariant states on Λn, and
β > 0 such that there is a unique equilibrium state around inverse temperature β. If

lim sup
n→∞

1

|Λn|
(
tr(τnH

BC
Λn )− S(τn)/β

)
≤ fth(β) (3)

for some choice of boundary conditions BC, then

lim
n→∞

∥∥∥∥TrΛn\Λτn − TrΛn\Λ
exp(−βnHp

Λn
)

Zn

∥∥∥∥
1

= 0, (4)

where we may set βn either equal to the fixed value β, or equal to the solution of tr(Hp
Λn
γpΛn(βn))/|Λn| = u(β).

Theorem 2 implies Theorem 1: If τn is the microcanonical ensemble, i.e. maximal mixture on T pn , then
tr(τnH

p
Λn

)/|Λn| ≤ u by construction, and S(τn) = log dim(T pn) = s|Λn| + o(|Λn|) according to [13, Thm. IV.2.14]
(as [13] does not provide a proof, we reproduce the proof in Lemma 11 below). Since u − s/β = fth(β), (3) holds,
which shows equivalence to the canonical ensemble, limn→∞ δn,Λ = 0, and establishes Theorem 1.

The crucial property of the microcanonical subspace T pn used in this proof is its dimensionality (which is close to
maximal given its energy density u), namely limn→∞(1/|Λn|) log dimT pn = s. It follows from Lemma 11 that this
property is satisfied if the width δ > 0 in the definition of the microcanonical subspace (1) is constant in n, which
corresponds to an extensive energy uncertainty. In general, one can also choose an n-dependent width δ ≡ δn; as
long as δn tends to zero slowly enough, the necessary limit identity will still hold. Unfortunately, giving a concrete
expression for a possible choice of δn amounts to proving a generalization of Lemma 11 for “small” microcanonical
subspaces, and we do not currently have such a generalization.

However, in the special case of the non-interacting Ising model described in Subsection II D below, it is easy to see
via standard inequalities (like the ones used in the proof of Theorem 37) that one can choose δn ≥ c(log n)/n, with
c > 0 some constant depending on u. It is therefore plausible to expect that a comparable scaling of δn might be
possible also in the interacting case.

We now sketch the proof of Theorem 2. We first show that (τn)n∈N has at least one limit point ω as a state on
the infinite lattice. Since every τn is Λn-translation-invariant, ω is translation-invariant, and (3) implies that f(ω) =
fth(β). Thus, ω is the unique Gibbs state ωβ , and so

lim
n→∞

TrΛn\Λ τn = (ωβ)Λ. (5)
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Consider the special case where τn equals the local Gibbs state γn := γpΛn(β) which appears in (4). Every γn is
Λn-translation-invariant and minimizes the free energy locally, hence

tr(γnH
p
Λn

)− S(γn)/β ≤ tr((ωβ)ΛnH
p
Λn

)− S((ωβ)Λn)/β
n→∞−→ fth(β),

which shows that (3) is satisfied for τn = γn. Consequently limn→∞ TrΛn\Λ γn = (ωβ)Λ, and combining this with (5)
proves the theorem.

This proof strategy has been pioneered by Lima [11, 12]; however, our result is more general. In particular, we
allow a more general set of possible interactions, and permit βn 6= β to be determined from the finite region Λn.

C. Dynamical thermalization

It has been shown in [6–8] that subsystems of closed quantum systems equilibrate, subject to some conditions
on the initial state and spectrum. In general, the equilibrium state depends on the initial state, and is not thermal
unless additional conditions are met [10]. However, for translation-invariant systems, we can say more. Consider
any initial state ρ(n)

0 on Λn, pure or mixed. The index n indicates that the state is chosen to be a function of the lattice
size n. We can think of a simple dependence such as ρ(n)

0 = ρ⊗Λn
0 for some fixed (single-site) state ρ0 on Cd; however,

the only technical condition we need to assume is that the density of the inner energy Un := tr(ρ
(n)
0 Hp

Λn
) converges

to some well-defined thermal energy density u := limn→∞ Un/|Λn|.

The state evolves unitarily under the Hamiltonian Hp
Λn

, i.e. ρ(n)(t) = exp(−itHp
Λn

)ρ
(n)
0 exp(itHp

Λn
). We can define

the population entropy S̄(ρ
(n)
0 ) as follows. From the spectral decomposition Hp

Λn
=
∑
iEiπi, compute the weights

λi := tr(ρ
(n)
0 πi), and set S̄(ρ

(n)
0 ) := −

∑
i λi log λi. Similarly, there is an inverse temperature βn corresponding to ρ(n)

0 ,
defined by tr(Hp

Λn
γpΛn(βn)) = Un. Denote the time average by 〈·〉, i.e. ρ(n)

avg := 〈ρ(n)(t)〉 := limT→∞(1/T )
∫ T

0
ρ(n)(t)dt.

Then the actual state at time t is close to ρ(n)
avg for most times t, and this state is close to thermal:

Theorem 3 (Summary of Theorem 31). If there is a unique equilibrium state around inverse temperature β := limn→∞ βn,
if the (possibly pure) initial state has close to maximal population entropy, in the sense that

S̄(ρ
(n)
0 ) ≥ S(γpΛn(βn))− o(|Λn|), (6)

and if each Hp
Λn

is non-degenerate (i.e. all eigenspaces are one-dimensional), then unitary time evolution thermalizes the sub-
system Λ for most times t:〈∥∥∥TrΛn\Λ ρ

(n)(t)− TrΛn\Λ ρ
(n)
avg

∥∥∥
1

〉
≤ d|Λ|

√
DG exp

(
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

)
, and (7)

lim
n→∞

∥∥∥∥TrΛn\Λ ρ
(n)
avg − TrΛn\Λ

exp(−βnHp
Λn

)

Zn

∥∥∥∥
1

= 0, (8)

where DG is the gap degeneracy [8] of Hp
Λn

, defined by DG = maxE |{(i, j) | i 6= j, Ei − Ej = E}|, where Ei denotes the
eigenvalues of Hp

Λn
.

In Theorem 33, we generalize this result to the case of arbitrary boundary conditions and degenerate HBC
Λn

. Un-
like (8), which expresses equivalence of the time-averaged state ρ(n)

avg and the thermal state γpΛn(βn) for local observ-
ables A on Λ, the generalized version shows equivalence of these global states on a different set of observables [8],
arising from averaging observables A over translations of Λ. We also show numerically in Subsection III E that the
conditions of non-degeneracy ofHp

Λn
andDG = 1 are generically satisfied for randomly chosen translation-invariant

nearest-neighbor interactions in one lattice dimension.
Our proof of Theorem 3 follows similarly to the proof of the results of [8]. First we have to show that the “effective

dimension” deff = eS2(λ) is large, with Sα(ρ) := (log tr(ρα))/(1−α) the α-Rényi entropy. We do this via the inequality
S2 ≥ 2ε(S− ε/(1 + ε)S0) for 0 ≤ ε ≤ 1, which we prove from results of [29], establishing (7). From S(ρ

(n)
avg) ≥ S̄(ρ

(n)
0 ),

we conclude that ρ(n)
avg =: τn satisfies (3). We then apply Theorem 2 to prove (8).

As an example, if ρ(n)
0 is a pure state |ψ(n)

0 〉 ∼
∑
u−δ<Ei/|Λn|<u |Ei〉 which is a “flat” uniform superposition of

eigenstates |Ei〉 of Hp
Λn

, Theorem 3 applies. This recovers results of [10], albeit in a different context.
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D. Finite-size estimates

Estimates on how large Λn has to be to have good agreement with our asymptotic results, in particular bounds
on δn,Λ in (2), are expected to depend strongly on the details of the model, such as distance to phase transitions,
correlation lengths etc. [23]. To get some intuition, we now give analytic bounds for the non-interacting Ising model,
which already turns out to be a non-trivial problem. For this model, it was already shown in [4] that local reduced
states are close to thermal in the sense of Theorem 1; however, no explicit analytic bounds on the distance have been
given in [4]. Here we provide tight analytic finite-size bounds.

We set Λn = [1, n] ⊂ Z1, and HΛ :=
∑
i∈Λ Zi, where Zi is the Pauli Z-matrix at site i. Then the microcanonical

state τn is permutation-invariant, and the canonical state is a product state, γΛn(β) = γ⊗nβ , with γβ := γ{1}(β) the
single-site Gibbs state. We are interested in estimating the distance δn,Λ in (2). In the case where the energy value
of the microcanonical subspace (1) is sharp, i.e. δ = 0, the state τn is the uniform mixture over a type class, that is,
over the subspace spanned by eigenvectors with a fixed frequency of “spin-up”. In this case, it turns out that we can
apply the proof of the classical finite de Finetti theorem [22] to obtain∥∥∥TrΛn\Λ τn − γ

⊗m
β

∥∥∥
1
≤ 4m

n
, (9)

where m := |Λ|. Thus, in order to maintain a fixed 1-norm distance between the states, the total system size n has
to be increased linearly with the size of the subsystem m. As mentioned before eq. (2), this also upper-bounds the
distance ∆n,Λ in Theorem 1 up to corrections exponentially small in the lattice size.

The case of finite energy uncertainty δ > 0 is more difficult to treat. If we assume each of the lattice sites holds a
qubit (d = 2) and take an appropriate rescaling of the energy then

S
(
γ⊗mβ

∥∥TrΛn\Λmτn

)
≤ (1− δ)u

u− δ
· m

n−m
+
muδ

u− δ

(
1 +

m

n−m

)
whenever m ≤ n(u − δ), with S(ρ‖σ) := tr(ρ log ρ − ρ log σ) the quantum relative entropy. This claim is formally
stated as Lemma 36. For δ = 0 (and m� n), this inequality is similar to (9) above, but now with the relative entropy
as distance measure. We expect it to be tight (i.e. not to allow for significant improvements) in the case δ = 0, since it
is well-known that the bound in the classical finite de Finetti theorem, and thus (9), cannot be significantly improved.
However, this inequality on the relative entropy has the drawback that it is only interesting as long as δ . 1/m. The
question arises how n has to be scaled with growing subsystem size m in order to achieve a fixed distance δ > 0
(for δ = 0, we have seen that n has to be increased linearly with m). In Theorem 37, we settle this question up to a
correction term of the order log n: under some conditions on the variables, we show that

∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
≤ 2δ

n
√
u

+

√
m

n−m

(
1 +

4 log n

log 1−u
u

)
.

This inequality is not tight in general (as one sees by comparing with (9) for δ = 0), but it shows that n has to be
increased only slightly superlinearly with m in order to achieve a fixed 1-norm distance also in the case δ > 0. We
leave it as an open question whether the log n term can be removed.

In order to get some intuition for what happens in the interacting case, we numerically study random nearest-
neighbor interactions in one lattice dimension in Subsection III E. It turns out that the behavior that we have shown
analytically for non-interacting models remains approximately valid also in the interacting case (as far as one can tell
for the small lattice sizes n ≤ 11 that are numerically tractable), see in particular Fig. 6. However, we leave it open
whether a similar behavior remains valid in lattice dimensions ν ≥ 2, where finite-temperature phase transitions
become relevant.

E. Towards eigenstate thermalization

The question whether some of the results above can be strengthened to hold for individual energy eigenstates is
known as the eigenstate thermalization hypothesis (ETH) [33, 34]. For example, consider our result on dynamical
thermalization, Theorem 3. For this result to hold, eq. (6) must be satisfied, which says that the initial state populates
a large number of energy levels.
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The question arises whether this assumption can be dropped. In the most extreme case, we could have an energy
eigenstate |E〉 as the initial state, i.e. ρ0 = |E〉〈E|. (This notation does not assume non-degeneracy of the spectrum;
|E〉 is an arbitrary pure state in the eigenspace corresponding to energy E.) Energy eigenstates do not evolve, such
that ρ(n)(t) = ρ0 is constant in time. Thus ρ(n)(t) is close to thermal for most times t if and only if the reduced state
TrΛn\Λ|E〉〈E| is close to thermal.

To formulate eigenstate thermalization in more detail, consider the setup in Fig. 2. We have argued above that one
should not expect that the local marginals of random global pure states |ψ〉 are close to a local Gibbs state, due to
boundary effects (which led us to consider the reduction of the global Gibbs state instead). More generally, to take
boundary effects into account, we can enlarge the subregion Λ by a shell of width l; if l is large enough, one would
expect that

TrΛn\Λ |E〉〈E| ≈ TrΛn\Λ γΛn(β) ≈ TrΛshell
γΛ′(β). (10)

It is immediately clear that a statement like this cannot literally be true for all eigenstates |E〉 of all models that we
consider: the non-interacting Ising model, where some eigenstates are product states (and thus marginals are pure
and not thermal), is a counterexample.

However, we can prove a weaker version of this statement which is true for all eigenstates of all translation-
invariant models with finite range interaction: there is a state ωE on Λ′ such that TrΛn\Λ|E〉〈E| ≈ TrΛshell

ωE , where
ωE partially resembles a thermal state. That is, ωE does not necessarily have Boltzmann weights on its diagonal (as
one would expect from the thermal state γΛ′(β)), but its off-diagonal elements are close to zero, as they are for the
thermal state.

We formulate and prove this result by applying a version of the Lieb-Robinson bound [30–32]: for models with
finite-range interaction, it states that there are constants c, C, v > 0 such that for all operators X and Y sup-
ported on finite regions X ,Y of distance ∆, it holds ‖[X(t), Y ]‖∞ ≤ C ‖X‖∞‖Y ‖∞min{|X |, |Y|} e−c[∆−v|t|], where
X(t) = eiHΛn tXe−iHΛn t. The constants also appear in the following theorem, where we assume in particular that the
Hamiltonian only has interactions between sites of distance r or less.

Figure 2: Subregions of the whole lattice Λn. We enlarge Λ by setting Λ′ = Λ ∪ Λshell, where Λshell contains all sites outside of Λ which
have distance l or less to Λ. The number of terms of HΛn that have support on both Λ′ and Λn \ Λ′ is denoted A, which quantifies the size of
the boundary area of Λ′.

Theorem 4 (Summary of Theorem 38). There is a state ωE on Λ′ such that∥∥TrΛshell
(ωE)− TrΛn\Λ |E〉〈E|

∥∥
1
≤ κ · e−c(l−r)/2, (11)

where κ = 2AJ(CA+ 2)
√

l−r
8cv2 and J = maxX ‖hX‖∞, which is close to diagonal in the eigenbasis {|e〉} of HΛ′ , i.e.

|〈e1|ωE |e2〉| ≤ e−(l−r)(e1−e2)2/(8cv2). (12)

This result does not assume translation-invariance; finite range of interaction is sufficient for its validity. The ETH
corresponds to the claim that the theorem holds for the particular choice ωE = γΛ′(β). As discussed above, the ETH
cannot be true in general for all eigenstates of all models we consider; intuitively, some additional assumptions,
possibly along the lines of nonintegrability, are needed.

Even though the mathematical details of the proof are cumbersome, it has a simple physical interpretation. We
define ωE by evolving TrΛn\Λ′ |E〉〈E| according to HΛ′ and averaging the result over small t; concretely, ωE :=∫∞
−∞dt g(t) e−iHΛ′ t TrΛn\Λ′ |E〉〈E| eiHΛ′ t, with g(t) some Gaussian. The Lieb-Robinson bound guarantees finite speed

of information transmission, such that the result will within Λ still look very much as if the initial state |E〉〈E|
evolved according to the full Hamiltonian HΛn , if the shell is large enough. Since |E〉〈E| is stationary, this leads
to (11). On the other hand, interaction across the boundary of Λ′ will decohere the state TrΛn\Λ′ |E〉〈E|; in particular,
coherences corresponding to energy levels e1, e2 with large |e1 − e2|will be suppressed, which yields (12).
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In Theorems 1, 2 and 3, we quantify thermalization by the distance to the marginal of the global Gibbs state, that
is, TrΛn\Λ exp(−βnHp

Λn
)/Zn. This contrasts with the above setup (10), where one starts with the thermal state in a

subregion Λ′ containing a shell around Λ. In fact, it is easy to see that Theorems 1, 2 and 3 also hold if we replace the
thermal state on all of Λn by the thermal state on Λ′ := Λn′ ⊇ Λ for n′ � n, as long as n′ → ∞ with n → ∞; that is,
if we consider the distance to TrΛn′\Λ exp(−βn′Hp

Λn′
)/Zn′ instead. The drawback, however, is that we do not have

any non-trivial bounds for fixed finite n′ (in contrast to Theorem 4), which renders the formulation of the first three
theorems in terms of the more general shell setup mathematically equivalent to their current formulation. Finding
non-trivial finite-size bounds, in particular on the size of the shell, remains as an interesting open problem.

III. PROOFS OF THE MAIN RESULTS

All results are formulated in two versions, namely for periodic and for arbitrary boundary conditions (BC). The
main results can be found in the following places:

• Equivalence of ensembles: Main technical statement is Theorem 10 (periodic BC), with Example 13 giving
the standard formulation in comparing the microcanonical and the canonical ensemble. The corresponding
formulations for arbitrary BC are given in Theorem 20 and Example 21. Note that the norm ‖ · ‖{m} appearing
there can be replaced by ‖ · ‖[m], measuring the difference of expectation values on m-block averaged observables
only, due to Lemma 24.

• Canonical typicality: For periodic BC, the main result is Theorem 25, with a derandomized version in terms of
8-designs given in Theorem 28. The corresponding formulations for arbitrary BC are given in Theorem 26 and
Theorem 29.

• Dynamical thermalization: For periodic BC, the main result is Theorem 31, and for arbitrary BC it is Theo-
rem 33.

• Finite-size bounds without interaction: Lemma 34 relates the Ising model and equivalence of ensembles for
sharp energy eigenspaces (δ = 0) and local Hilbert space dimension d = 2 to the finite de Finetti theorem.
Lemma 36 is a new derivation (compared to Diaconis and Freedman [22]) in terms of the relative entropy. The
main result is Theorem 37, proving that the scaling (bath size increasing linearly with system size to achieve
fixed 1-norm error) remains basically valid also for δ > 0.

• Numerical results: They are given in Subsection III E, confirming that some assumptions from the main theo-
rems (on degeneracy of spectra etc.) are generically satisfied. Moreover, they show that the qualitative finite-
size scaling that has been proven analytically for non-interacting systems seems to remain valid for interacting
systems with periodic BC, at least for lattice dimension ν = 1.

• Eigenstate thermalization: The main result is Theorem 38, showing that energy eigenstates are locally “weakly
diagonal”. Note that this result does not assume translation-invariance (only finite range of interaction).

The notation is specified in Subsection III A below. In comparison to Section II, statements about the minimization
of the Helmholtz free energy density f(ω) := u(ω) − s(ω)/β are replaced by statements about the maximization of
−β f(ω) = s(ω)− β u(ω) (following mathematical physics tradition), which has to be compared with the “pressure”

p(β,Φ) = −β fth(β) (β > 0).

This has the advantage that p(β,Φ) is also defined for β = 0, i.e. infinite temperature. Moreover, convexity of
β 7→ p(β,Φ) will play a crucial role. Similarly, to conform with mathematical physics literature, we will write Φ(X)
instead of hX , and the map Φ will be called an “interaction”. Furthermore, we will assume that the small subsystem
Λ equals Λm for some fixed m, which is no loss of generality.

A. Equivalence of ensembles

We start by fixing some notation. We consider a ν-dimensional quantum lattice system, with local Hilbert space
dimension d. To every x ∈ Zν , we associate a local algebra of observables Ax, which is a copy of Md(C), the algebra
of complex d × d matrices. For every finite region Λ ⊂ Zν , we have the local observable algebra AΛ :=

⊗
x∈ΛAx.
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For every y ∈ Zν , there is a translation automorphism γy , mapping observables A in a region Λ, i.e. A ∈ AΛ, to the
corresponding observable γy(A) in the translated region Λ + y, i.e. γy(A) ∈ AΛ+y .

To every finite region X ⊂ Zν , we associate an interaction Φ(X), which is a self-adjoint operator in AX , describing
the interaction of the spins in region Λ. For finite Λ ⊂ Zν , the local Hamiltonian HΛ is

HΛ :=
∑
X⊂Λ

Φ(X).

We assume that our interaction has finite range, i.e. that Φ(X) = 0 whenever the diameter of X is larger than r for
some fixed r ∈ N. Furthermore, we assume translation-invariance, which can be expressed as

Φ(X + y) = γy(Φ(X)) for all X ⊂ Zν finite, y ∈ Zν .

We can also define an observable algebra A∞ for the infinite lattice Zν by a suitable limit procedure, called the
quasi-local algebra, see [13] for details. The (operator) norm on A∞ will be denoted ‖ · ‖∞. A state ω on A∞ is a
positive linear functional with ω(1) = 1. States are automatically weak∗-continuous. A state ω is translation-invariant
if ω(γy(A)) = ω(A) for all A ∈ A∞ and y ∈ Zν (it is sufficient to demand this for all A ∈ AΛ for all finite regions Λ).
If Λ ∈ Zν is finite, there is a density matrix ωΛ ∈ AΛ such that

tr(ωΛA) = ω(A) for all A ∈ AΛ.

This yields the following consistency condition: if Λ ⊂ Λ′ and Λ′ is finite, then ωΛ = TrΛ′\ΛωΛ′ . Conversely, every
consistent family of density matrices defines a state on A∞.

For translation-invariant states, the following definitions are crucial. To state them, we consider sequences of
boxes (that is, hyperrectangles) (Λn)n∈N with Λn ⊂ Λn+1 and with the property that for every x ∈ Zν there is some
n ∈ N with x ∈ Λn. Unless specified otherwise, all sequences of regions Λn in the following will be assumed to have
these properties.

All logarithms are in base e, i.e. log(exp(x)) = x.

Definition 5. Let ω be a translation-invariant state on A∞. Then the following expressions exist:

• Energy density: u(ω) := lim
n→∞

1

|Λn|
tr(ωΛnHΛn),

• entropy density: s(ω) := − lim
n→∞

1

|Λn|
tr(ωΛn logωΛn).

Moreover, there is the state-independent quantity pressure

p(β,Φ) := lim
n→∞

1

|Λn|
log tr exp(−βHΛn)

for all β ≥ 0. It satisfies

p(β,Φ) = sup{s(ϕ)− β u(ϕ) | ϕ is any translation-invariant state on A∞}. (13)

See [13] for more details. In the following, we consider Gibbs state on the infinite lattice. They are defined by any
one of the following equivalent conditions.

Definition 6. Let ω be a translation-invariant state on the quasi-local algebra A∞ over Zν , with translation-invariant finite-
range interaction Φ, and let β > 0. Then the following conditions are equivalent:

• Variational principle: it holds p(β,Φ) = s(ω)− β u(ω), which is the maximal possible value according to (13).

• KMS condition at inverse temperature β (see [16],

• Gibbs condition at inverse temperature β (see also [16]).

If ω satisfies one of these equivalent conditions, we will call ω a Gibbs state at inverse temperature β. We say that Gibbs states
are unique around inverse temperature β for a given interaction Φ if there is an open interval containing β such that for every
β′ in this interval, there is a unique (only one) Gibbs state at inverse temperature β′.
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Since we do not use the KMS and the Gibbs conditions, we do not explain them in detail here. We refer the reader
to [16] and [13].

For what follows, we need to extend the notion of translation-invariance to finite regions. This is done in the
obvious way. Let An := AΛn , with Λn a sequence of boxes tending to infinity as n→∞ in the sense specified above.
Call an observable A ∈ An Λn-translation-invariant if it is translation-invariant with respect to periodic translations
of Λn; that is, translations in which we regard Λn as a torus. In more detail, write Λn as the product of intervals

Λn = [λ1, µ1]× [λ2, µ2]× . . .× [λν , µν ],

where λi, µi ∈ Z, λi ≤ µi. The statement that Λn tends to infinity means that all λi → −∞ and all µi → +∞ as
n→∞. Define ν independent translations (Tj)j=1,...,ν for x ∈ Λn by

Tj(x) ≡ Tj(x1, . . . , xν) = (x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xν),

where

xj ⊕ 1 =

{
xj + 1 if xj + 1 ≤ µj ,
λj otherwise.

We can interpret Tj as a unitary operator, translating the computational basis vectors, constructed from the transla-
tion automorphisms γy . An observable A will be called Λn-translation-invariant if TjAT

†
j = A for all j = 1, . . . , ν.

We can also formalize this definition somewhat differently. Denote by T(Λn) the set of all periodic translations
of Λn into itself; in other words, regard Λn as a torus, and T(Λn) as the set of translations on the torus. These
are arbitrary compositions of translations Tj . If α ∈ Zν , then the periodic translation by vector α will be denoted
Tα ∈ T(Λn); it equals Tα = ©ν

j=1T
αj
j , where the circle denotes composition and the Tj are mutually commuting.

Then an observable A is Λn-translation-invariant if and only if TAT † = A for all T ∈ T(Λn).
So far, we have defined HΛ for finite regions Λ by summing up all interaction terms that are fully contained in

Λ. This is usually called the Hamiltonian with open boundary conditions. Alternatively, one can consider periodic or
other, more general boundary conditions. We use the following definition.

Definition 7 (Periodic and arbitrary boundary conditions). Let Φ be any finite-range translation-invariant interaction. A
region Λ ⊂ Zν is called large enough if for every region X with Φ(X) 6= ∅, there is y ∈ Zν such that the translation X + y is
contained in Λ.

A choice of boundary conditions is a map that assigns to every large enough, finite set Λ ⊂ Zν a Hamiltonian HBC
Λ such

that

lim
n→∞

∥∥HBC
Λn
−HΛn

∥∥
∞

|Λn|
= 0 (14)

for every sequence of boxes (Λn)n∈N that tends to infinity in the sense specified above.
A particularly important example of choice of boundary conditions is given by periodic boundary conditions, with corre-

sponding Hamiltonians denoted Hp
Λ. Following [13], we define it as

Hp
Λ :=

∑
X∩Λ6=∅

′
T−α [γα(Φ(X))]T †−α,

where α ∈ Zν denotes any vector that translates X into Λ, i.e. X + α ∈ Λ, and the prime on the sum indicates that regions
X,X ′ with X ′i = Xi + niai for all i, where ai is the i-th sidelength of the boxes Λ, and ni ∈ Z, are not included twice in the
sum, but only once (i.e. only X or X ′ will be included).

The fact that we are demanding that regions Λ are large enough implies that our definition of Hp
Λ agrees with both

of what Simon [13] calls Hp,1
Λ and Hp,2

Λ . To see that Hp
Λ satisfies (14), denote by ∂Λ the discrete boundary of Λ, that is

∂Λ := {x ∈ Λ | ∃y ∈ Zν \ Λ : dist(x, y) ≤ 1} , (15)

where dist(x, y) := maxi |yi − xi|. Suppose x ∈ Zν is any point. Since Φ has finite range and is translation-invariant,
there is some finite integer κ ∈ N equal to the number of finite regions X that contain x and have Φ(X) 6= 0. This
number is the same for every x ∈ Zν . Also, ‖Φ‖ := maxX ‖Φ(X)‖∞ is finite. Thus∥∥Hp

Λn
−HΛn

∥∥
∞ ≤

∑
X∩Λn 6=∅, X 6⊂Λn

‖Φ(X)‖∞ ≤
∑
x∈∂Λn

κ‖Φ‖ = κ‖Φ‖ |∂Λn|.
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Since |∂Λn|/|Λn| tends to zero for n → ∞, this proves (14). We can write Hp
Λn

in an alternative form. Given Λn,
denote by X1, . . . , XN subsets of Λn with the property that no Xi is a periodic translation of any other Xj , and such
that all subsets of Λn can be generated by periodically translating some Xi. For example, if Λ = 0, 1, 2, 3 on a one-
dimensional lattice, then X1 = {0}, X2 = {0, 1}, X3 = {0, 2}, X4 = {0, 1, 2} and X5 = {0, 1, 2, 3} is a possible choice
of those sets. Then we have

Hp
Λn

=

N∑
i=1

∑
T∈T(Λn)

TΦ(Xi)T
†,

and from the representation it becomes clear that Hp
Λ is Λn-translation-invariant.

Note that we do not consider what Simon calls “external boundary conditions”.
In the following, we will frequently use that the energy density does not depend on the choice of boundary

conditions; that is, if (τn)n∈N is an arbitrary sequence of states on An, then

lim
n→∞

(
tr(τnHΛn)

|Λn|
−

tr(τnH
BC
Λn

)

|Λn|

)
= 0.

This is because |tr(τnHΛn)− tr(τnH
BC
Λn

)| ≤ ‖HΛn −HBC
Λn
‖∞.

Lemma 8. Let (τn)n∈N be a sequence of density matrices in An such that every τn is Λn-translation-invariant. For every
m ∈ N, consider the sequence of states (ρ

(m)
n )n∈N ∈ Am, defined for n ≥ m by

ρ(m)
n := TrΛn\Λm τn.

Define L(m) as the set of all limit points of the sequence (ρ
(m)
n )n∈N, and L as the set of all possible sequences (σm)m∈N with

σm ∈ L(m) and σm−1 = TrΛm\Λm−1
σm. Then L is not empty, and every element of L defines a translation-invariant state on

the quasi-local algebra. Additionally, if β ≥ 0 is such that

lim inf
n→∞

1

|Λn|
(
S(τn)− β tr(τnHΛn)

)
≥ p(β,Φ), (16)

then every state ω ∈ L is a Gibbs state at inverse temperature β, and we have equality in (16). Furthermore, if L contains only

a single element ωβ , then lim
n→∞

1

|Λn|
tr(τnHΛn) = u(ωβ) and limn→∞

1
|Λn|S(τn) = s(ωβ).

Proof. First, we observe that every element of L(m) generates an element of L(m−1) by taking the partial trace over
Λm \ Λm−1; that is,

TrΛm\Λm−1
L(m) ⊆ L(m−1). (17)

Similarly, suppose that ρ ∈ L(m−1). By definition, this means that there is a strictly increasing sequence of natural

numbers (nk)k∈N such that ρ(m−1)
nk

k→∞−→ ρ. Now consider the sequence ρ(m)
nk ; sincem is fixed, it is a bounded sequence

on a finite-dimensional vector space. By Bolzano-Weierstraß, it must have at least one limit point ρ̄. Since ρ(m−1)
nk =

TrΛm\Λm−1
ρ

(m)
nk , we obtain ρ = TrΛm\Λm−1

ρ̄. We have thus proven that

for every ρ ∈ L(m−1), there is ρ̄ ∈ L(m) such that ρ = TrΛm\Λm−1
ρ̄. (18)

Furthermore, by Bolzano-Weierstraß, L(1) is non-empty. Combining the properties (17) and (18), we obtain
TrΛm\Λm−1

L(m) = L(m−1) as an equality between non-empty sets. This is sketched in Figure 3, where we plot
elements of L(m) as dots, with an edge connecting two dots if the left element (in L(m−1)) is the partial trace of the
right one (in L(m)). Wandering from left to the right, no path will lead to a dead end; furthermore, every point can be
reached this way by starting with some element in L(1). Thus, there is at least one path that starts with some element
σ1 ∈ L(1) and extends to infinity – that is, a sequence (σm)m∈N with σm−1 = TrΛm\Λm−1

σm. L is the set of all these
paths and hence not empty. Every ω ∈ L can be interpreted as a state: for any finite region Λ ⊂ Zν , take the smallest
n such that Λ ⊂ Λn, and set ωΛ := TrΛn\Λ ωm. This defines a consistent family of density matrices, hence a state on
the quasi-local algebra.
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Figure 3: Schematics of the sequence L(m) of limit points, as defined in the proof of Lemma 8. Note that |L(1)| > 1 is possible.

Now let ω ∈ L be any state. We claim that ω is translation-invariant. It will be sufficient to show the invariance
equation ω(γy(A)) = ω(A) for observables 0 ≤ A ≤ 1 and translations γδj , where δj = (0, . . . , 0, 1︸︷︷︸

j

, 0, . . . , 0). So let

Λ ⊂ Zν be finite, A ∈ AΛ an observable with 0 ≤ A ≤ 1, and j ∈ {1, . . . , d}; set γ := γδj . Choose m large enough
such that Λ ⊆ Λm and Λ + δj ⊆ Λm. Let ε > 0 be arbitrary. Since ωΛm ∈ L(m), there is some n ≥ m such that∥∥TrΛn\Λm τn − ωΛm

∥∥
1
< ε.

The effect of the translation of the observable A in the region Λn can be written

γ(A)⊗ 1Λn\(Λ+δj) = Tj(A⊗ 1Λn\Λ)T †j ,

where Tj ∈ AΛn is the unitary translation operator in Λn as defined shortly before Definition 7. Using this, we see
that there are two real numbers ∆,∆′ ∈ R with |∆| < 2ε, |∆′| < 2ε such that

ω(γ(A)) = tr
[
ωΛm

(
γ(A)⊗ 1Λm\(Λ+δj)

)]
= tr

[(
TrΛn\Λm τn

) (
γ(A)⊗ 1Λm\(Λ+δj)

)]
+ ∆

= tr
[
τn
(
γ(A)⊗ 1Λn\(Λ+δj)

)]
+ ∆ = tr

[
τnTj(A⊗ 1Λn\Λ)T †j

]
+ ∆

= tr
[
T †j τnTj(A⊗ 1Λn\Λ)

]
+ ∆ = tr

[
τn(A⊗ 1Λn\Λ)

]
+ ∆

= tr
[(

TrΛn\Λm τn
)

(A⊗ 1Λm\Λ)
]

+ ∆ = tr
[
ωΛm(A⊗ 1Λm\Λ)

]
+ ∆ + ∆′

= ω(A) + ∆ + ∆′.

Since ε > 0 was arbitrary, this proves translation-invariance of ω.
In particular, every ω ∈ L has a well-defined entropy rate s(ω); what can we say about it? Fix m ∈ N, and let

ωm := ωΛm . Remember that ρ(m)
n = TrΛn\Λm τn. Since ωm ∈ L(m), there exists a sequence (nk)k∈N such that

ρ(m)
nk

k→∞−→ ωm.

Fix k ∈ N. We now decompose Λnk into a disjoint union of boxes, where each box is a translate of Λm (where we
consider translations as in the notion of Λnk -translation invariance – that is, we regard Λnk as a torus). In general,
this cannot be done perfectly, but there will be some remaining part of Λnk not covered by a translate of Λm. To spell
out the details, let a(1)

m , . . . , a
(ν)
m denote the sidelengths of the box Λm, and a(1)

nk , . . . , a
(ν)
nk the sidelengths of Λnk . Write

a(i)
nk

= `i · a(i)
m + ji, where 0 ≤ ji < a(i)

m .

Clearly, all `i tend to infinity for k → ∞ on fixed m. Let Nk := `1 · `2 · . . . · `ν , then there are Nk translates
Λ

(1)
m ,Λ

(2)
m , . . . ,Λ

(Nk)
m of Λm and the remainder Λrem ⊂ ΛNk , all of them pairwise disjoint, such that

Λnk =

Nk⋃
i=1

Λ(i)
m ∪ Λrem.
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We have |Λrem| = |Λnk | −Nk · a
(1)
m · . . . · a(ν)

m , hence

|Λrem|
Nk

=
|Λnk |
Nk

− a(1)
m · . . . · a(ν)

m =
a

(1)
nk · a

(2)
nk · . . . · a

(ν)
nk

`1`2 . . . `ν
− a(1)

m a(2)
m . . . a(ν)

m

<
(`1 + 1)a

(1)
m · . . . · (`ν + 1)a

(ν)
m

`1`2 . . . `ν
− a(1)

m a(2)
m . . . a(ν)

m = |Λm| ·
[(

1 +
1

`1

)
. . .

(
1 +

1

`ν

)
− 1

]
k→∞−→ 0.

As a consequence, we also obtain

lim
k→∞

|Λnk |
Nk

= lim
k→∞

(
|Λm|+

|Λrem|
Nk

)
= |Λm|.

Since τnk is Λnk -translation-invariant, its marginals on all the boxes Λ
(i)
m are equal, that is, equal to ρ

(m)
nk . Due to

subadditivity of von Neumann entropy S, we have

S(τnk) ≤ NkS(ρ(m)
nk

) + S(τΛrem) ≤ NkS(ρ(m)
nk

) + |Λrem| · log d,

where d is the single-site Hilbert space dimension. Thus, we obtain

S(ωm) = lim
k→∞

S(ρ(m)
nk

) ≥ lim sup
k→∞

1

Nk
[S(τnk)− |Λrem| · log d] = lim sup

k→∞

1

Nk
S(τnk) = |Λm| lim sup

k→∞

1

|Λnk |
S(τnk). (19)

Furthermore, we can estimate the energy expectation value of ωm as follows. Define a Hamiltonian H(m)
Λnk

on Λnk by

“switching off” all interaction terms that are not fully contained in one of the Λ
(i)
m , that is,

H
(m)
Λnk

:=

Nk∑
i=1

∑
X⊂Λ

(i)
m

Φ(X).

We can estimate the norm difference of H(m)
Λnk

and HΛnk
as follows. All missing terms are either fully con-

tained in Λrem, or act across the boundary of some Λ
(i)
m . With the boundary ∂Λ

(i)
m as defined in (15), we obtain

limm→∞ |∂Λm|/|Λm| = 0, and due to finite-range of the interaction Φ, there are constants c1, c2 > 0 such that∥∥∥HΛnk
−H(m)

Λnk

∥∥∥
∞
≤ c1|Λrem|+ c2

Nk∑
i=1

|∂Λ(i)
m | = c1|Λrem|+ c2Nk|∂Λm|.

By construction and translation-invariance of Φ, we have

tr
(
τnkH

(m)
Λnk

)
= Nk tr

(
ρ(m)
nk

HΛm

)
.

Combining these identities, we get

1

|Λm|
tr(ωmHΛm) =

1

|Λm|
lim
k→∞

tr
(
ρ(m)
nk

HΛm

)
=

1

|Λm|
lim
k→∞

1

Nk
tr
(
τnkH

(m)
Λnk

)
≤ 1

|Λm|
lim sup
k→∞

1

Nk

(
tr(τnkHΛnk

) + c1|Λrem|+ c2Nk|∂Λm|
)

=
c2|∂Λm|
|Λm|

+ lim sup
k→∞

1

|Λnk |
tr
(
τnkHΛnk

)
. (20)

Since lim inf(an + bn) ≤ lim inf an + lim sup bn, we obtain

1

|Λm|
(S(ωm)− β tr(ωmHΛm)) ≥ lim sup

k→∞

1

|Λnk |
S(τnK )− β lim sup

k→∞

1

|Λnk |
tr
(
τnkHΛnk

)
− βc2

|∂Λm|
|Λm|

≥ lim inf
k→∞

1

|Λnk |

(
S(τnk)− β tr(τnkHΛnk

)
)
− βc2

|∂Λm|
|Λm|

≥ lim inf
n→∞

1

|Λn|
(S(τn)− β tr(τnHΛn))− βc2

|∂Λm|
|Λm|

.
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Taking the limit m → ∞ finally shows that s(ω) − β u(ω) ≥ p(β,Φ). Since ω is translation-invariant, we must have
equality, and ω must be a Gibbs state.

Now suppose that L contains only a single element, then so does L(m); hence ρ(m)
n converges for n → ∞, and

we can choose the convergent subsequence to be nk = k. Repeating the calculation of (20) with inequality in both
directions yields

lim inf
k→∞

1

|Λk|
tr(τkHΛk) ≥ 1

|Λm|
tr(ωmHΛm)− c2|∂Λm|

|Λm|
,

lim sup
k→∞

1

|Λk|
tr(τkHΛk) ≤ 1

|Λm|
tr(ωmHΛm) +

c2|∂Λm|
|Λm|

,

By taking the limitm→∞ of the right-hand side, we obtain limn→∞
1
|Λn| tr(τnHΛn) = u(ωβ). Then it follows directly

from (16) that lim infn→∞
1
|Λn|S(τn) = s(ωβ). Furthermore, (19) shows that lim supn→∞

1
|Λn|S(τn) ≤ s(ωβ), hence

limn→∞
1
|Λn|S(τn) = s(ωβ).

We can always define a maximally mixed state ω on the quasi-local algebra A∞, by defining its local density
matrix for finite Λ ⊂ Zν as ωΛ := 1Λ/d

|Λ|. It is easy to check that this is a consistent family of density ma-
trices, defining a translation-invariant state on A∞. According to Definition 5, its energy density exists; it is
u(ω) = limn→∞ tr(HΛn)/d|Λn|. This fact will be used in the following lemma. To state that lemma, we have to
assume that the interaction Φ does not vanish – and, in addition, that it is not physically equivalent to zero. An ex-
ample would be an interaction in one dimension (i.e. ν = 1) with Φ({1, 2}) = −Φ({1}) ⊗ 12, such that the resulting
Hamiltonian is zero up to boundary terms. For a formal definition of physical equivalence and a further example
see [13]. Note also that Φ is physically equivalent to zero if and only if p(β,Φ) = log d for all β ≥ 0, which is the same
value as for Φ = 0.

Lemma 9. Let Φ be an interaction which is not physically equivalent to zero, with ground state energy density
umin(Φ) = limn→∞ λmin(HΛn)/|Λn| = − limβ→∞ β−1p(β,Φ) and infinite temperature energy density umax(Φ) :=

limn→∞ tr(HΛn)/(|Λn|d|Λn|). Then, for every u ∈ (umin(Φ), umax(Φ)], there exists a unique β ≡ β(u) ≥ 0 such
that there is at least one Gibbs state ω at inverse temperature β with energy density u(ω) = u. Its entropy density is
s(ω) = s(u) := p(β(u),Φ) + uβ(u), and this is the maximal possible entropy density of any translation-invariant state
with energy density u.

Proof. These statements are proven in [13]; uniqueness of β(u) can be seen as follows. If Φ is not physically equivalent
to zero, then the function β 7→ p(β,Φ) is strictly convex, see [13, p. 349 and Thm. II.1.5]. Consider any translation-
invariant state ω; it defines an affine-linear map β 7→ s(ω) − β u(ω) =: `ω(β). According to (13), the line `ω lies
completely on or below of the graph of p; that is, `ω(β) ≤ p(β,Φ) for all β. According to Definition 6, it is a Gibbs
state if and only if `ω touches the graph of p; that is, if there is some β such that `ω(β) = p(β). If we are given some
value of u, then every translation-invariant state with this energy density has a corresponding line `ω with slope
(−u). Consider all those lines. Then only one of them can touch the graph of p, and it can do so in only one point,
due to the strict convexity of p. The β-value of the unique touching point is then β(u).

Now we have all ingredients to prove our main theorem on the equivalence of ensembles.

Theorem 10 (Equivalence of ensembles). Let (τn)n∈N be a sequence of Λn-translation-invariant states on An, let β ≥ 0,
and let Φ be a translation-invariant finite-range interaction which is not physically equivalent to zero, and for which there is a
unique Gibbs state ωβ at inverse temperature β. Suppose that

lim inf
n→∞

1

|Λn|
(
S(τn)− β tr(τnHΛn)

)
≥ p(β,Φ),

then we have equality in this expression, and

lim
n→∞

TrΛn\Λmτn = (ωβ)Λm (21)

for every m ∈ N. Furthermore, we have

lim
n→∞

1

|Λn|
S(τn) = s(ωβ), lim

n→∞

1

|Λn|
tr(τnHΛn) = u(ωβ),
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and

lim
n→∞

∥∥∥∥TrΛn\Λmτn − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

= 0, (22)

whereZn = tr(exp(−βHp
Λn

)), andHp
Λn

is the Hamiltonian on Λn with periodic boundary conditions. If the lattice dimension is
ν = 1, then Hp

Λn
in (22) can be replaced by HΛn , the Hamiltonian with open boundary conditions. Furthermore, if Gibbs states

are unique around inverse temperature β, define βBCn as the solution of the equation
1

|Λn|
tr

(
HBC

Λn

exp(−βBCn Hp
Λn

)

Zn

)
= un,

where BC denotes an arbitrary fixed choice of boundary conditions, and (un)n∈N is an arbitrary sequence with limn→∞ un =
u(ωβ). Then limn→∞ βBCn = β, and

lim
n→∞

∥∥∥∥∥TrΛn\Λmτn − TrΛn\Λm
exp(−βBCn Hp

Λn
)

Zn

∥∥∥∥∥
1

= 0. (23)

Proof. Set ρ(m)
n := TrΛn\Λmτn, and define L(m) and L exactly as in the statement of Lemma 8. Since there is only one

Gibbs state ωβ at inverse temperature β, Lemma 8 implies that L = {ωβ}, and so L(m) = (ωβ)Λm for all m ∈ N. In
other words, for every m, the state (ωβ)Λm is the unique limit point of the sequence (ρ

(m)
n )n∈N, and thus the limit of

this sequence. This proves the first identity. To infer the second identity, eq. (22), either apply [13, Thm. IV.2.12], or
note that τ ′n := exp(−βHp

Λn
)/Zn maximizes the functional ρ 7→ S(ρ)− β tr(Hp

Λn
ρ), thus

lim inf
n→∞

1

|Λn|
(S(τ ′n)− β tr(τ ′nHΛn)) = lim inf

n→∞

1

|Λn|
(
S(τ ′n)− β tr(τ ′nH

p
Λn

)
)

≥ lim inf
n→∞

1

|Λn|
(
S((ωβ)Λn)− β tr((ωβ)ΛnH

p
Λn

)
)

= s(ωβ)− β u(ωβ) = p(β,Φ).

Thus limn→∞(TrΛn\Λm τn − TrΛn\Λm τ
′
n) = (ωβ)Λm − (ωβ)Λm = 0. Note that this also shows that

limn→∞
1
|Λn| tr(τ

′
nHΛn) = u(ωβ). In the case of lattice dimension ν = 1, apply the fact that in this case, the local

Gibbs state exp(−βHΛn)/Zn weakly converges to the unique global Gibbs state in the limit n→∞, as shown in [15].
It remains to prove (23). To this end, use the notation Zn(β) := tr(exp(−βHp

Λn
)), and τ ′n :=

exp(−βBCn Hp
Λn

)/Zn(βBCn ). First we have to show that βBCn is well-defined for n large enough and that it is a
bounded sequence. Set ρ(β′) := exp(−β′Hp

Λn
)/Zn(β′) for β′ ≥ 0. Choose β0, β1 ∈ R such that 0 < β0 < β < β1,

and such that the Gibbs states at inverse temperatures β0 and β1 are unique. Then the previous results show that
limn→∞

1
|Λn| tr

(
HBC

Λn
ρ(βi)

)
= ui for i = 0, 1, where ui := u(ωβi). It follows u0 > u > u1, and thus for n large enough,

we have 1
|Λn| tr(H

BC
Λn

ρ(β0)) > un >
1
|Λn| tr(H

BC
Λn

ρ(β1)), so β0 < βBCn < β1 for n large enough; in particular, a solution
βBCn can be found in the interval (β0, β1). Moreover, since β0 and β1 can be chosen arbitrarily close to β, this proves
that limn→∞ βBCn = β. Direct calculation shows that S(τ ′n) = logZn(βBCn ) + βBCn un|Λn|, thus

lim inf
n→∞

1

|Λn|
(S(τ ′n)− β tr(τ ′nHΛn)) = lim inf

n→∞

1

|Λn|
(
logZn(βBCn ) + βBCn un|Λn| − β tr(τ ′nH

BC
Λn )

)
= lim inf

n→∞

(
(βBCn − β)un +

1

|Λn|
logZn(βBCn )

)
≥ lim inf

n→∞

1

|Λn|
(
logZn(β)− | logZn(βBCn )− logZn(β)|

)
≥ p(β,Φ)− lim sup

k→∞

|βBCn − β| ‖Hp
Λn
‖∞

|Λn|
= p(β,Φ),

where we have used that | logZn(βBCn )− logZn(β)| ≤ |βBCn − β| · ‖Hp
Λn
‖∞, see [13, Lemma II.2.2Q]. This shows that

limn→∞TrΛn\Λm τ
′
n = (ωβ)Λm . Combining this with (21) proves (23).

In order to obtain some concrete instances of this equivalence of ensembles result, we need a series of lemmas.
The first one is given in [13, Thm. IV.2.14], though with typos; see also [11, 12], and for newer results on equivalence
of ensembles, see [19]. Since the lemma is crucial for our paper, we give the proof for completeness, translating the
proof of [13, Thm. III.4.15] to the quantum case.
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Lemma 11. Suppose that Φ is any finite-range translation-invariant interaction, not physically equivalent to zero. Then, for
all u ∈ (umin(Φ), umax(Φ)], we have

lim
n→∞

1

|Λn|
log |{eigenvalues of HΛn ≤ u · |Λn|}| = s(u),

where s(u) is defined in Lemma 9.

Proof. We transfer the classical proof of [13, Thm. III.4.15] to the quantum case (with slight modifications and simpli-
fications, using notation established earlier). Define

NΛn(u) := |{eigenvalues of HΛn ≤ u · |Λn|}| s̄(u) := lim sup
n→∞

1

|Λn|
logNΛn , s(u) := lim inf

n→∞

1

|Λn|
logNΛn .

Denote the eigenvalues of HΛn by Ei, and Z := tr(exp(−β(u)HΛn)), then

1 ≥ 1

Z

∑
Ei:Ei/|Λn|≤u

e−β(u)Ei ≥ 1

Z
NΛne

−β(u)u|Λn|.

Taking logarithms, we obtain 1
|Λn| logNΛn ≤ 1

|Λn| logZ + β(u)u
n→∞−→ s(u), hence

s̄(u) ≤ s(u). (24)

The converse inequality is more involved. Fix u1 ≤ u2, δ > 0, and 0 < λ < 1. Use the notation of the proof
of Lemma 8, where we have split Λnk into disjoint regions Λ

(i)
m , i = 1, . . . , Nk, and Λrem. Set nk = k. De-

note by |E1〉, . . . , |EM 〉 mutually orthonormal eigenvectors of HΛm with energy density less than or equal to u1,
and |E′1〉, . . . , |E′N 〉 mutually orthonormal eigenvectors of HΛm with energy density less than or equal to u2 − δ,
where M := NΛm(u1) and N := NΛm(u2 − δ). Set i := (i1, . . . , iNk), where i1, . . . , ibλNkc ∈ {1, . . . ,M}, and
ibλNkc+1, . . . , iNk ∈ {1, . . . , N}. For every possible choice of i, define

|ψi〉 :=

bλNkc⊗
l=1

|Eil〉Λ(l)
m
⊗

Nk⊗
l=bλNkc+1

|E′il〉Λ(l)
m
⊗ |0〉Λrem

,

where |0〉Λrem
is an arbitrary pure state on Λrem. Then we have

〈ψi|HΛk |ψi〉
|Λk|

≤
〈ψi|H(m)

Λk
|ψi〉+ ‖HΛk −H

(m)
Λk
‖∞

|Λk|

≤ bλNkc
|Λk|

|Λm|u1 +
Nk − bλNkc
|Λk|

|Λm|(u2 − δ) + c1
|Λrem|
|Λk|

+ c2
Nk
|Λk|
|∂Λm|.

If k and m are large enough (while k � m), the right-hand side is less than u′ := λu1 + (1 − λ)u2. Furthermore, if
i 6= i′ then |ψi〉 ⊥ |ψi′〉, thus NΛk(u′) ≥ |{|ψi〉}| = MbλNkcNNk−bλNkc. Taking logarithms, we obtain

1

|Λk|
logNΛk (u′) ≥ 1

|Λk|
(bλNkc logNΛm(u1) + (Nk − bλNkc) logNΛm(u2 − δ)) .

Since limk→∞Nk/|Λk| = 1/|Λm|, this yields

s (u′) ≥ λ

|Λm|
logNΛm(u1) +

1− λ
|Λm|

logNΛm(u2 − δ),

and thus

s (λu1 + (1− λ)u2) ≥ λs(u1) + (1− λ)s(u2 − δ). (25)

Now consider a fixed value of u, and set β := β(u). We use the elementary inequalities for a ≤ b:

lim sup
k→∞

1

|Λk|
log

∑
i:Ei/|Λk|∈[a,b]

e−βEi ≤ −βa+ s̄(b), (26)

lim inf
k→∞

1

|Λk|
log

∑
i:Ei/|Λk|∈[a,b]

e−βEi ≤ −βa+ s(b), (27)
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where the Ei are now the eigenvalues of HΛk . Suppose that β is a point of differentiability of p(·,Φ) such that (due
to strict convexity) s(u′) − βu′ < p(β,Φ) for all u′ 6= u. Let α > 0 such that s(u′) − βu′ ≤ p(β,Φ) − α for all u′ with
|u′ − u| > δ. Choose ε > 0 such that εβ ≤ α/2. Now we decompose the energy density interval into a disjoint union

(umin(Φ), umax(Φ)] \ (u− δ, u+ δ) =

n−1⋃
j=1

Ij , where Ij = (aj , bj ] with |bj − aj | ≤ ε; In := (umax(Φ),∞).

Due to (26), we have lim sup
k→∞

1

|Λk|
log

∑
i:Ei/|Λk|∈Ij

e−βEi ≤ βaj + s̄(bj), and due to (24), we obtain for j ≤ n− 1

s̄(bj)− βaj ≤ s(bj)− βbj + β(bj − aj) ≤ s(bj)− βbj +
α

2
≤ p(β,Φ)− α

2
,

and for j = n, we get

s̄(bj)− βaj = log d− βumax(Φ) = s(an)− βan ≤ p(β,Φ)− α.

Thus

lim sup
k→∞

1

|Λk|
log

∑
i: |Ei/|Λk|−u|≥δ

e−βEi = lim sup
k→∞

1

|Λk|
log

n∑
j=1

∑
i:Ei/|Λk|∈Ij

e−βEi

≤ lim sup
k→∞

1

|Λk|

log n+ max
j

∑
i:Ei/|Λk|∈Ij

e−βEi

 ≤ p(β,Φ)− 1

2
α.

But since limk→∞
1
|Λk| log

∑
i e
−βEi = p(β,Φ) by definition of the pressure, we obtain

lim inf
k→∞

1

|Λk|
log

∑
i: |Ei/|Λk|−u|≤δ

e−βEi ≥ p(β,Φ).

Comparing this to (27) yields p(β,Φ) ≤ −β(u− δ) + s(u+ δ), hence

s(u+ δ) ≥ lim
δ→0

s(u+ δ) ≥ lim
δ→0

p(β,Φ) + β(u− δ) = p(β,Φ) + βu = s(u).

This finally shows that

s(u+ δ) ≥ s(u) for all δ > 0, if β(u) is a point of differentiability of β 7→ p(β,Φ).

Since β 7→ p(β,Φ) is strictly convex, the right and left derivatives D+p and D−p exist everywhere, and the set
B := {β > 0 | (D+p)(β) 6= (D−)(p)(β) is countable. Furthermore, the set A := {u ∈ (umin(Φ), umax(Φ)) | β(u) ∈ B}
is a countable union of closed intervals. If u is any value such that there is a sequence (un)n∈N, un ≤ u, with
limn→∞ un = u and un 6∈ A, then s(u) ≥ s(un), and due to continuity of s, we get s(u) ≥ s(u). We get this inequality
for all u 6∈ A and the left-hand endpoints of intervals in A.

Finally, let [u0, u1] ⊂ A be an isolated closed interval and u ∈ (u0, u1]. Then for every ε ≥ 0 there is λε ∈ (0, 1) with
u = λε(u1 + ε) + (1− λε)u0. Then, for every ε > 0 small enough such that u1 + ε 6∈ A, and δ > 0 small enough such
that u0 − δ 6∈ A, we get due to (25)

s(u) = s(λε(u1 + ε) + (1− λε)u0) ≥ λεs(u1 + ε) + (1− λε)s(u0 − δ) ≥ λεs(u1 + ε) + (1− λε)s(u0 − δ).

Since s is continuous, we can first take the limit δ → 0 and then the limit ε→ 0 to obtain

s(u) ≥ λ0s(u1) + (1− λ0)s(u0) = s(u),

where we have used the fact that s is linear on [u0, u1]. Together with (24), this completes the proof.

This lemma only refers to the Hamiltonian HΛn corresponding to open boundary conditions. However, we need
this in more generality, in particular for the case of periodic boundary conditions.
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Lemma 12. Let HBC
Λn

be the Hamiltonians corresponding to an arbitrary choice of boundary conditions in the sense of Defini-
tion 7. Then

lim
n→∞

1

|Λn|
log
∣∣{eigenvalues of HBC

Λn ≤ u · |Λn|
}∣∣ = s(u).

Proof. Define HBC
∂Λn

:= HBC
Λn
−HΛn . Fix u, and let ũ < u be arbitrary. If n is large enough, then

ũ|Λn|+ ‖HBC
∂Λn‖∞ ≤ u|Λn|.

Thus, due to Weyl’s Perturbation Theorem [20], if λ1, . . . , λk are the k smallest eigenvalues of HΛn , then HBC
Λn

has
eigenvalues λ′i ≤ λi + ‖HBC

∂Λn
‖. Therefore

lim inf
n→∞

1

|Λn|
log
∣∣{eigenvalues of HBC

Λn ≤ u|Λn|
}∣∣ ≥ lim inf

n→∞

1

|Λn|
log
∣∣{eigenvalues of HBC

Λn ≤ ũ|Λn|+ ‖H
BC
∂Λn‖

}∣∣
≥ lim inf

n→∞

1

|Λn|
log |{eigenvalues of HΛn ≤ ũ|Λn|‖}| = s(ũ).

By continuity of s, since this is true for all ũ < u, the previous inequality is also true if s(ũ) is replaced by s(u).
Similarly, if ũ > u is arbitrary, then

lim sup
n→∞

1

|Λn|
log
∣∣{eigenvalues of HBC

Λn ≤ u|Λn|
}∣∣ ≤ lim sup

n→∞

1

|Λn|
log
∣∣{eigenvalues of HBC

Λn ≤ ũ|Λn| − ‖H
BC
∂Λn‖

}∣∣
≤ lim sup

n→∞

1

|Λn|
log |{eigenvalues of HΛn ≤ ũ|Λn|‖}| = s(ũ).

This proves the claim.
As an immediate consequence we obtain the following result.

Example 13 (Microcanonical versus canonical ensemble). The sequence of states (τn)n∈N which are defined as the maximal
mixtures on the microcanonical subspaces

T pn := span

{
|E〉

∣∣∣∣ Hp
Λn
|E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
,

where Hp
Λn

is the Hamiltonian on Λn with periodic boundary conditions satisfies the premises of Theorem 10. That is, we obtain
equivalence of ensembles in the standard sense:

lim
n→∞

∥∥∥∥TrΛn\Λmτn − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

= 0,

where one may either set β equal to β(u), the inverse temperature corresponding to energy density u in the thermodynamic

limit, or equal to the (n-dependent) solution of
1

|Λn|
tr

(
HBC

Λn

exp(−βHp
Λn

)

Zn

)
= u, whereBC denotes an arbitrary fixed choice

of boundary conditions.

In this example, as well as in Theorem 10, the partial traces cannot be removed: globally, the microcanonical and
the canonical ensemble will in general have large one-norm distance. In the example of a non-interacting system
of binary spins, the well-known tightness of the classical finite de Finetti theorem provides a proof of this, see
Lemma 34.

Furthermore, it is crucial to use the reduction of the global Gibbs state, TrΛn\Λm exp(−βHp
Λn

)/Zn, instead of the
local Gibbs state, exp(−βHp

Λm
). Replacing the former by the latter renders the statement of the theorem false in

general. This is rather obvious: the local Gibbs state will in general be different from the reduction of the global one,
due to interaction terms across the boundary of Λm. This phenomenon will also occur in Subsection III F, where we
prove a special case of the “eigenstate thermalization hypothesis” only by taking the boundary terms into account.
A concrete counterexample to the naive version of equivalence of ensembles is already given by the classical Ising
model, interpreted as a quantum model.
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Example 14 (The Ising model). Consider the one-dimensional model on Λn := {−n, . . . , n}

Hp
Λn

:= −J
n∑

i=−n
ZiZi+1 − h

n∑
i=−n

Zi, (28)

identifying n+ 1 ≡ −n. Here, Zi denotes the Pauli Z-matrix Z =

(
1 0
0 −1

)
on lattice site i. This model has a unique Gibbs

state ωβ (in the thermodynamic limit n → ∞) for all β ≥ 0, see [24]. Fix m = 0, and consider the reduction of the global
microcanonical state τn to Λ0 = {0}, a single lattice site. Due to Example 13 and Theorem 10, we have

lim
n→∞

TrΛn\Λ0
τn = (ωβ)Λ0

.

On the other hand, using the known formula for the magnetization of the Ising model [24], we have

tr
(
(ωβ)Λ0Z

)
=

1

2n+ 1

n∑
i=−n

tr
(
(ωβ)ΛnZi

)
=

sinh(βh)√
sinh2(βh) + exp(−4βJ)

, (29)

where the first equality is due to translation-invariance, and the second equality follows from taking the limit n→∞ and using
the well-known result for the magnetization of this model. We can compare this with the local Gibbs state ωloc

β , which is defined
as the normalization of exp(−βHΛ0). We run into an immediate conceptual problem: how do we defineHΛ0? The most obvious
choice is HΛ0 = Z0, but we have the freedom to interpret (28) in different ways, by subtracting local terms from ZiZi+1 and
adding them to the Zi-term. This is exactly the freedom that we encountered before, in the definition of physical equivalence
that we discussed before Lemma 9. Whatever we define to be HΛ0

, it should be some fixed Hamiltonian which can be written

in the form HΛ0 = U

(
E1 0
0 E2

)
U†, with U unitary and E1, E2 ∈ R its energy eigenvalues. Our crucial assumption will be

that whatever HΛ0
is, it should be independent of β. But then

tr(ωloc
β Z) =

tr

[
U

(
exp(−βE1) 0

0 exp(−βE2)

)
U†Z

]
exp(−βE1) + exp(−βE2)

.

Regarding this as a function f(β) for complex β ∈ C, we obtain a function that is holomorphic except for possibly countably
many isolated singularities on the imaginary axis (if E1 6= E2). This is not true for (29) which is a function with branch cut
singularities due to the presence of the square root. This shows that ωloc

β 6= (ωβ)Λ0 at least for some values of β > 0, no matter
how we define HΛ0 . Thus TrΛn\Λmτn cannot converge to ωloc

β in the thermodynamics limit where n→∞.

The standard microcanonical ensemble (mentioned in Example 13 above) is defined as a flat distribution on the en-
ergy windows subspace corresponding to the interval (u−δ, u). However, we can apply Theorem 10 more generally.
In order to slightly generalize Example 13, we need another simple lemma:

Lemma 15. Let (p1, . . . , pn) be discrete probability distribution, and suppose that there exists M ≥ 1 such that
pi
pj
≤ M for

all i 6= j. Then its Shannon entropy satisfies H(p) ≥ log n− logM .

Proof. Let `i := log(1/pi), then log(pi/pj) = `j − `i, and the condition above implies |`i − `j | ≤ logM for all i, j.
Then all `i lie in the interval [`min, `max], where `min := mini `i and `max := maxi `i. This interval has size at most
`max − `min ≤ logM . Since mini pi ≤ 1/n ≤ maxi pi, the quantity log n must be contained in this interval. Thus
|`i − log n| ≤ logM for all i. It follows that

|H(p)− log n| =

∣∣∣∣∣∑
i

pi log
1

pi
−
∑
i

pi log n

∣∣∣∣∣ =

∣∣∣∣∣∑
i

pi`i −
∑
i

pi log n

∣∣∣∣∣ ≤∑
i

pi|`i − log n| ≤ logM.

Now we apply this to prove a generalization of Example 13.

Example 16 (Microcanonical ensemble with given distribution function). Let Φ be an interaction which is not physically
equivalent to zero, and let umin(Φ) < u ≤ umax(Φ). Let f : [umin(Φ), umax(Φ)]→ R be a bounded nonnegative function such
that f(x) = 0 for all x > u and such that there exists δ > 0 such that f is continuous and strictly positive on [u − δ, u], cf.
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Figure 4: Spectral density functions that satisfy the premises of Example 16, and yield equivalence of ensembles in the sense that the cor-
responding microcanonical state locally resembles the canonical state. The non-negative bounded function f must satisfy f(x) = 0 for all
x ≥ u, and there must be δ > 0 such that f is continuous and strictly positive on the interval [u− δ, u]. For x < u− δ, f can have all kinds
of discontinuities.

Figure 4. For every n ∈ N, let {|Ei〉}i be an arbitrary energy eigenbasis ofHp
Λn

, the Hamiltonian on Λn with periodic boundary
conditions. Then the set of states defined by

τn :=
1

N
∑
i

f

(
Ei
|Λn|

)
|Ei〉〈Ei|,

where N :=
∑
i f(Ei/|Λn|), satisfies the premises of Theorem 10. That is, this modified microcanonical ensemble resembles

locally the canonical ensemble.

Proof. Since tr(τnH
p
Λn

) ≤ u|Λn|, we have ū := lim supn→∞
1
|Λn| tr(τnHΛn) ≤ u. Define In := {i | Ei/|Λn| ∈ [u− δ, u]},

then τn = (1− λn)σn + λnσ
′
n, where

σn =
∑
i∈In

f(Ei/|Λn|)∑
j∈In f(Ej/|Λn|)

|Ei〉〈Ei|, σ′n =
∑
i 6∈In

f(Ei/|Λn|)∑
j 6∈In f(Ej/|Λn|)

|Ei〉〈Ei|, λn =

∑
j 6∈In f(Ej/|Λn|)∑
j f(Ej/|Λn|)

.

According to Lemma 12, we have∑
j 6∈In

f(Ej/|Λn|) ≤ #{i | Ei/|Λn| < u− δ} · ‖f‖∞ = exp[|Λn| s(u− δ) + o(|Λn|)].

On the other hand,∑
j

f(Ej/|Λn|) ≥
∑
j∈In

f(Ej/|Λn|) ≥ #In · min
x∈[u−δ,u]

f(x) = exp[|Λn| s(u)− o(|Λn|)].

This shows that limn→∞ λn = 0, and concavity of the entropy, i.e. S(τn) ≥ (1− λn)S(σn) + λnS(σ′n), yields

lim inf
n→∞

1

|Λn|
S(τn) ≥ lim inf

n→∞

1

|Λn|
S(σn).

But the eigenvalues of σn are pi :=
f(Ei/|Λn|)∑
j∈In f(Ej/|Λn|)

, such that
pi
pj

=
f(Ei/|Λn|)
f(Ej/|Λn|)

≤ b

a
, where a := minx∈[u−δ,u] f(x)

and b := maxx∈[u−δ,u] f(x). Thus, Lemma 15 shows that

S(σn) ≥ log #In − log
b

a
= |Λn| · s(u)− o(|Λn|),

and so s := lim infn→∞
1
|Λn|S(τn) ≥ s(u). In summary, we obtain

lim inf
n→∞

1

|Λn|
(S(τn)− β tr(τnHΛn)) ≥ s− β ū ≥ s(u)− β u = p(β,Φ).

This proves all the premises of Theorem 10.
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Remark. The condition that f has a discontinuity at u (i.e. f(u) > 0, but f(x) = 0 for all x > u) can be relaxed: the
statement above will remain valid if f(u) = 0 as long as f(x) does not tend to zero too quickly as x → u. However,
the question what “too quickly” means mathematically seems to depend on the choice of the model, because it
depends on subtle properties of the spectrum of HΛ, in particular on the number of eigenvalues in certain intervals
with diameters of order o(|Λ|). In this paper, we only analyze what can be said in full generality from translation-
invariance alone, without reference to any details of the model.

The main proof idea used in this subsection – to apply the variational principle (13) – has been pioneered by
Lima [11, 12]. Our result however is more general:

• It involves more general spectral density functions (the function f in Example 16) instead of only the flat
distribution,

• it allows to determine the inverse temperature from the energy density on the finite region Λn,

• it allows local lattice site dimensions larger than two, and, most significantly,

• Lima considers only a restricted set of interactions that commute with a particle number operator, see [12, p.
183], and [11, p. 63]. There is no such restriction in this work.

In the remainder of this subsection, we will consider the case of sequences of states (τn)n∈N that are not nec-
essarily Λn-translation-invariant. The simplest example is given by the microcanonical ensembles (in the sense of
Example 13) if boundary conditions are not periodic. The proof of Theorem 10 does not work any more, because we
cannot guarantee that limit points of this sequence, as states on the quasi-local algebra, are translation-invariant.

However, we can still prove a version of equivalence of ensembles in this case, even though it will be a weaker
version. This was already seen by Lima [12]. In a nutshell, we will prove an equivalence of ensemble result for a
restricted set of observables. The following definition specifies the class of observables that we will consider.

Definition 17 (m-block periodically averaged observable). For m ≤ n, an operator A ∈ An will be called an m-block
periodically averaged observable if there exists A′ ∈ Am with A′ = (A′)† such that

A =
1

|T(Λn)|
∑

T∈T(Λn)

T (A′ ⊗ 1)T †, (30)

where T(Λn) denotes all periodic translations of the finite region Λn into itself, and the unit observable is supported on Λn\Λm.
Moreover,Awill be called anm-block periodically averaged effect if there existsA′ ∈ Am which satisfies the equation above,
and additionally satisfies 0 ≤ A′ ≤ 1.

Note that m-block periodically averaged observables A on Λn are automatically Λn-translation-invariant. The
notion “effect” refers to the property that they satisfy 0 ≤ A ≤ 1 (as inherited from A′), and can thus be interpreted
as defining a binary measurement with POVM elements (A,1−A).

The usual ‖ · ‖1-distance on density matrices (which is twice the trace distance) can be interpreted (up to a factor
of two) as the maximal possible difference of probabilities in any binary measurement that is applied to the states:

‖ρ− σ‖1 = 2 max
0≤P≤1

|tr(Pρ)− tr(Pσ)| .

Similarly, we can define a pseudonorm that quantifies the extent to which two states differ in the expectation value
of m-block periodically averaged effects: for m ∈ N and M = M† ∈ An with n ≥ m, set

‖M‖{m} := 2 max {|tr(PM)| | P is an m-block periodically averaged effect on Λn} .

As a consequence, ‖ρ − σ‖{m} denotes the maximal difference in probabilities of any measurements described by
m-block averaged effects that are performed on ρ resp. σ. It is clear that 0 ≤ ‖A‖{m} ≤ ‖A‖1, and the norm properties
‖λA‖{m} = |λ| ‖A‖{m} for λ ∈ R as well as ‖A + B‖{m} ≤ ‖A‖{m} + ‖B‖{m} are satisfied. However, ‖A‖{m} can be
zero without A being zero, which shows that ‖ · ‖{m} is not a norm.

In the case where we have an m-block periodically averaged observable which does not come from an effect, we
have the following inequality:

Lemma 18. Let A be an m-block periodically averaged observable on Λn, coming from an observable A′ ∈ Am according
to (30). Then for all quantum states ρ, σ on Λn, we have

|tr(ρA)− tr(σA)| ≤ ‖A′‖∞‖ρ− σ‖{m}.
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Proof. Denote by λmin resp. λmax the smallest resp. largest eigenvalue of A′. If λmax = λmin then there is nothing to
prove. Otherwise, setB′ := (λmax−λmin)−1(A′−λmin1), then 0 ≤ B′ ≤ 1. DefineB := 1

|T(Λn)|
∑
T∈T(Λn) T (B′⊗1)T †,

then B is an m-block periodically averaged effect, and hence

|tr(ρB)− tr(σB)| ≤ 1

2
‖ρ− σ‖{m}.

On the other hand, we have B = (λmax − λmin)−1(A − λmin1). Substituting this into the previous inequality, and
using that λmax − λmin ≤ 2‖A′‖∞, we obtain the claimed inequality.

As a preparation, we need a lemma which says that periodically averaged local Gibbs states for arbitrary boundary
conditions converge to the global Gibbs state if it is unique.

Lemma 19. Fix any β ≥ 0, and let HBC
Λn

be a sequence of Hamiltonians with arbitrary boundary conditions, corresponding
to an interaction Φ which is not physically equivalent to zero and which has a unique Gibbs state ωβ at inverse temperature β.
Then, for every m ∈ N,

lim
n→∞

TrΛn\Λm

 1

|T(Λn)|
∑

T∈T(Λn)

T
exp(−βHBC

Λn
)

Zn
T †

 = (ωβ)Λm , (31)

where Zn = tr
(
exp(−βHBC

Λn
)
)
. Furthermore, if Gibbs states are unique around inverse temperature β > 0, and if we

define βBCn as the solution of the equation 1
|Λn| tr

(
HBC

Λn

exp(−βBCn HBCΛn
)

Zn

)
= un, with (un)n∈N an arbitrary sequence with

limn→∞ un = u(ωβ), then limn→∞ βBCn = β, and

lim
n→∞

TrΛn\Λm

 1

|T(Λn)|
∑

T∈T(Λn)

T
exp(−βBCn HBC

Λn
)

Z ′n
T †

 = (ωβ)Λm ,

where Z ′n = tr
(
exp(−βBCn HBC

Λn
)
)
.

Proof. Set ρn(β′) := exp(−β′HBC
Λn

)/Zn(β′), and ρn := ρn(β). By construction, ρn maximizes the functional ρ 7→
S(ρ)− β tr(HBC

Λn
ρ). Thus

S(ρn)− β tr(HBC
Λn ρn) ≥ S ((ωβ)Λn)− β tr

(
HBC

Λn (ωβ)Λn

)
.

Set ρ′n := 1/(|T(Λn)|)
∑
T∈T(Λn) TρnT

†, then concavity of the entropy implies S(ρ′n) ≥ S(ρn). Since T †Hp
Λn
T = Hp

Λn

for all T ∈ T(Λn), we have tr(ρ′nH
p
Λn

) = tr(ρnH
p
Λn

). We obtain

lim inf
n→∞

1

|Λn|
(S(ρ′n)− β tr(ρ′nHΛn)) ≥ lim inf

n→∞

1

|Λn|
(
S(ρn)− β tr(ρ′nH

p
Λn

)
)

= lim inf
n→∞

1

|Λn|
(
S(ρn)− β tr(ρnH

p
Λn

)
)

= lim inf
n→∞

1

|Λn|
(
S(ρn)− β tr(ρnH

BC
Λn )

)
≥ lim inf

n→∞

1

|Λn|
(
S ((ωβ)Λn)− β tr

(
HBC

Λn (ωβ)Λn

))
= s(ωβ)− β u(ωβ) = p(β,Φ). (32)

Since every ρ′n is Λn-translation-invariant, Theorem 10 proves (31) and also limn→∞
1
|Λn| tr(ρ

′
nHΛn) = u(ωβ). Thus

u(ωβ) = lim
n→∞

1

|Λn|
tr(ρ′nH

p
Λn

) = lim
n→∞

1

|Λn|
tr(ρnH

p
Λn

) = lim
n→∞

1

|Λn|
tr(ρnH

BC
Λn ).

Choose β0, β1 ∈ R such that 0 < β0 < β < β1, and such that the Gibbs states at inverse temperatures β0 and β1 are
unique. Then the previous results show that limn→∞

1
|Λn| tr

(
HBC

Λn
ρn(βi)

)
= ui for i = 0, 1, where ui := u(ωβi). It

follows u0 > u > u1, and thus for n large enough, we have 1
|Λn| tr(H

BC
Λn

ρn(β0)) > un >
1
|Λn| tr(H

BC
Λn

ρn(β1)), so β0 <

βBCn < β1 for n large enough; in particular, a solution βBCn can be found in the interval (β0, β1). Moreover, since β0

and β1 can be chosen arbitrarily close to β, this proves that limn→∞ βBCn = β. We can then repeat the calculation (32),



24

with β after the minus sign replaced by βBCn where necessary, ωβ left unchanged, ρn replaced by ρn(βBCn ), and ρ′n
replaced by ρ′n(βBCn ) := 1/(|T(Λn)|)

∑
T∈T(Λn) Tρn(βBCn )T †, proving the final claim of the lemma.

Now we have all the ingredients to prove our main theorem on equivalence of ensembles.

Theorem 20 (Equivalence of ensembles, non-translation-invariant states). Let (τn)n∈N be a sequence of states on An, let
β ≥ 0, and let Φ be a translation-invariant finite-range interaction which is not physically equivalent to zero, and for which
there is a unique Gibbs state ωβ at inverse temperature β. Suppose that

lim inf
n→∞

1

|Λn|
(
S(τn)− β tr(τnHΛn)

)
≥ p(β,Φ),

then we have equality in this expression, and

lim
n→∞

∥∥∥∥∥τn − exp(−βHBC
Λn

)

Zn

∥∥∥∥∥
{m}

= 0, as well as lim
n→∞

1

|Λn|
tr(τnHΛn) = u(ωβ),

where Zn = tr(exp(−βHBC
Λn

)), and HBC
Λn

is the Hamiltonian on Λn corresponding to Φ with arbitrary boundary conditions.
Furthermore, if Gibbs states are unique around inverse temperature β > 0, we have

lim
n→∞

∥∥∥∥∥τn − exp(−βBCn HBC
Λn

)

Zn

∥∥∥∥∥
{m}

= 0,

where βBCn is defined as the solution of the equation 1
|Λn| tr

(
HBC

Λn

exp(−βBCn HBCΛn
)

Zn

)
= un, where (un)n∈N is any sequence with

limn→∞ un = u(ωβ).

Proof. We prove both claims at once, by defining two sequences (βn)n∈N and (β′n)n∈N, either setting βn := β and

β′n := β, or setting βn := βBCn and β′n := βpn. Define Ω(σ) :=
1

|T(Λn)|
∑

T∈T(Λn)

TσT †, then it is easy to check that Ω

is Hilbert-Schmidt self-adjoint, i.e. tr(AΩ(B)) = tr(Ω(A)B) for A = A†, B = B†. Furthermore, define τ ′n := Ω(τn),
then concavity of the entropy implies that S(τ ′n) ≥ S(τn). Since the Hamiltonian with periodic boundary conditions
satisfies THp

Λn
T † = Hp

Λn
, we obtain tr(τ ′nH

p
Λn

) = tr(τnH
p
Λn

), and thus

lim inf
n→∞

1

|Λn|
(S(τ ′n)− β tr(τ ′nHΛn)) ≥ lim inf

n→∞

1

|Λn|
(
S(τn)− β tr(τ ′nH

p
Λn

)
)

= lim inf
n→∞

1

|Λn|
(
S(τn)− β tr(τnH

p
Λn

)
)

= lim inf
n→∞

1

|Λn|
(S(τn)− β tr(τnHΛn)) ≥ p(β,Φ).

Thus, τ ′n satisfies the premises of Theorem 10, and (22) and (23) tell us that

lim
n→∞

∥∥∥∥TrΛn\Λmτ
′
n − TrΛn\Λm

exp(−β′nH
p
Λn

)

Z ′n

∥∥∥∥
1

= 0,

where Z ′n = tr
(
exp(−β′nH

p
Λn

)
)
. Now let A be any m-block periodically averaged effect on Λn, then it is of the

form (30) with A′ ∈ Am, 0 ≤ A′ ≤ 1. A simple calculation shows that tr(τnA) = tr(τ ′n(A′ ⊗ 1)), and Λn-translation-

invariance of Hp
Λn

implies that tr

(
exp(−β′nH

p
Λn

)

Z ′n
A

)
= tr

(
exp(−β′nH

p
Λn

)

Z ′n
(A′ ⊗ 1)

)
. Thus

∥∥∥∥τn − exp(−β′nH
p
Λn

)

Z ′n

∥∥∥∥
{m}

= 2 max
A

∣∣∣∣tr(τnA)− tr

(
exp(−β′nH

p
Λn

)

Z ′n
A

)∣∣∣∣
= 2 max

A′

∣∣∣∣tr (A′TrΛn\Λmτ
′
n

)
− tr

(
A′ TrΛn\Λm

exp(−β′nH
p
Λn

)

Z ′n

)∣∣∣∣
≤
∥∥∥∥TrΛn\Λmτ

′
n − TrΛn\Λm

exp(−β′nH
p
Λn

)

Z ′n

∥∥∥∥
1

n→∞−→ 0. (33)
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Now we extend this to arbitrary boundary conditions. Let A be any m-block periodically averaged effect, then there
exists A′ ∈ Am such that A = Ω(A′ ⊗ 1). Setting Zn = tr(exp(−βnHBC

Λn
)), we obtain∣∣∣∣∣tr

(
A

exp(−βnHBC
Λn

)

Zn

)
− tr

(
A

exp(−β′nH
p
Λn

)

Z ′n

)∣∣∣∣ =

∣∣∣∣∣tr
(

Ω(A′ ⊗ 1)
exp(−βnHBC

Λn
)

Zn

)
− tr

(
Ω(A′ ⊗ 1)

exp(−β′nH
p
Λn

)

Z ′n

)∣∣∣∣∣
=

∣∣∣∣∣tr
(

(A′ ⊗ 1)Ω

(
exp(−βnHBC

Λn
)

Zn

))
− tr

(
(A′ ⊗ 1)Ω

(
exp(−β′nH

p
Λn

)

Z ′n

))∣∣∣∣∣
=

∣∣∣∣∣tr
(
A′ TrΛn\Λm Ω

(
exp(−βnHBC

Λn
)

Zn

))
− tr

(
A′ TrΛn\Λm Ω

(
exp(−β′nH

p
Λn

)

Z ′n

))∣∣∣∣∣
≤ 1

2

∥∥∥∥∥TrΛn\Λm Ω

(
exp(−βnHBC

Λn
)

Zn

)
− TrΛn\Λm Ω

(
exp(−β′nH

p
Λn

)

Z ′n

)∥∥∥∥∥
1

n→∞−→ 0

for all m ∈ N according to Lemma 19. Taking the supremum over all A shows that

lim
n→∞

∥∥∥∥∥exp(−βnHBC
Λn

)

Zn
−

exp(−β′nH
p
Λn

)

Z ′n

∥∥∥∥∥
{m}

= 0 for all m ∈ N.

Combining this with (33) proves the second claim. Furthermore, Theorem 10 implies that

u(ωβ) = lim
n→∞

1

|Λn|
tr(τ ′nH

p
Λn

) = lim
n→∞

1

|Λn|
tr(τnH

p
Λn

) = lim
n→∞

1

|Λn|
tr(τnHΛn).

This completes the proof of the theorem.

The simplest example application is as follows.

Example 21 (Microcanonical versus canonical ensemble, arbitrary boundary conditions). The sequence of states
(τn)n∈N which are defined as the maximal mixtures on the microcanonical subspaces

TBCn := span

{
|E〉

∣∣∣∣ HBC
Λn |E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
,

where HBC
Λn

is a Hamiltonian on Λn with arbitrary boundary conditions, satisfies the premises of Theorem 20. That is, if Gibbs
states are unique around inverse temperature β := β(u), we obtain equivalence of ensembles on m-block periodically averaged
observables:

lim
n→∞

∥∥∥∥∥τn − exp(−βHBC
Λn

)

Zn

∥∥∥∥∥
{m}

= 0 for all m ∈ N.

Furthermore, the same result is true if β is defined as the (n-dependent) solution of 1
|Λn| tr

(
HBC

Λn

exp(−βHBCΛn
)

Zn

)
= u.

Remark. The choice of boundary conditions in the definition of TBCn and in the statement of the example need not
be identical.

Proof. Apply Lemma 12 and 1
|Λn| tr(τnH

BC
Λn

) ≤ u to show that lim infn→∞
1
|Λn|

(
S(τn)− β tr(τnHΛn)

)
≥ p(β,Φ).

For non-periodic boundary conditions, it is somewhat unnatural to consider periodically averaged observables.
Instead, we may consider m-block averaged observables, where the region Λm is translated only inside the bound-
aries of Λn, without considering the periodic extension of the latter.

Definition 22 (m-block averaged observable). For m ≤ n, define T(Λm,Λn) := {y ∈ Zν | Λm + y ⊂ Λn}. An operator
A ∈ An will be called an m-block averaged observable if there exists A′ ∈ Am with A′ = (A′)† (resp. m-block averaged
effect if 0 ≤ A′ ≤ 1) such that

A =
1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

γy(A′)⊗ 1, (34)
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where the unit observable is supported on Λn \ (Λm + y). Moreover, we define the pseudonorm ‖ · ‖[m] on self-adjoint operators
M ∈ An by

‖M‖[m] := 2 max {|tr(PM)| | P is an m-block averaged effect on Λn} .

The following lemma translates Lemma 18 to the pseudonorm ‖ · ‖[m] and also generalizes it.

Lemma 23. Let A be an m-block averaged observable on Λn, coming from an observable A′ ∈ Am according to (34). Then for
all quantum states ρ, σ on Λn, we have

|tr(ρA)− tr(σA)| ≤ ‖A′‖∞‖ρ− σ‖[m].

Furthermore, we have ‖A‖∞ ≤ ‖A′‖∞; if in addition A′ ≥ 0, then we also have ‖A‖∞ ≥ 1
|Λm|‖A

′‖∞. In the special case
where |Λm| = 1, we have ‖A‖∞ = ‖A′‖∞ whether or not A′ is positive.

Proof. The proof of the first statement is identical to that of Lemma 18 and thus omitted. Clearly, ‖A‖∞ ≤ ‖A′‖∞
follows directly from the definition (34) and ‖γy(A′) ⊗ 1‖∞ = ‖γy(A′)‖∞ = ‖A′‖∞. Since Λm is a box, it can be
written Λm = [λ1, µ1] × . . . × [λν , µν ]. Consider two boxes Λ ⊂ Λn and Λ′ ⊂ Λn which are congruent to Λm, i.e. are
translations of Λm. We call Λ and Λ′ equivalent if there is a translation y such that Λ′ = Λ + y, which has components
yi = ki(µi − λi) with ki ∈ Z. In other words, equivalent boxes (which are shaped like Λm) do not overlap, and they
can tesselate Λn (up to sites close to the boundary).

Every equivalence class is uniquely determined by an element x ∈ Λm, which specifies a box Λ in that equivalence
class which is Λm + y, where x = (λ1, . . . , λν) + y. Thus, the number of equivalence classes is upper-bounded by
|Λm|. Now call two translations y, z ∈ T(Λm,Λn) equivalent if Λm + y is equivalent to Λm + z in the sense just
specified. There will be N equivalence classes T1, . . . ,TN , where N ≤ |Λm|, and T(Λm,Λn) =

⋃N
i=1 Ti, which is a

disjoint union. Consequently, at least one of them – say, Tj – must have |Tj | ≥ |T(Λm,Λn)|/N . For the moment,
suppose that A′ is a positive-semidefinite matrix. Then there is a state |ψ〉 on Λm such that ‖A′‖∞ = 〈ψ|A′|ψ〉. We
can write Λn =

⋃
y∈Tj (Λm + y) ∪ Λrest, where unions are disjoint. Now we define a state |Ψ〉 on Λn, by taking the

tensor product of copies of |ψ〉 in the regions Λm + y, and an arbitrary pure reference state |0〉 on Λrest. We get

‖A||∞ ≥ 〈Ψ|A|Ψ〉 =
1

|T(Λm,Λn)|

N∑
i=1

∑
y∈Ti

〈Ψ|γy(A′)⊗ 1|Ψ〉 ≥ 1

|T(Λm,Λn)|
∑
y∈Tj

〈Ψ|γy(A′)⊗ 1|Ψ〉

=
|Tj |

|T(Λm,Λn)|
〈ψ|A′|ψ〉 ≥ 1

N
‖A′‖∞ ≥

1

|Λm|
‖A′‖∞.

If |Λm| = 1, choose the single-site state |ψ〉 such that ‖A′‖∞ = |〈ψ|A′|ψ〉|. Let |ψ⊗Λn〉 be the state |ψ〉, copied onto
every lattice site of Λn. Then

‖A‖∞ ≥
∣∣〈ψ⊗Λn |A|ψ⊗Λn〉

∣∣ =

∣∣∣∣∣∣ 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

〈ψ⊗Λn |γy(A′)⊗ 1|ψ⊗Λn〉

∣∣∣∣∣∣ = |〈ψ|A′|ψ〉| = ‖A′‖∞.

The claim follows.

Asymptotically, that is for large n, the pseudonorms ‖ · ‖{m} and ‖ · ‖[m] are equivalent. This is the statement of
the following lemma. Thus, our equivalence of ensemble results in Theorem 20 and Example 21 remain valid of the
former pseudonorm is replaced by the latter. This yields a more natural physical interpretation of our results.

Lemma 24 (Equivalence of both averaging methods). For every m ≤ n and all states ρ, σ on Λn, we have

∣∣ ‖ρ− σ‖{m} − ‖ρ− σ‖[m]

∣∣ ≤ 8|Λm| ·
|∂Λn|
|Λn|

which tends to zero for fixed m as n→∞.

Proof. Define the completely positive map Φ : Am → An by setting Φ(A′) as the right-hand side of (30). Similarly,
define the completely positive map Φ′ : Am → An by setting Φ′(A′) as the right-hand side of (34). Note that
Φ(1) = 1 = Φ′(1). Then ‖M‖{m} = 2 max0≤A′≤1 |tr(MΦ(A′))| and ‖M‖[m] = 2 max0≤A′≤1 |tr(MΦ′(A′))|. If M is



27

traceless (as is the case for M = ρ − σ), then tr(MΦ(1 − A′)) = −tr(MΦ(A′)) and similarly for Φ′, and the absolute
values under the maxima can be removed. Thus∣∣ ‖M‖{m} − ‖M‖[m]

∣∣ = 2

∣∣∣∣ max
0≤A′≤1

tr(MΦ(A′))− max
0≤A′≤1

tr(MΦ′(A′))

∣∣∣∣ ≤ 2 max
0≤A′≤1

|tr(MΦ(A′))− tr(MΦ′(A′))|

≤ 2‖M‖1 max
0≤A′≤1

‖Φ(A′)− Φ′(A′)‖∞ .

To compare Φ and Φ′, we note that we can interpret every translation y ∈ T(Λm,Λn) as a periodic translation
T ∈ T(Λn) such that γy(A′) ⊗ 1 = T (A′ ⊗ 1)T † for every A′ ∈ Am; this is an equality of observables on Λn. In this
sense, we can write T(Λm,Λn) ⊂ T(Λn). A simple application of the triangle inequality and ‖A′‖∞ ≤ 1 gives

‖Φ(A′)− Φ′(A′)‖∞ ≤

∥∥∥∥∥∥ 1

|T(Λn)|
∑

T∈T(Λn)

T (A′ ⊗ 1)T † − 1

|T(Λn)|
∑

y∈T(Λm,Λn)

γy(A′)⊗ 1

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥ 1

|T(Λn)|
∑

y∈T(Λm,Λn)

γy(A′)⊗ 1− 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

γy(A′)⊗ 1

∥∥∥∥∥∥
∞

=
1

|T(Λn)|

∥∥∥∥∥∥
∑

T∈T(Λn)\T(Λm,Λn)

T (A′ ⊗ 1)T †

∥∥∥∥∥∥
∞

+

(
1

|T(Λm,Λn)|
− 1

|T(Λn)|

)∥∥∥∥∥∥
∑

y∈T(Λm,Λn)

γy(A′)⊗ 1

∥∥∥∥∥∥
∞

≤ 2
|T(Λn)| − |T(Λm,Λn)|

|T(Λn)|
.

Estimating this expression is a matter of simple lattice geometry. First, it is easy to see that |T(Λn)| = |Λn|, the
number of sites in the region. Consider any translation T ∈ T(Λn) \T(Λm,Λn). It translates Λm periodically inside
Λn, but not in a way such that the same is achieved by a non-periodic translation γy with y ∈ Zν . Instead, the
corresponding y-translation will map Λm partially inside and partially outside of Λn. That is, there must be some
intersection of y + Λm with the boundary of Λn defined in (15). However, for every given boundary point x ∈ ∂Λn,
there are only |Λm|many translations y such that x ∈ Λm + y. Hence

|T(Λn)| − |T(Λm,Λn)| = |T(Λn) \T(Λm,Λn)| ≤ |∂Λn| · |Λm|.

Combining the previous inequalities, and using that ‖ρ− σ‖1 ≤ 2, completes the proof.

B. Canonical typicality

With the results of the previous subsection, in particular Examples 13 and 21, it is easy to prove a general result on
canonical typicality for translation-invariant quantum systems.

Theorem 25 (Canonical typicality, periodic boundary conditions). Let Φ be any translation-invariant finite-range inter-
action, not physically equivalent to zero, with corresponding periodic boundary condition Hamiltonians Hp

Λn
, let umin(Φ) <

u ≤ umax(Φ) and δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at inverse temperature β ≡ β(u).
Consider the microcanonical subspace

T pn := span

{
|E〉

∣∣∣∣ Hp
Λn
|E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
.

If |ψ〉 ∈ T pn is a random pure state, then for every m ∈ N there is a sequence of positive real numbers (∆m,n)n∈N with
limn→∞∆m,n = 0, such that

Prob

{∥∥∥∥TrΛn\Λm |ψ〉〈ψ| − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

≥ ∆m,n + ε

}
≤ exp

(
− ε2 exp(|Λn| s(u) + o(|Λn|))

)
for every ε ≥ 0. Furthermore, if Gibbs states are unique around inverse temperature β > 0, then the same result is true if

β is chosen as the (n-dependent) solution of 1
|Λn| tr

(
HBC

Λn

exp(−βHpΛn )

Zn

)
= u, where BC denotes an arbitrary fixed choice of

boundary conditions.
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Proof. It follows from [4, Theorem 1] that

Prob

{∥∥TrΛn\Λm |ψ〉〈ψ| − Ωm,n
∥∥

1
≥ ε+

d|Λm|√
|T pn |

}
≤ 2 exp

(
−|T

p
n |ε2

18π3

)
for all ε ≥ 0, where |T pn | denotes the dimension of the subspace T pn , and Ωm,n := TrΛn\Λmτn, with τn the maximally
mixed state on T pn . Set

δm,n :=

∥∥∥∥Ωm,n − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

, (35)

then Example 13 resp. Theorem 10 imply that limn→∞ δm,n = 0. Thus, the previous statements imply

Prob

{∣∣∣∣TrΛn\Λm |ψ〉〈ψ| − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

≥ ε+
d|Λm|√
|T pn |

+ δm,n

}
≤ 2 exp

(
−|T

p
n |ε2

18π3

)
.

Furthermore, according to Lemma 12, we have |T pn | = exp[|Λn| s(u) + o(|Λn|)]. Setting

∆m,n := δm,n + d|Λm|/
√
|T pn | (36)

completes the proof of the theorem.

Example 14 shows again that we cannot in general replace the restriction of the global Gibbs state,
TrΛn\Λm exp(−βHp

Λn
)/Zn, with the local Gibbs state, exp(−βHBC

Λm
)/Zm, no matter what boundary conditions we

choose for HBC
Λm

.
Similarly as for our equivalence of ensembles result, we can prove an analogue of this theorem in the case of

arbitrary boundary conditions by replacing ‖ · ‖1 by ‖ · ‖{m}.

Theorem 26 (Canonical typicality, arbitrary boundary conditions). Let Φ be any translation-invariant finite-range
interaction, not physically equivalent to zero, with corresponding arbitrary boundary condition Hamiltonians HBC

Λn
, let

umin(Φ) < u ≤ umax(Φ) and δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at inverse temperature
β ≡ β(u). Consider the microcanonical subspace

TBCn := span

{
|E〉

∣∣∣∣ HBC
Λn |E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
.

If |ψ〉 ∈ TBCn is a random pure state, then for every m ∈ N there is a sequence of positive real numbers (∆m,n)n∈N with
limn→∞∆m,n = 0, such that

Prob


∥∥∥∥∥|ψ〉〈ψ| − exp(−βHBC

Λn
)

Zn

∥∥∥∥∥
[m]

≥ ∆m,n + ε

 ≤ exp
(
− ε2 exp(|Λn| s(u) + o(|Λn|))

)
for every ε ≥ 0. Furthermore, if Gibbs states are unique around inverse temperature β > 0, then the same result is true if β is

chosen as the (n-dependent) solution of 1
|Λn| tr

(
HBC

Λn

exp(−βHBCΛn
)

Zn

)
= u.

Proof. Denote by τBCn the maximally mixed state on TBCn . Suppose that η ≥ 0 is any real number such that∥∥ |ψ〉〈ψ| − τBCn ∥∥
[m]
≥ η. (37)

By definition, this means that there exists some observable A′ ∈ Am such that

2

∣∣∣∣∣∣ 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

(
〈ψ|γy(A′)⊗ 1|ψ〉 − tr(τBCn γy(A′)⊗ 1

)∣∣∣∣∣∣ ≥ η,
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and thus, there must be some y ∈ T(Λm,Λn) such that

2
∣∣〈ψ|γy(A′)⊗ 1|ψ〉 − tr(τBCn γy(A′)⊗ 1)

∣∣ ≥ η.
Let Λ := Λm + y, then |Λ| = |Λm|, Λ ⊂ Λn, and∥∥TrΛn\Λ |ψ〉〈ψ| − TrΛn\Λ τ

BC
n

∥∥
1
≥ η.

Now consider the case η = ε + d|Λm|/
√
|TBCn |. According to [4, Theorem 1], the probability that the previous

inequality holds on Haar-random choice of |ψ〉 is upper-bounded by 2 exp
(
−|TBCn |ε2/(18π3)

)
. Thus

Prob

{∥∥ |ψ〉〈ψ| − τBCn ∥∥
[m]
≥ ε+

d|Λm|√
|T pn |

}
≤ 2 exp

(
−|T

BC
n |ε2

18π3

)
.

Now set

δm,n :=

∥∥∥∥∥τBCn −
exp(−βHBC

Λn
)

Zn

∥∥∥∥∥
[m]

,

and set ∆m,n := δm,n + d|Λm|/
√
|TBCn |. Example 21 and Lemma 24 show that limn→∞ δm,n = 0 = limn→∞∆m,n, and

arguing as in the proof of Theorem 25 completes the proof.

Drawing a pure state |ψ〉 according to the Haar measure is a process that cannot be achieved efficiently in practice,
as parameter counting shows. Thus, it is also to be expected that no process in nature really produces a Haar-random
state. However, what can be achieved efficiently – for example, by application of random local unitaries [25] – are
approximations to the Haar measure known as (approximate) unitary t-designs. As shown in [26], they give a way to
“derandomize” results like the canonical typicality theorems above.

There are different definitions of what is called an ε-approximate k-design ν; they all have in common that the
computational effort of sampling from them scales polynomially in log ε and log d, where d is the underlying Hilbert
space dimension.

Here, we use the definition from [26]. It utilizes the notion of a balanced monomial of degree k of a matrix U , which
is a monomial in the components of U and U† which contains the same number (k) of conjugated as unconjugated
elements. For example, UijU∗pq is a balanced monomial of degree 1.

Definition 27 (Approximate design). A measure ν on the unitary group U(d) is called an ε-approximate (unitary) k-design,
if for all balanced monomials M of degree less than or equal to k, we have

|EU∼νM(U)− EU∼µHM(U)| ≤ ε

dk
,

where EU∼µ denotes the expectation with respect to a measure µ, and µH is the Haar measure.

We now use Theorem 1.4 in [26] to prove a derandomized version of canonical typicality. Note that the theorem
in [26] uses as an implicit additional assumption that k is an integer-multiple of 8.

Theorem 28 (Canonical typicality, periodic boundary conditions, derandomized version). Let Φ be any translation-
invariant finite-range interaction, not physically equivalent to zero, with corresponding periodic boundary condition Hamilto-
nians Hp

Λn
, let umin(Φ) < u ≤ umax(Φ) and ∆ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at inverse

temperature β ≡ β(u). Consider the microcanonical subspace

T pn := span

{
|E〉

∣∣∣∣ Hp
Λn
|E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
.

Choose a state |ψ〉 at random from T pn by choosing a unitary from an ε-approximate 8-design and applying it to a fixed initial
pure state, where ε = exp(−|Λn|s(u) + o(|Λn|)). Then for every m ∈ N large enough such that d|Λm| ≥ 14, there is a sequence
of positive real numbers (δm,n)n∈N with limn→∞ δm,n = 0, such that

Probν

{∥∥∥∥TrΛn\Λm |ψ〉〈ψ| − TrΛn\Λm
exp(−βHp

Λn
)

Zn

∥∥∥∥
1

≥ δm,n + κ

}
≤ d3|Λm|

κ2
exp

(
− |Λn|s(u) + o(|Λn|)

)
for all κ > 0. Furthermore, if Gibbs states are unique around inverse temperature β > 0, then the same result is true if β is

chosen as the (n-dependent) solution of 1
|Λn| tr

(
HBC

Λn

exp(−βHpΛn )

Zn

)
= u, where BC denotes an arbitrary fixed choice of boundary

conditions.
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Proof. Let τn be the maximally mixed state on T pn , and set ε := 6d3|Λm|/|T pn |. Due to [26, Theorem 1.4], we have

Probν
{∥∥TrΛn\Λm |ψ〉〈ψ| − TrΛn\Λm τn

∥∥
1
≥ κ

}
≤ 24d3|Λm|

|T pn |κ2
(38)

for all κ > 0. Define δm,n as in (35), use Example 13 and absorb the factor 24 into the exp(o|Λn|)-term.

One still has concentration on the thermal state; however, in contrast to the Haar measure result in Theorem 25,
the concentration is now exponential in the number of sites |Λn|, not doubly-exponential. This behavior is more in
line with standard expectations on physical systems in statistical mechanics.

It is now clear how Theorem 26 can be derandomized, by imitating the proof of Theorem 26 in conjunction with
the TBCn -analogue of (38) and the inequality ‖ · ‖[m] ≤ ‖ · ‖1. We omit the details.

Theorem 29 (Canonical typicality, arbitrary boundary conditions, derandomized version). Let Φ be any translation-
invariant finite-range interaction with corresponding arbitrary boundary condition Hamiltonians HBC

Λn
, let umin(Φ) < u ≤

umax(Φ) and δ > 0. Suppose that there is a unique infinite-volume Gibbs state ωβ at inverse temperature β ≡ β(u). Consider
the microcanonical subspace

TBCn := span

{
|E〉

∣∣∣∣ HBC
Λn |E〉 = E|E〉, E

|Λn|
∈ (u− δ, u)

}
.

Choose a state |ψ〉 at random from TBCn by choosing a unitary from an ε-approximate 8-design and applying it to a fixed initial
pure state, where ε = exp(−|Λn|s(u) + o(|Λn|)). Then for every m ∈ N large enough such that d|Λm| ≥ 14, there is a sequence
of positive real numbers (δm,n)n∈N with limn→∞ δm,n = 0, such that

Probν


∥∥∥∥∥|ψ〉〈ψ| − exp(−βHBC

Λn
)

Zn

∥∥∥∥∥
[m]

≥ δm,n + κ

 ≤ d3|Λm|

κ2
exp

(
− |Λn|s(u) + o(|Λn|)

)
for all κ > 0. Furthermore, if Gibbs states are unique around inverse temperature β > 0, then the same result is true if β is

chosen as the (n-dependent) solution of 1
|Λn| tr

(
HBC

Λn

exp(−βHBCΛn
)

Zn

)
= u.

Since the effort of sampling from an ε-approximate 8-design ν scales polynomially in log ε and the logarithm of
the Hilbert space dimension, we obtain that sampling from ν in the theorems above amounts to an effort that grows
only polynomially in |Λn|, i.e. the particle number.

C. Dynamical thermalization

We can apply the previous results to obtain statements about dynamical thermalization, using the results of [8]
which are elaborations of earlier results in [6] and [7]. However, for the technicalities, we need to relate the von
Neumann entropy with the Rényi entropy of order two. For α > 0 with α 6= 1 and density matrices ρ, we define [28]

Sα(ρ) :=
1

1− α
log tr(ρα),

and the limit α → 1 recovers von Neumann entropy, S1(ρ) := S(ρ) = −tr(ρ log ρ), and the limit α → 0 yields
S0(ρ) := log rank(ρ). If α ≤ α′ then Sα ≥ Sα′ . In fact, we will use Rényi entropy only for classical probability
vectors λ = (λ1, . . . , λN ), and write sloppily Sα(λ) for classical Rényi entropy, which is the same as the quantum
Rényi entropy of the diagonal matrix with entries λi. We use some inequalities and insights from [29] to show the
following:

Lemma 30. For every 0 ≤ ε ≤ 1, we have S2(ρ) ≥ 2ε

(
S(ρ)− ε

1 + ε
S0(ρ)

)
≥ 2ε(S(ρ)− εS0(ρ)).
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Proof. As shown in [29], we have ∂
∂q

q−1
q Sq ≥ 0, hence q−1

q Sq ≤ 1
2S2 for all q ∈ [1, 2]. Since the function q 7→ Sq is

convex, the value of Sq lies on or above the line g(x) := S0 − (S0 − S1)x that connects S0 and S1, i.e. Sq ≥ g(q) =
S0 − (S0 − S1)q. We get

S2 ≥
2(q − 1)

q
Sq ≥

2(q − 1)

q

(
S0 − (S0 − S1)q

)
= 2(q − 1)S1 −

2(q − 1)2

q
S0.

Setting q =: 1 + ε proves the claim.

Following [8], for any Hamiltonian H , we define its gap degeneracy by

DG(H) := max
E

∣∣{(i, j) | i 6= j, Ei − Ej = E}
∣∣ ,

where the Ei denotes the (energy) eigenvalues of H . Using Theorem 3 of [8], we can easily show the following.

Theorem 31 (Thermalization, periodic boundary conditions). Let Φ be a translation-invariant finite-range interaction
which is not physically equivalent to zero, and (ρ

(n)
0 )n∈N any sequence of initial states on Λn which have energy expectation

value of Un := tr(ρ
(n)
0 Hp

Λn
) with density Un/|Λn| converging to some value u ∈ (umin(Φ), umax(Φ)) as n→∞.

Suppose that the initial states have close to maximal “population entropy” in the following sense. Define S̄(ρ
(n)
0 ) :=

S(λ1, . . . , λN ), where S is Shannon entropy, and λi := tr(ρ
(n)
0 πi) is the probability that the i-th energy level is populated,

where Hp
Λn

=:
∑N
i=1Eiπi is the spectral decomposition. Furthermore, suppose that either Hp

Λn
is non-degenerate, or that every

πiρ
(n)
0 πi is Λn-translation-invariant. Then, determine the corresponding inverse temperature βn for which

tr(Hp
Λn
γpΛn(βn)) = Un, where γpΛn(βn) :=

exp(−βnHp
Λn

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γpΛn(βn))− o(|Λn|), (39)

then unitary time evolution ρ(n)(t) := exp(−itHp
Λn

)ρ
(n)
0 exp(itHp

Λn
) thermalizes the subsystem Λm for most times t:

〈∥∥∥TrΛn\Λm ρ
(n)(t)−

〈
TrΛn\Λm ρ

(n)(t)
〉∥∥∥

1

〉
≤ d|Λm|

√
DG(Hp

Λn
) exp

(
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

)
, and

lim
n→∞

∥∥∥∥〈TrΛn\Λm ρ
(n)(t)

〉
− TrΛn\Λm

exp(−βnHp
Λn

)

Zn

∥∥∥∥
1

= 0,

where Zn = tr(exp(−βnHp
Λn

)), and 〈·〉 denotes the average over all times t ≥ 0. Furthermore, in this statement, βn can be
replaced by β := β(u).

Remark. If Hp
Λn

is non-degenerate, we have S̄(ρ
(n)
0 ) = S(ρ̄

(n)
0 ), where ρ̄(n)

0 :=
∑
i πiρ

(n)
0 πi is the dephased initial

state. Furthermore, we can summarize the result by saying that〈∥∥∥∥TrΛn\Λm ρ
(n)(t)− TrΛn\Λm

exp(−βnHp
Λn

)

Zn

∥∥∥∥
1

〉
n→∞−→ 0

as long as the gap degeneracy DG grows at most subexponentially with |Λn|. However, the more detailed formula-
tion above contains more information: while the difference to the Gibbs state may tend to zero polynomially in |Λn|,
the result shows strong equilibration of time evolution indicated by a trace distance which goes to zero exponentially
in |Λn|.

Proof. According to [8, Theorem 3 resp. (25)], we have

〈∥∥∥TrΛn\Λm ρ
(n)(t)− (ρ̄

(n)
0 )Λm

∥∥∥
1

〉
≤ d|Λm|

√
DG(Hp

Λn
)

deff
, (40)
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where d−1
eff =

∑
i λ

2
i , thus deff = exp(S2(λ1, . . . , λN )), and ρ̄(n)

0 = 〈ρ(n)(t)〉 =
∑N
i=1 πiρ

(n)
0 πi. If Hp

Λn
is non-degenerate,

then every πiρ
(n)
0 πi is a real multiple of πi and thus Λn-translation-invariant. Thus, the conditions of the lemma

ensure that ρ̄(n)
0 is Λn-translation-invariant. Since the πiρ

(n)
0 πi/λi for λi 6= 0 are density matrices with mutually

orthogonal supports, we have

S(ρ̄
(n)
0 ) = S

 ∑
i:λi 6=0

λi
πiρ

(n)
0 πi
λi

 = S(λ1, . . . , λN ) +
∑
i:λi 6=0

λiS

(
πiρ

(n)
0 πi
λi

)
≥ S(λ1, . . . , λN ) = S̄(ρ

(n)
0 ).

Note that tr(ρ
(n)
0 Hp

Λn
) = tr(ρ̄

(n)
0 Hp

Λn
). Furthermore, Theorem 10 shows that limn→∞ βn = β := β(u), and ρ(βn)

maximizes the functional ρ 7→ S(ρ)− βntr(ρHp
Λn

). Thus

lim inf
n→∞

1

|Λn|

(
S(ρ̄

(n)
0 )− β tr(ρ̄

(n)
0 HΛn)

)
≥ lim inf

n→∞

1

|Λn|

(
S̄(ρ

(n)
0 )− β tr(ρ̄

(n)
0 Hp

Λn
)
)

≥ lim inf
n→∞

1

|Λn|

(
S(γpΛn(βn))− β tr(ρ

(n)
0 Hp

Λn
)
)

= lim inf
n→∞

1

|Λn|
(
S(γpΛn(βn))− β tr(γpΛn(βn)Hp

Λn
)
)

= lim inf
n→∞

1

|Λn|
(
S(γpΛn(βn))− βntr(γpΛn(βn)Hp

Λn
)
)

≥ lim inf
n→∞

1

|Λn|
(
S((ωβ)Λn)− βntr((ωβ)ΛnH

p
Λn

)
)

= s(ωβ)− β u(ωβ) = p(β,Φ), (41)

and Theorem 10 proves that

lim
n→∞

∥∥∥∥TrΛn\Λm ρ̄
(n)
0 − TrΛn\Λm

exp(−βnHp
Λn

)

Zn

∥∥∥∥
1

= 0

and limn→∞
1
|Λn|S(ρ̄

(n)
0 ) = s(ωβ) as well as limn→∞

1
|Λn| tr(ρ̄

(n)
0 HΛn) = limn→∞

1
|Λn| tr(ρ

(n)
0 Hp

Λn
) = u(ωβ). Together

with (39), this implies that S̄(ρ
(n)
0 ) = s(ωβ)|Λn|+ o(|Λn|). It remains to estimate deff . This will be done via Lemma 30.

Writing λ = (λ1, . . . , λN ) and using that S0(λ) ≤ logN ≤ |Λn| log d and S(λ) = S̄(ρ
(n)
0 ), we obtain S2(λ) ≥ 2ε(S(λ)−

ε|Λn| log d) = 2ε
(
(s(ωβ)− ε log d)|Λn|+ o(|Λn|)

)
for all 0 ≤ ε ≤ 1. The special case ε = s(ωβ)/(2 log d) yields

deff = exp(S2(λ)) ≥ exp

(
s(ωβ)2

2 log d
|Λn|+ o(|Λn|)

)
.

Here is an example of a suitable sequence of initial states that appeared in work by Riera et al. [10]:

Example 32 (“Flat” pure initial state). Consider pure initial states ρ(n)
0 = |ψ(n)

0 〉〈ψ
(n)
0 | which have a flat energy distribution

in an energy window, as discussed in [10]. Concretely, denote the energy eigenstates of Hp
Λn

by |Ei〉, fix δ > 0, and set (up to
normalization)

|ψ(n)
0 〉 ∼

∑
u−δ<Ei/|Λn|<u

|Ei〉.

If Hp
Λn

is non-degenerate, then S̄(ρ
(n)
0 ) is the logarithm of the number of energy levels between densities u − δ and u, which

is s(u)|Λn| + o(|Λn|) = S(γpΛn(β)) + o(|Λn|) according to Lemma 12. Thus, Theorem 31 proves thermalization of small
subsystems. The same conclusion holds if |ψ(n)

0 〉 is not exactly flat, but populates the energy levels as given in Example 16 and
Figure 4.

This example and Theorem 31 (in one formulation) assume that Hp
Λn

is non-degenerate. In fact, we show nu-
merically in Subsection III E that generic models of the kind we consider are non-degenerate, despite translation-
invariance. Alternatively, we can lift the condition of non-degeneracy or periodic boundary conditions by proving a
weaker statement about m-block-averaged observables.
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Theorem 33 (Thermalization, arbitrary boundary conditions). Let Φ be a translation-invariant finite-range interaction
which is not physically equivalent to zero, and (ρ

(n)
0 )n∈N any sequence of initial states on Λn which have energy expectation

value of Un := tr(ρ
(n)
0 HBC

Λn
) with density Un/|Λn| converging to some value u ∈ (umin(Φ), umax(Φ)) as n→∞, where BC

denotes an arbitrary fixed choice of boundary conditions.

Suppose that the initial states have close to maximal “population entropy” in the following sense. Define S̄(ρ
(n)
0 ) :=

S(λ1, . . . , λN ), where S is Shannon entropy, and λi := tr(ρ
(n)
0 πi), where HBC

Λn
=:
∑N
i=1Eiπi is the spectral decomposi-

tion. Then, determine the corresponding inverse temperature βn for which

tr(HBC
Λn γ

BC
Λn (βn)) = Un, where γBCΛn (βn) :=

exp(−βnHBC
Λn

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γBCΛn (βn))− o(|Λn|),

then unitary time evolution ρ(n)(t) := exp(−itHBC
Λn

)ρ
(n)
0 exp(itHBC

Λn
) thermalizes all m-block averaged observables for most

times t: 〈∥∥∥ρ(n)(t)−
〈
ρ(n)(t)

〉∥∥∥
[m]

〉
≤ d|Λm|

√
DG(HBC

Λn
) exp

(
−s(ωβ)2

4 log d
|Λn|+ o(|Λn|)

)
, and

lim
n→∞

∥∥∥∥∥〈ρ(n)(t)
〉
−

exp(−βnHBC
Λn

)

Zn

∥∥∥∥∥
[m]

= 0,

where Zn = tr(exp(−βnHBC
Λn

)), and 〈·〉 denotes the average over all times t ≥ 0. Furthermore, in this statement, βn can be
replaced by β := β(u).

Remark. As in the previous theorem, we can summarize the result (at the expense of losing some information) as

lim
n→∞

〈∥∥∥∥∥ρ(n)(t)−
exp(−βnHBC

Λn
)

Zn

∥∥∥∥∥
[m]

〉
= 0

whenever the gap degeneracy DG does not grow too quickly with |Λn|. In fact, we can always force DG to be equal
to one – that is, remove degeneracies – by adding appropriate boundary conditions in the sense of Definition 7.

Proof. For any X = X† ∈ An, we can estimate the ‖ · ‖[m]-norm via

‖X‖[m] = 2 max


∣∣∣∣∣∣ 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

tr [X(γy(A′)⊗ 1)]

∣∣∣∣∣∣
∣∣∣∣∣∣ A′ ∈ Am, 0 ≤ A′ ≤ 1


≤ 2 max

 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

|tr [X(γy(A′)⊗ 1)]|

∣∣∣∣∣∣ A′ ∈ Am, 0 ≤ A′ ≤ 1


≤ 2

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

max { |tr [X(γy(A′)⊗ 1)]| | A′ ∈ Am, 0 ≤ A′ ≤ 1}

=
1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

∥∥TrΛn\(Λm+y)X
∥∥

1
.

Using again the results of [8] in the form (40), setting again ρ̄(n)
0 := 〈ρ(n)(t)〉 =

∑
i πiρ

(n)
0 πi, we obtain〈∥∥∥ρ(n)(t)− ρ̄(n)

0

∥∥∥
[m]

〉
≤ 1

|T(Λm,Λn)|
∑

y∈T(Λm,Λn)

〈∥∥∥TrΛn\(Λm+y) ρ
(n)(t)− TrΛn\(Λm+y) ρ̄

(n)
0

∥∥∥
1

〉
≤ d|Λm|

√
DG(HBC

Λn
)

deff
,

where deff = exp(S2(λ)). As in the proof of Theorem 31, we have S(ρ̄
(n)
0 ) ≥ S̄(ρ

(n)
0 ) = S(λ), and also tr(ρ

(n)
0 HBC

Λn
) =

tr(ρ̄
(n)
0 HBC

Λn
). Furthermore, Lemma 19 implies that limn→∞ βn = β := β(u). Thus, we can repeat the calculation (41)
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in the proof of Theorem 31, and obtain that lim infn→∞
1
|Λn|

(
S(ρ̄

(n)
0 )− β tr(ρ̄

(n)
0 HΛn)

)
≥ p(β,Φ). Consequently,

Theorem 20 and Lemma 24 imply that

lim
n→∞

∥∥∥∥∥ρ̄(n)
0 −

exp(−βnHBC
Λn

)

Zn

∥∥∥∥∥
[m]

= 0 and lim
n→∞

1

|Λn|
tr(ρ̄

(n)
0 HBC

Λn ) = u(ωβ).

As in the proof of Theorem 31, it also follows that S̄(ρ
(n)
0 ) ≥ s(ωβ)|Λn|+ o(|Λn|) = S(λ). Repeating the final steps of

the proof of Theorem 31 yields the claimed estimate for deff .

D. Finite-size estimates for systems without interaction

As the most simple special case, consider the non-interacting Hamiltonian

HΛ :=
∑
x∈Λ

hx,

where hx = γx(h) denotes a fixed self-adjoint matrix h sitting on site x ∈ Λ. This corresponds to an interaction Φ of
the form

Φ(X) =

{
γX(h) if #X = 1

0 otherwise.

Since there is no interaction, the dimension ν of the lattice Zν does not play any role; without loss of generality, we
may assume that ν = 1. Similarly, we set Λm = [1,m] ⊂ Z. Without interaction, the (restriction of the global) Gibbs
state becomes the product state

TrΛn\Λm
exp(−βHΛn)

Zn
= γ⊗mβ ,

where γβ = exp(−βh)/Z1 is the single-site Gibbs state with single-site partition function Z1. We will now look at
equivalence of ensembles – and its finite-size behavior – in this special case. That is, we consider the maximally
mixed state τn on

Tn := span

{
|E〉

∣∣∣∣ En ∈ [u− δ, u]

}
,

where δ > 0 and u will be considered fixed in what follows. On every site, we can choose the local basis such that
h is diagonal, denoting the corresponding single-site eigenstates of h by {|0〉, . . . , |d− 1〉}. (Recall that d denotes the
single-site Hilbert space dimension.) For 0 ≤ j ≤ d− 1, the eigenvalue corresponding to |j〉 will be denoted Ej ; that
is,

h|j〉 = Ej |j〉.

We may always choose a basis and shift the energy such that 0 = E0 ≤ E1 ≤ . . . ≤ Ed−1, i.e.

h =


0
E1

. . .
Ed−1

 .

Every string s = s1s2 . . . sn of length n over the alphabet {0, . . . , d−1} describes an eigenvector |s〉 := |s1〉⊗ . . .⊗|sn〉
of H on n sites, where H|s〉 =

∑
i h|si〉 =

∑
iEsi . Thus, the microcanonical subspace can also be written

Tn = span

{
|s〉

∣∣∣∣∣ s ∈ {0, 1, . . . , d− 1}n, 1

n

n∑
i=1

Esi ∈ [u− δ, u]

}
.
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Our goal is to estimate the difference ∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
. (42)

Since all relevant operators compute, we can restrict to the probability distributions on the diagonal; we have a
purely classical problem. Our first observation is that a tight upper bound on this expression is known in the special
case δ = 0 and d = 2; it has been obtained in proofs of the finite classical de Finetti Theorem [22].

Lemma 34. In the case of a perfectly sharp microcanonical subspace, i.e. δ = 0, and of qubit systems, i.e. d = 2, we have∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
≤ 4m

n
,

assuming that the energy density u is chosen such that the corresponding microcanonical subspace Tn is not empty.

Proof. We have h =

(
0
E1

)
, and so ρβ =

(
1
e−βE1

)
· 1

1 + e−βE1
. The inverse temperature β is determined by

tr(γβh) = u. In this case, u = E1 · p1, where p1 is the relative frequencies of 1’s in the strings s with |s〉 ∈ Tn. This

equation implies γβ =

(
1− p1

p1

)
, with classical probability distribution Pβ := (1− p1, p1) on the diagonal. If we

denote by Q the classical probability distribution on {0, 1}m determined by the diagonal elements of TrΛn\Λmτn, we
have ∥∥∥TrΛn\Λmτn − γ

⊗m
β

∥∥∥
1

=
∥∥∥Q− P⊗mβ ∥∥∥

1
,

where ‖ · ‖1 on the right-hand side denotes the variation distance of two probability distributions:

‖P −Q‖1 =

2m∑
i=1

|Pi −Qi| = 2 max
A⊆{1,...,2m}

|P (A)−Q(A)|.

Consider an urn U with n balls, where p1 · n of them are marked by a “1” and all others marked by a “0”. Then P⊗mβ
describes the distribution obtained by m draws from U with replacement, whereas Q described the distribution
obtained by m draws from U without replacement, where in both cases the order of the results is taken into account.
These distributions are considered in [22] in the proof a finite version of the classical de Finetti theorem. The main
result then follows from Theorem (4) in [22].

For d ≥ 3, even if δ = 0, the results of [22] do not directly yield an upper bound on expression (42). This is for two
reasons. First, the typical subspace Tn will in general not be spanned by a single type class, but by several ones. For
example, consider the case d = 3 with energies E0 = 0, E1 = 1, and E2 = 2. Fixing the energy density to u = 2/3
yields the microcanonical subspace

T3 = span {|011〉, |101〉, |110〉, |002〉, |020〉, |200〉} .

This is a disjoint union of two type classes. While T4 = {0} and T5 = {0}, we have

T6 = span {|000022〉, . . . , |000112〉, . . . , |001111〉, . . .} ,

where the dots denotes all permutations. This is a union of three type classes. Then the results in [22] do not
prove directly that TrΛn\Λmτn is close to a product state, but that it is close to a convex combination of product states,
resembling the de Finetti theorem.

In this particular example, it can be checked numerically that the qualitative behavior of Lemma 34 remains true:
n needs to be increased linearly with m in order to achieve a fixed one-norm distance error. The inverse temperature
turns out to be β = log[(1 +

√
33)/4], and γβ = diag

(
(15−

√
33)/18, (

√
33− 3)/9, (9−

√
33)/18

)
. The subspace Tn is

non-trivial whenever n is a multiple of 3. Define the function f : N→ N by

f(m) := smallest possible n ∈ N such that
∥∥∥TrΛn\Λmτn − γ

⊗m
β

∥∥∥
1
≤ 1

100
.

This function is evaluated numerically in Figure 5. It can be seen that n = f(m) increases linearly with m.
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Figure 5: Minimal number of sites n to guarantee that a subsystem of given sizem is ε-close to the local Gibbs state, where ε = 1/100, energy
density u = 2/3, local Hilbert space dimension d = 3, and energy levels E0 = 0, E1 = 1 and E2 = 2. In this case, the microcanonical
subspace of width δ = 0 is spanned by more than one type class. It can be seen that the size of the “bath” has to be increased linearly with the
size of the subsystem.

It turns out that for δ = 0, the previous example is atypical in the sense that generic energy windows usually lead
to microcanonical subspaces Tn that contain only a single type class. This can be characterized as in the following
lemma. We use the standard terminology to call a set of real numbers E1, . . . , Ed−1 rationally dependent if there
are rational numbers λ1, . . . , λd−1 ∈ Q, not all of them zero, such that

∑d−1
i=1 λiEi = 0, and otherwise rationally

independent.

Lemma 35. Suppose that δ = 0. Then, all non-trivial microcanonical subspaces Tn 6= {0}, for all n and u, are spanned by a
single type class if and only if the energies E1, . . . , Ed−1 are rationally independent.

Proof. We denote type classes as follows:

T (k0, . . . , kd−1) := {s ∈ {0, . . . , d− 1}n | #{i : si = j} = kj for all j} ,

that is, the set of all strings that have k0 zeroes, k1 ones, and so on. All strings s in the same type class have the same
energy 〈s|H|s〉 =: Es =

∑
iEsi =

∑d−1
j=0 kjEj . Thus, the microcanonical subspace Tn must be a disjoint union of

(spans of) type classes.
Suppose the energies are rationally independent, and suppose that spanT (k0, . . . , kd−1) ⊂ Tn and at the same time

spanT (k′0, . . . , k
′
d−1) ⊂ Tn. Then

u · n = k1E1 + . . .+ kd−1Ed−1 = k′1E1 + . . .+ k′d−1Ed−1.

Thus

(k1 − k′1)︸ ︷︷ ︸
∈Z

E1 + . . .+ (kd−1 − k′d−1)︸ ︷︷ ︸
∈Z

Ed−1 = 0,

and rational independence implies that kj = k′j for all j, so Tn is the span of a single type class.
Conversely, suppose that E1, . . . , Ed−1 are rationally dependent. That is, there are k1, . . . , kd−1 ∈ Z, not all ki = 0,

such that

k1E1 + . . .+ kd−1Ed−1 = 0.

There is at least one energy Ei with Ei > 0, so this equation can only be satisfied if mini ki =: kj < 0 and maxi ki > 0.
Set

E := −kj(E1 + . . .+ Ed−1) = (k1 − kj)E1 + . . .+ (kd−1 − kj)Ed−1

Then all k′i := ki − kj ≥ 0 are integers, and they cannot all be zero. Choose any n ∈ N with

n ≥ max{(d− 1)|kj |, (k1 − kj) + (k2 − kj) + . . .+ (kd−1 − kj)}.
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Set k0 := n− (d− 1)|kj | ≥ 0 and k′0 := n− [(k1 − kj) + . . .+ (kd−1 − kj)] ≥ 0, and set the energy density to u := E/n.
Then we have

spanT (k0, |kj |, |kj |, . . . , |kj |) ⊆ Tn,

spanT (k′0, k1 − kj , k2 − kj , . . . , kd−1 − kj) ⊆ Tn.

Thus, Tn is spanned by at least two different type classes.
There is a second reason why the results in [22] cannot directly be used if d ≥ 3, even in the case where δ = 0 and

assuming the rational independence of the energies. It follows from [22] that in this case∥∥TrΛn\Λmτn − γ
⊗m∥∥

1
≤ 2dm

n
; (43)

however, the state γ is in general not equal to γβ for any β. Instead, γ is the single-site density matrix with the
symbols’ relative frequencies in the type class as eigenvalues, and this is in general not a thermal state.

As a simple example, consider the case d = 3, with single-site Hamiltonian h = diag
(
0, 1,
√

2
)

and energy density
u = (2 +

√
2)/6. If n is a multiple of 6, then Tn contains all basis vectors |s〉 with strings s ∈ {0, 1}n that have n/2

zeroes, n/3 ones and n/6 twos. Then the γ appearing in (43) is γ = diag(1/2, 1/3, 1/6), and there does not exist any
β such that γ = γβ .

In the following, we will generalize the result of Lemma 34, by showing that also in the case of a microcanonical
subspace of width δ > 0, the qualitative behavior of Figure 5 remains true, at least in the case d = 2, i.e. in the qubit
case. First, we prove a lemma which shows this for δ = 0 or δ depending on n and approaching zero fast enough.
Later, we will extend the result to arbitrary fixed δ > 0 by some large deviations argument.

Lemma 36. Consider the case of qubits, i.e. d = 2, and shift the energies such that E0 = 0 and E1 = 1. If τn is the maximal
mixture on the non-trivial microcanonical subspace corresponding to the energy interval n · [u− δ, u], with 0 ≤ δ < u ≤ 1

2 , and
γβ is the single-site Gibbs state with corresponding inverse temperature β, then we have for subsystems of size m ≤ n(u− δ),

S
(
γ⊗mβ

∥∥TrΛn\Λmτn

)
≤ (1− δ)u

u− δ
· m

n−m
+
muδ

u− δ

(
1 +

m

n−m

)
,

where S denotes the quantum relative entropy (with logarithm in base e). In particular, if δ = 0, the relative entropy is
upper-bounded by m/(n−m), and the Pinsker inequality yields∥∥∥TrΛn\Λmτn − γ

⊗m
β

∥∥∥
1
≤
√

1

2
· m

n−m
(special case δ = 0).

Proof. As explained above, the calculation is classical: we can regard γ⊗mβ as a classical probability distribution on
the binary strings of length m, given by

P⊗mβ (x) = uk(1− u)m−k, where k is the number of ones in x.

From elementary combinatorics, the marginal distribution Q is given by

Q(x) = (dimTn)
−1 ·

∑
`∈[dn(u−δ)e,bnuc], `≥k

(
n−m
`− k

)
,

and the numerator counts all possible ways to complete x to a string of length nwhich has ` ones such that the energy
is in the suitable interval. Since k ≤ m ≤ n(u− δ) ≤ dn(u− δ)e, the condition ` ≥ k is automatically satisfied for all `
in the summation interval; hence this condition can be removed from the specification of the sum. The dimension of
the microcanonical subspace is given by

dimTn =

bnuc∑
`=dn(u−δ)e

(
n

`

)
. (44)

Thus, the quantum relative entropy S can be written in terms of the classical relative entropy H ,

S
(
γ⊗mβ

∥∥TrΛn\Λmτn

)
= H

(
P⊗mβ

∥∥∥ Q) =
∑

x∈{0,1}m
P⊗mβ (x)

(
logP⊗mβ (x)− logQ(x)

)

=

m∑
k=0

(
m

k

)
uk(1− u)m−k (logPk − logQk) , (45)
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where

Pk = uk(1− u)m−k, (46)

Qk = (dimTn)
−1 ·

bnuc∑
`=dn(u−δ)e

(
n−m
`− k

)
.

Using that (n−m)! = n!/[(n−m+ 1)(n−m+ 2) . . . n] and similar identities for (`− k)! and [n− `− (m− k)]!, we
obtain

Qk = (dimTn)
−1 ·

bnuc∑
`=dn(u−δ)e

n!
∏k−1
j=0 (`− j)

∏m−k−1
j=0 (n− `− j)∏m−1

j=0 (n− j) `!(n− `)!

In order to eliminate all `-variables from all products, we substitute the inequalities

`− j ≥ dn(u− δ)e − j,
n− `− j ≥ n− bnuc − j

and obtain

Qk ≥ (dimTn)
−1

∏k−1
j=0

(
dn(u− δ)e − j

)∏m−k−1
j=0

(
n− bnuc − j

)∏m−1
j=0 (n− j)

bnuc∑
`=dn(u−δ)e

(
n

`

)
.

Thus, the sum on the right-hand side exactly cancels the factor (dimTn)
−1 according to (44), and we obtain

logQk ≥
k−1∑
j=0

log
(
dn(u− δ)e − j

)
+

m−k−1∑
j=0

log
(
n− bnuc − j

)
−
m−1∑
j=0

log(n− j)

=

k−1∑
j=0

log
dn(u− δ)e − j
n− j −m+ k

+

m−k−1∑
j=0

log
n− bnuc − j

n− j
.

It is easy to check that the addends in both sums are (negative and) decreasing functions in j; thus, we can lower-
bound the sums by integrals:

logQk ≥
∫ k

0

log
dn(u− δ)e − j
n− j −m+ k

dj +

∫ m−k

0

log
n− bnuc − j

n− j
dj

= dn(u− δ)e logdn(u− δ)e − dn(u− δ)e log (dn(u− δ)e − k) + k log (dn(u− δ)e − k)

+(n−m) log(n−m) + (n− bnuc) log (n− bnuc)− (n− bnuc) log (n− bnuc −m+ k)

+(m− k) log (n− bnuc −m+ k)− n log n.

The right-hand side contains the expressions f
(
dn(u− δ)e

)
and g

(
n− bnuc

)
, where f(x) := x log x− x log(x− k) +

k log(x− k) and g(x) := x log x− x log(x−m+ k) + (m− k) log(x−m+ k). It is easy to check that f and g are both
increasing in the relevant intervals, thus we have f

(
dn(u− δ)e

)
≥ f

(
n(u− δ)

)
and g

(
n− bnuc

)
≥ g(n − nu), and

all the floors and ceilings in the inequality above can be dropped.
Due to (46), we have logPk = k log u+ (m− k) log(1− u), thus

logPk − logQk ≤ k log u+ (m− k) log(1− u)− n(u− δ) log[n(u− δ)] + n(u− δ) log[n(u− δ)− k]

−k log[n(u− δ)− k]− (n−m) log(n−m)− n(1− u) log[n(1− u)]

+n(1− u) log[n(1− u)−m+ k]− (m− k) log[n(1− u)−m+ k] + n log n.

The largest contribution to the sum in (45) will be those k where k ≈ mu. This motivates the definition εk := k −mu
(despite the name, this can be a negative number). Replacing all k by mu+ εk yields

logPk − logQk ≤ [n−m− nu+mu+ εk] log

(
1 +

εk
(1− u)(n−m)

)
− (mu+ εk) log

(
1− δ

u

)
+(nu−mu− εk − nδ) log

(
1− εk +mδ

(u− δ)(n−m)

)
− nδ log

(
1− m

n

)
.
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All real numbers x > −1 satisfy x/(1 + x) ≤ log(1 + x) ≤ x. Thus

logPk − logQk ≤ [(n−m)(1− u) + εk] · εk
(1− u)(n−m)

+ (mu+ εk)
δ/u

1− δ/u

+[n(u− δ)−mu− εk]

(
− εk +mδ

(u− δ)(n−m)

)
+ nδ

m/n

1−m/n
. (47)

We have the following three equations for the Binomial distribution:

m∑
k=0

(
m

k

)
uk(1− u)m−k = 1, (48)

m∑
k=0

(
m

k

)
uk(1− u)m−kεk = 0, (49)

m∑
k=0

(
m

k

)
uk(1− u)m−kε2

k = mu(1− u), (50)

where (48) is simply the normalization of the Binomial distribution, (50) is its variance, and (49) follows from its
expectation value. Thus, when substituting (47) into the expression (45) for the relative entropy, we can drop all
terms linear in εk. We obtain

S
(
γ⊗mβ

∥∥TrΛn\Λmτn

)
≤

m∑
k=0

(
m

k

)
uk(1− u)m−k

[
ε2
k

(1− u)(n−m)
+

mδ

1− δ/u
+ nδ

m

n−m

+
ε2
k

(u− δ)(n−m)
− mδ

(u− δ)(n−m)
(n(u− δ)−mu)

]
=

(1− δ)u
u− δ

· m

n−m
+
muδ

u− δ

(
1 +

m

n−m

)
.

This proves the claim.

Theorem 37. Consider the case of qubits, i.e. d = 2, and shift the energies such that E0 = 0 and E1 = 1. Suppose that
τn is the maximal mixture on the non-trivial microcanonical subspace corresponding to the energy interval n · [u − δ, u], with
0 ≤ δ < u < 1

2 , and γβ is the single-site Gibbs state with corresponding inverse temperature β. If the size of the subsystem m

is large enough such that 20
m log m

u ≤ log 1−u
u , and at the same time 5 ≤ m ≤ n(u− δ), then we have

∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
≤ 2δ

n
√
u

+

√
m

n−m

(
1 +

4 log n

log 1−u
u

)
.

Proof. We start by introducing some notation. For arbitrary subsets S ⊆ [0, u] define τSn to be the maximally mixed
state on the subspace

TSn := span

{
|s〉

∣∣∣∣∣ s ∈ {0, 1}n, 1

n

n∑
i=1

Esi ∈ S

}
.

As before, we set Tn := T
[u−δ,u]
n and τn := τ

[u−δ,u]
n . Moreover, define

µSn :=
dimTSn
dimTn

;

then, if we write [u − δ, u] as any disjoint union of two sets S and T , the microcanonical state can be written as a
convex combination, τn = µSnτ

S
n + µTn τ

T
n . In the following, (αn)n∈N will be any sequence of positive real numbers

tending to zero, satisfying 1/n < αn < u− 1/n, to be specified later. We start with the identity

τn = µ[u−δ,u−αn)
n τ [u−δ,u−αn)

n + µ[u−αn,u]
n τ [u−αn,u]

n .



40

Due to convexity, the Pinsker inequality, and Lemma 36, we have∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
≤ µ[u−δ,u−αn)

n

∥∥∥TrΛn\Λmτ
[u−δ,u−αn)
n − γ⊗mβ

∥∥∥
1

+ µ[u−αn,u]
n

∥∥∥TrΛn\Λmτ
[u−αn,u]
n − γ⊗mβ

∥∥∥
1

≤ 2µ[u−δ,u−αn)
n +

√
1

2
S
(
γ⊗mβ

∥∥∥TrΛn\Λmτ
[u−αn,u]
n

)
≤ 2µ[u−δ,u−αn)

n +

√
1

2
·

√
(1− αn)u

u− αn
· m

n−m
+
muαn
u− αn

(
1 +

m

n−m

)
. (51)

Let ũ be the largest p ∈ [u − δ, u] with the property that T {p}n 6= {0}; it is given by the equation bu · nc = ũ · n. Then
we can upper-bound the measure µ[u−δ,u−αn)

n in the following way:

µ[u−δ,u−αn)
n =

∑
p∈[u−δ,u−αn) dimT

{p}
n∑

p∈[u−δ,u] dimT
{p}
n

≤
∑
j∈N:j/n∈[u−δ,u−αn)

(
n
j

)
dimT

{ũ}
n

≤
#{j ∈ N : j/n ∈ [u− δ, u− αn)} ·

(
n

bn(u−αn)c
)(

n
nũ

)
≤

nδ
(

n
bn(u−αn)c

)(
n
bnuc

) . (52)

The Binomial coefficients can be estimated by using Lemma 17.5.1 in [21]: For 0 < p < 1 such that np is an integer,
we have

1√
8np(1− p)

≤
(
n

np

)
e−nH(p) ≤ 1√

πnp(1− p)
,

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function. Substituting this into (52), defining p by
np = bn(u− αn)c, and using that p ≤ u− αn as well as u ≥ ũ ≥ u− 1/n, we obtain

µ[u−δ,u−αn)
n ≤ nδ

(
n

np

)(
n

nũ

)−1

≤ nδ

√
ũ(1− ũ)

p(1− p)
en[H(u−αn)−H(u−1/n)] (53)

(note that u > 1/n due to n ≥ m/(u − δ) > m/u ≥ 1/u). Since the binary entropy function H is concave in the
interval [0, 1/2], we have

H(u−αn) ≤ H
(
u− 1

n

)
−H ′

(
u− 1

n

)
·
(
αn −

1

n

)
⇒ H(u−αn)−H

(
u− 1

n

)
≤ −

(
αn −

1

n

)
log

1− (u− 1/n)

u− 1/n
.

Substituting this and ũ(1− ũ) ≤ 1/4 as well as 1/
√
p(1− p) ≤

√
2/p and p ≥ u− αn − 1/n into (53), we get

µ[u−δ,u−αn)
n ≤ 1

2
nδ

√
2

u− αn − 1/n
(cn)−n(αn− 1

n ), where cn =

(
1−

(
u− 1

n

)
u− 1

n

)
.

Now set

αn :=
1

n
+

2 log n

n log cn
= O

(
log n

n

)
. (54)

Since n > m/u, this is less than u − 1/n as necessary if m is large enough; it turns out that m ≥ 5 and
(20/m) log(m/u) ≤ log((1− u)/u) gives in fact αn < u/2− 1/n. This yields (cn)−n(αn− 1

n ) = n−2, and so

µ[u−δ,u−αn)
n ≤ δ

n
√
u
.

Substituting this and u− αn > u/2 as well as m/(n−m) ≤ 1 into (51) yields∥∥∥TrΛn\Λmτn − γ
⊗m
β

∥∥∥
1
≤ 2δ

n
√
u

+
1√
2

√
2

m

n−m
+ 4mαn.

Then the claim follows by substituting (54) and log cn = log(1− u+ 1/n)− log(u− 1/n) > log(1− u)− log u.
This mainly recovers the result depicted in Figure 5, where the size of the “bath”, n−m, has to be increased linearly

with the size of the subsystem, m, to achieve a fixed error. In this theorem, for δ > 0, the (log n)-term contributes a
small correction to this behavior, and n has to be increased slightly super-linearly with m.
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Figure 6: 1–norm difference between the reduced density op-
erator and the reduced global Gibbs state for a system of n
qubits. The squares represent the ensemble means and the er-
ror bars give the standard deviations of the differences between
the Gibbs state and the subsystem trace. The data was collected
for β = 0.1 and δ = 0.02n and 400 random Hamiltonians were
considered for each n.
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Figure 7: 1–norm difference between the reduced density oper-
ator and the reduced local Gibbs state for a system of n qubits.
The squares and error bars are defined identically to those in
Figure 6. The data was collected for β = 0.1 and δ = 0.02n
and 400 random Hamiltonians were considered for each n.

E. Numerical results on finite-size behavior in one dimension

Here we provide numerical examples that not only show that random local Hamiltonians satisfy our requirements
for canonical typicality and dynamical thermalization, but also that the replacing the global Gibbs state with the
local Gibbs state does not give the correct statistics. This emphasizes that entanglement is key to understanding why
closed quantum systems can conform to thermodynamic predictions. The class of Hamiltonians that we consider
are random 2–local Hamiltonians acting on n qubits on a line with periodic boundary conditions:

Hp
Λn

=

n∑
i=1

(
H

(i)
0 +H

(i,i+1 mod n)
int

)
, (55)

where the onsite term is of the form for constants a1, a2 and a3,

H
(i)
0 = a1σ

(i)
x + a2σ

(i)
y + a3σ

(i)
z , (56)

and the interaction term takes the form, for constants b1,1, b1,2, . . . , b3,3,

H
(i,j)
int = b1,1σ

(i)
x σ(j)

x + b1,2σ
(i)
x σ(j)

y + · · ·+ b3,3σ
(i)
z σ(j)

z . (57)

The constants ai and bi,j are chosen randomly according to a Gaussian distribution with zero mean and unit variance.
For ease of comparison, each random translationally invariant Hamiltonian is re-normalized to have unit norm. Note
that one-dimensional translation-invariant systems with finite-range interaction do not exhibit finite temperature
phase transitions.

The numerical experiments begin by drawing a random Hamiltonian Hp
Λn

for a fixed value of β and energy win-
dow δ. The first step is to compute the energy density u using u = 1

|Λn|Tr
(
γpΛnH

p
Λn

)
where γpΛn = exp(−βHp

Λn
)/Z is

the thermal state that results from the choice of β. The Hamiltonian is then diagonalized and all energy eigenvectors
within the window (u − δ, u) are found. A random state |ψ〉 is then constructed out of the span of these vectors,

and then we compute
∥∥∥TrΛn\Λm |ψ〉〈ψ| − TrΛn\Λm

exp(−βHpΛn )

Z

∥∥∥
1
, as per Theorem 25. We take the subsystem to consist

of a single qubit, i.e. m = 1, and the bath contain n − 1 qubits in all these examples. This process is repeated for
many such random Hamiltonians and we compute the mean and the standard deviation of these distances, which
allows us to see whether the correspondence predicted by Theorem 25 is typical for this ensemble of random local
Hamiltonians.

The data in Figure 6 shows that the distance between the reduced density matrix of the pure state and the Gibbs
state shrinks as n increases, roughly as O(1/n). The error bars (representing the standard deviation of the discrep-
ancy with the canonical state) also shrink as n increases, illustrating that almost all such random translationally
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Figure 8: Probability density of eigenvalue gaps for random
Hamiltonians with n = 5, 7, 9 and 11 qubits. The x–axis is
log10(gap) for 100 random Hamiltonians. No degenerate eigen-
values were ever detected in this sample within numerical error.
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Figure 9: Probability density of for the eigenvalue gap spacings
for random Hamiltonians with n = 5, 7, 9 and 11 qubits. The
x–axis is log10(gap(gap)) for 100 random Hamiltonians. No
degenerate eigenvalue gaps were ever detected in this sample
within numerical error.

invariant 2–local Hamiltonians agree with the predictions of Theorem 25 and in turn that there is a strong correspon-
dence between the subsystem traces of the global Gibbs state and |ψ〉〈ψ|.

On the other hand, Figure 7 shows that substituting the local Gibbs state for the subsystem trace of the global Gibbs
state causes this correspondence to break down. In particular, we see no clear evidence that the ensemble mean of
the differences between TrΛn\Λm |ψ〉〈ψ| and the local Gibbs state approaches zero as n increases; more tellingly, the
standard deviation of the differences does not seem to decrease with n. These results suggest that even as n increases,
TrΛn\Λm |ψ〉〈ψ| remains distinct from the local Gibbs state. Thus the correspondence suggested by Theorem 25 is
correct and the naı̈ve correspondence between the local Gibbs state and TrΛn\Λm |ψ〉〈ψ| is incorrect.

Regarding dynamical thermalization, there are two caveats that we need to check in order to justify the appli-
cability of Theorem 31. First, we need to ensure that almost all Hamiltonians drawn from this random ensemble
are non–degenerate, in order to ensure thermalization for arbitrary initial states with maximal population entropy.
Figure 8 shows that the probability of small eigenvalue gaps is suppressed, hence Hamiltonians that are typical of
the random local Hamiltonian ensemble will be non–degenerate. Second, we need to show that the gap degeneracy
DG(Hp

Λn
) is not too large. Figure 9 shows that, with high probability, the eigenvalue gaps between any two energy

levels will be distinct from any other such gap in the system, hence DG(Hp
Λn

) = 1 with high probability.
These results illustrate the application of our results to a wide range of physically realistic random 2–local Hamil-

tonians. It is further reasonable to expect that broad classes of physically realistic closed quantum systems will agree
with the canonical distribution, illuminating the mechanism by which thermodynamics emerges for macroscopic
closed quantum systems.

F. Local diagonality of energy eigenstates

A strong sense in which the eigenstates of a local Hamiltonian H could thermalize is that their reduced density
matrix of a region Λ (much smaller than the full lattice Λlattice = Λn) is approximately equal to a thermal state in that
region,

TrΛ̄|E〉〈E| ≈
e−βHΛ

tr e−βHΛ
, (58)

where TrΛ̄ denotes trace on the Hilbert space associated to the complementary region Λ̄ = Λlattice \ Λ, and HΛ is the
sum of all terms of H which are fully contained in the region Λ. The inverse temperature β should be chosen such
that 〈E|HΛ|E〉 = tr(HΛe

−βHΛ)/tr e−βHΛ holds.
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Figure 10: Subdivision of the whole lattice, Λlattice = Λn, into regions as used in this subsection. We have Λ′ = Λ ∩ Λshell.

A possible concern is that the Hamiltonian HΛ has open boundary conditions, hence we expect boundary effects
in the eigenstates of HΛ which are not present in TrΛ̄|E〉〈E|; and this makes unlikely that relation (58) holds. A way
to get rid of the boundary effects is by defining a slightly larger region Λ′ which includes a shell of width l around
Λ, cf. Figure 10; that is

Λ′ := {x ∈ Λlattice : ∃y ∈ Λ : dist(x, y) ≤ l} . (59)

If instead of (58) we consider the thermal state in Λ′ and trace out the shell Λshell := Λ′ \ Λ, then the approximate
equality

TrΛ̄|E〉〈E| ≈ TrΛshell

(
e−βHΛ′

tr e−βHΛ′

)
(60)

is more likely to hold in generic systems, because by tracing out the shell we may eliminate the boundary effects of
the eigenvectors of HΛ′ . (As before, we denote by HΛ′ the sum of all terms in H which are fully contained in Λ′.)

It is expected that the relation (60) holds for generic local Hamiltonians, but not for all local Hamiltonians. For
example, consider the translational-invariant quantum Ising Hamiltonian in one dimension that we analyzed in
Subsection III D. This is a Hamiltonian without interaction terms, such as HΛshell

=
∑n
i=1 hi for Λshell = [1, n], with

constant single-site terms hi. If, for example, hi =

(
1 0
0 −1

)
, the computational basis vectors |E〉 = |x1x2 . . . xn〉

with xi ∈ {0, 1} are energy eigenstates. Even for those eigenstates that correspond to finite energies E > 0 with
corresponding inverse temperature β < ∞, the local reduced state on Λ = [1,m], m � n, is TrΛ̄ |E〉〈E| =
|x1 . . . xm〉〈x1 . . . xm|. This is a pure state, far away from any thermal state of temperature β. Thus, (60) does not
hold for the Ising model.

In summary, extra conditions are necessary for (60) to hold. Folk wisdom tells us that such conditions could be
along the lines of non-integrability, although this is not yet a clear and mathematically well-defined concept within
quantum theory. In this work, we follow a different approach: instead of looking for additional conditions, we relax
the statement (60). One way to do this is by noticing that the state e−βHΛ′/tr e−βHΛ′ is diagonal in the eigenbasis of
HΛ′ . Our weakened statement is informally the following:

For any eigenvalue E of H there is a density matrix ωE defined in the extended region Λ′ which is weakly diagonal
in the eigenbasis of HΛ′ and satisfies

TrΛ̄|E〉〈E| ≈ TrΛshell
ωE .

The meaning of weakly diagonal will be made precise in the statement of the theorem below. But before, let us
specify the type of systems that we are considering. Exactly as explained at the beginning of Subsection III A, we
consider local Hamiltonians on a cubic lattice, with a finite-dimensional Hilbert space at each site. By local we mean
that the Hamiltonian H has finite interaction range r. This means that if we write it as

H =
∑

X⊆Λlattice

Φ(X ) ,

where Φ(X ) has only support on the region X , then for any region X ⊆ Λlattice such that diamX :=
maxx,x′∈X dist(x, x′) > r we have Φ(X ) = 0 (the definition of dist is given in (15)). However, in contrast to the
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previous subsection, we do not need to assume that the interaction is translation-invariant. This type of Hamilto-
nian satisfies a Lieb-Robinson bound [30, 31] (see [32] for a simpler proof). That is, let X,Y be two matrices acting
non-trivially in the regions X ,Y ⊆ Λlattice which are separated by a distance dist(X ,Y), and let X(t) = eiHtXe−iHt.
There are positive constants C, c, v such that

‖[X(t), Y ]‖∞ ≤ C ‖X‖∞‖Y ‖∞min{|X |, |Y|} e−c[dist(X ,Y)−v|t|] . (61)

The constants C, c, v only depend on coarse features of the lattice and the Hamiltonian, like the interaction length,
and the ‖ · ‖∞-norm of the local terms in the Hamiltonian. The constant v is called the Lieb-Robinson velocity, and it
is an upper-bound for the speed at which information travels through the lattice.

Theorem 38 (Weak local diagonality). Let Φ be any finite-range interaction (not necessarily translation-invariant), let
Λ ⊆ Λlattice be any region of the lattice, and let Λ′ ⊆ Λlattice be the set of points at distance not larger than l from Λ, as defined
in (59). Define the regions Λshell = Λ′ \ Λ and the complements Λ̄ = Λlattice \ Λ and Λ̄′ = Λlattice \ Λ′. Let H be a local
Hamiltonian as defined above, with finite interaction range r ≤ l. For each eigenvector |E〉 of the Hamiltonian H we define the
state ωE in the region Λ′ as

ωE :=

∫ ∞
−∞

dt g(t) e−iHΛ′ t TrΛ̄′(|E〉〈E|) eiHΛ′ t ,

where g(t) = (2πσ2)−1/2 e−t
2/(2σ2) and σ2 = (l − r)/(4cv2). The state ωE is weakly diagonal in the eigenbasis of HΛ′ ,

denoted |e〉, in the sense that

|〈e1|ωE |e2〉| ≤ e−(l−r)(e1−e2)2/(8cv2) . (62)

The state ωE is almost indistinguishable from |E〉〈E| inside the region Λ, that is

‖TrΛshell
(ωE)− TrΛ̄(|E〉〈E|)‖1 ≤

2√
2π
AJσ(CA+ 2)e−c(l−r)/2, (63)

where A is the number of subsets X with Φ(X) 6= 0 that have non-empty intersection with both Λ′ and Λ̄′.

Note that the number A quantifies the size of the boundary of Λ′; so for a three-dimensional lattice, A is an area.
Also, we stress the fact that closeness in ‖ · ‖1-norm is a very strong feature, and it really implies that the two states
in the left-hand side of (63) are almost indistinguishable. The right-hand side of (63) can be made small by choosing
the thickness of the shell to be

l &
6

c
logA+ r .

Still, for large regions Λ, the relative volume of the shell lA/|Λ| vanishes.

If the local dimension is d, then the dimension of the Hilbert space associated to the region Λ′ is d|Λ
′|. Hence,

the expected size of the entries of ωE is of the order of d−|Λ
′|, which is very small. This may rise the concern that

bound (62) is trivial. To see that this is not the case, we note that the largest entry of ωE is at least d−|Λ
′|. Also, since

HΛ′ is a local Hamiltonian, the range of energies is ∆e ∼ J |Λ′|. This implies that the exponent of (62) is proportional
to |Λ′|2, while the exponent of the largest entry is proportional to |Λ′|, which is much smaller. In summary, for large
enough regions |Λ|, the bound (62) is non-trivial. It is a consequence of the locality of interactions as expressed by
the Lieb-Robinson bound.

Proof. Using the fact that the |e〉 are the eigenvectors of HΛ′ we obtain

〈e1|ωE |e2〉 =

∫
dt g(t) e−i(e1−e2)t 〈e1|TrΛ̄′(|E〉〈E|)|e2〉 = e−(e1−e2)2σ2/2〈e1|TrΛ̄′(|E〉〈E|)|e2〉 ,

which implies (62). Using the triangle inequality for the norm ‖ · ‖1 we obtain

‖TrΛshell
(ωE)− TrΛ̄(|E〉〈E|)‖1 =

∥∥∥∥∫ dt g(t) TrΛ̄

(
e−iHΛ′ t|E〉〈E|eiHΛ′ t − |E〉〈E|

)∥∥∥∥
1

≤
∫
dt g(t)

∥∥TrΛ̄

(
e−iHΛ′ t|E〉〈E|eiHΛ′ t − |E〉〈E|

)∥∥
1
. (64)
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Next, we use the identity ‖Y ‖1 = maxX |Tr(XY )|, where the maximum is over all Hermitian matrices X which
satisfy −1 ≤ X ≤ 1. Since we apply this to an observable on Λ, it follows that X is fully supported on Λ. We also
use the fact that eiHt|E〉〈E|e−iHt = |E〉〈E| for any t, obtaining∥∥TrΛ̄

(
e−iHΛ′ t|E〉〈E|eiHΛ′ t − |E〉〈E|

)∥∥
1

= max
X

∣∣Tr
[
X
(
e−iHΛ′ teiHt|E〉〈E|e−iHteiHΛ′ t − |E〉〈E|

)]∣∣
= max

X

∣∣〈E|e−iHteiHΛ′ tXe−iHΛ′ teiHt −X|E〉
∣∣ . (65)

Now we use the inequality |〈α|Y |β〉| ≤ ‖Y ‖∞ for any pair of unit vectors |α〉, |β〉. Also, we use the fact that [X,HΛ̄′ ] =
[HΛ′ , HΛ̄′ ] = 0, and define HA := H −HΛ̄′ −HΛ′ . We obtain∣∣〈E|e−iHteiHΛ′ tXe−iHΛ′ teiHt −X|E〉

∣∣ ≤ ∥∥∥e−iHtei(H−HA)tXe−i(H−HA)teiHt −X
∥∥∥
∞

(66)

Next, we use the matrix identity M(t) −M(0) =
∫ t

0
dt1

∂
∂t1
M(t1), the triangle inequality, and the unitary invariance

of the operator norm, ‖e−iHt1Y eiHt1‖∞ = ‖Y ‖∞. If t ≥ 0 then∥∥∥e−iHtei(H−HA)tXe−i(H−HA)teiHt −X
∥∥∥
∞

=

∥∥∥∥∫ t

0

dt1
∂

∂t1

(
e−iHt1ei(H−HA)t1Xe−i(H−HA)t1eiHt1

)∥∥∥∥
∞

≤
∫ |t|

0

dt1
∥∥[HA , e

iHΛ′ t1Xe−iHΛ′ t1
]∥∥
∞ .

If t < 0, then the substitution t2 := −t1 in the integral yields∥∥∥e−iHtei(H−HA)tXe−i(H−HA)teiHt −X
∥∥∥
∞

=

∥∥∥∥∥
∫ |t|

0

dt2
∂

∂t2

(
eiHt2e−i(H−HA)t2Xei(H−HA)t2e−iHt2

)∥∥∥∥∥
∞

≤
∫ |t|

0

dt2
∥∥[HA , e

−iHΛ′ t2XeiHΛ′ t2
]∥∥
∞ .

In both cases, we can apply the Lieb-Robinson bound to the two regions X = Λ and Y the support region of HA

(covering the boundary of Λ′ and of Λ̄′). For all t ∈ R, we get∥∥[HA , e
iHΛ′ tXe−iHΛ′ t

]∥∥
∞ ≤ ‖HA‖∞min

{
2, CA e−c(l−r)+cv|t|

}
,

which implies∥∥∥e−iHtei(H−HA)tXe−i(H−HA)teiHt −X
∥∥∥
∞
≤ ‖HA‖∞min

{∫ |t|
0

dt1 · 2,
∫ |t|

0

dt1 CAe
−c(l−r)+cv|t1|

}
≤ ‖HA‖∞min

{
2|t|, CA|t|e−c(l−r)+cv|t|

}
.

Combining this with (64), (65), (66), and dividing the integration (64) into two intervals, we get for t0 ≥ 0

‖TrΛshell
(ωE)− TrΛ̄(|E〉〈E|)‖1 ≤ 2‖HA‖∞

∫ ∞
0

dt g(t) min{2t, CAt e−c(l−r)+cvt}

≤ 2‖HA‖∞
(∫ t0

0

dt g(t)CAt e−c(l−r)+cvt +

∫ ∞
t0

dt g(t) 2t

)
≤ 2‖HA‖∞

(
CAe−c(l−r)+cvt0

∫ ∞
0

dt g(t)t+
σ√
2π

2 e−t
2
0/(2σ

2)

)
≤ 2‖HA‖∞

(
σ√
2π
CAe−c(l−r)+cvt0 +

σ√
2π

2 e−t
2
0/(2σ

2)

)
.

Now choose t0 := (l − r)/(2v) such that −c(l − r) + cvt0 = −t20/(2σ2), and use σ2 = (l − r)/(4cv2). Furthermore,

HA = HΛlattice
−HΛ̄′ −HΛ′ =

∑
X⊂Λlattice:X∩Λ′ 6=∅ and X∩Λ̄′ 6=∅

Φ(X),

such that ‖HA‖∞ ≤ AJ , where J = maxX⊂Zν ‖Φ(X)‖∞, and A is the number of subsets X with Φ(X) 6= 0 that have
non-empty intersection with both Λ′ and Λ̄′.
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IV. CONCLUSIONS

Our work provides a significant step towards a rigorous understanding for how closed quantum systems ther-
malize. Our key innovations come from combining methods from quantum information theory and from more
traditional mathematical physics techniques to address the problem. Through this approach, we find that small sub-
systems of closed translation-invariant quantum systems with finite-range interaction thermalize, in the sense that
they relax towards the reduction of the global Gibbs state. In doing so, we not only provide a rigorous explanation for
how a wide class of physically significant Hamiltonians thermalize, but also show that the correct correspondence is
with a reduction of the global system’s Gibbs state, not its local Gibbs state.

This work opens a number of interesting avenues for future work. One open problem is to obtain more explicit
finite-size bounds, but these may well depend on details of the specific model or interaction. Similarly, an interesting
open question is whether ωE in Theorem 4 has Boltzmann weights on its diagonal. However, rigorously answering
this question in the affirmative, and thus proving a complete version of the eigenstate thermalization hypothesis,
seems to require additional assumptions along the lines of nonintegrability. Thus, one may hope that attempts
to prove the ETH for quantum lattice systems will also lead to a better understanding and rigorous mathematical
definition of the notion of integrability in the quantum case. We further believe that the methodology we provide
will lead to further applications to be discovered in the future. In particular, it may turn out that giving finite
versions of asymptotic mathematical physics results will prove to be as promising as using asymptotic results to
prove statements on finite systems, which was the approach taken in this paper.
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V. CORRECTION (ADDED MARCH 30, 2021)

This correction has also been published here:
M. P. Müller, E. Adlam, Ll. Masanes, and N. Wiebe, Correction to: Thermalization and Canonical Typicality in

Translation-Invariant Quantum Lattice Systems, Commun. Math. Phys. (2021), DOI:10.1007/s00220-021-04014-0

In our result about dynamical thermalization, the proof of the upper bound on the time average of the distance
between the local evolved state ρ(n)(t) and the time-averaged state ρ(n)

avg is wrong. While it is correct that this distance
tends to zero for block size |Λn| → ∞ (see corrected proof below), it is unclear whether it can be shown that this
happens exponentially fast in |Λn|. This affects Theorem 31, and hence also Theorem 3 (the summary of Theorem 31)
and Theorem 33 (a small modification of Theorem 31).

This mistake is due to an error in Ref. [C3] which we have used in our proof of Lemma 30. Ref. [C3] claims that
the Rényi entropy Hq is convex in its parameter q, which is incorrect. This claim has been corrected in an erratum
published on the author’s homepage [C4], but we became aware of this only recently.

We give a corrected version of Theorem 31 of our paper [C1] in Theorem 42 below. Its summary (and hence the
correction of Theorem 3 of our paper) reads as follows.

Theorem 39 (Correction of [C1, Theorem 3]). If there is a unique equilibrium state around inverse temperature β :=
limn→∞ βn, if the (possibly pure) initial state has close to maximal population entropy, in the sense that

S̄(ρ
(n)
0 ) ≥ S(γpΛn(βn))− o(|Λn|),

and if each Hp
Λn

is non-degenerate with uniformly bounded gap degeneracy supnDG(Hp
Λn

) <∞, then unitary time evolution
thermalizes the subsystem Λ for most times t:〈∥∥∥∥TrΛn\Λρ

(n)(t)− TrΛn\Λ
exp(−βnHp

Λn
)

Zn

∥∥∥∥
1

〉
n→∞−→ 0.

The gap degeneracy [C5] is defined as DG(Hp
Λn

) := maxE |{(i, j) | i 6= j, Ei − Ej = E}|, with Ei the eigenvalues of Hp
Λn

.

This formulation differs from the old one in the following two ways. First, it does not give concrete bounds on the
time-averaged distance between ρ(n)(t) and its time average (it only says that this distance tends to zero for n→∞);
second, it presumes that the gap degeneracy is uniformly bounded.

To prove its formal version (Theorem 42 below), we need two elementary lemmas.

http://www.cmu.edu/biolphys/deserno/pdf/microcan.pdf
http://arxiv.org/abs/1208.0692
https://doi.org/10.1007/s00220-021-04014-0
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Lemma 40. Let Φ be a translation-invariant finite-range interaction which is not physically equivalent to zero, and let ū be
some energy density for which there is a unique Gibbs state at inverse temperature β(ū). Then the real function u 7→ s(u)
defined in [C1, Lemma 9] is strictly concave at ū in the following sense: If ū = λu0 +(1−λ)u1 for some u0 < u1 and λ ∈ (0, 1)
then s(ū) > λs(u0) + (1− λ)s(u1).

Proof. Let u0 < u1 and u = λu0 + (1 − λ)u1 for some λ ∈ (0, 1). Let ωβ(u0) be an arbitrary Gibbs state with energy
density u0 at inverse temperature β(u0), and similarly ωβ(u1). Set ω := λωβ(u0) +(1−λ)ωβ(u1), a translation-invariant
state. Since the entropy density is affine on the translation-invariant states ([C2, Thm. IV.2.4]), we have

s(ω) = λ s(ωβ(u0)) + (1− λ)s(ωβ(u1)) = λs(u0) + (1− λ)s(u1).

By construction, u(ω) = u. Thus, due to [C1, Lemma 9], we have s(ω) ≤ s(u), hence u 7→ s(u) is concave.
Let us now apply the previous argumentation to the special case u := ū, an energy density with a unique Gibbs

state. Suppose that s(ū) = s(ω). Then the variational principle ([C1, Definition 6]) implies that ω is a Gibbs state at
inverse temperature β(ū). But the set of Gibbs states at inverse temperature β(ū) is a face of the set of all translation-
invariant states [C2, p. 348], hence ωβ(u0) and ωβ(u1) must both be Gibbs states at inverse temperature β(ū), too. But
these are distinct states, since they have different energy densities, contradicting the uniqueness of the Gibbs state at
β(ū). Therefore s(ū) > s(ω), and we get the statement of strict concavity as claimed.

Lemma 41. Let Φ be a translation-invariant finite-range interaction which is not physically equivalent to zero. Suppose that
the maximal energy degeneracy of Hp

Λn
grows at most subexponentially in |Λn|, i.e. log max{tr(π(n)

i )} = o(|Λn|), where
(π

(n)
i )i denotes the eigenprojectors of Hp

Λn
. Let (ρ(n))n∈N be any sequence of Λn-translation-invariant states with

[ρ(n), Hp
Λn

] = 0, S(ρ(n)) ≥ s · |Λn|+ o(|Λn|), tr(ρ(n)Hp
Λn

) = u · |Λn|+ o(|Λn|),

where u ∈ (umin(Φ), umax(Φ)) is an energy density such that there is a unique Gibbs state at inverse temperature β(u), and
s = s(u). Then maxi tr(ρ(n)π

(n)
i )

n→∞−→ 0.

Proof. We can write u as some convex combination of two distinct energy densities in a small neighborhood of u, and
then Lemma 40 implies that s = s(u) > 0. Let us now argue by contradiction. Suppose that λ(n) := maxi tr(ρ(n)π

(n)
i )

does not converge to zero. Decompose the state ρ(n) as follows:

ρ(n) = λ(n)τ (n) + (1− λ(n))σ(n), (67)

where τ (n) = π
(n)
i ρ(n)π

(n)
i /λ(n) (note that λ(n) > 0), with π(n)

i the maximizing projector. If λ(n) 6= 1, define σ(n) :=

π̄
(n)
i ρ(n)π̄

(n)
i /(1−λ(n)), where π̄(n)

i := 1−π(n)
i ; if λ(n) = 1, set σ(n) = π̄

(n)
i /tr(π̄

(n)
i ) (if n is large enough, then π(n)

i 6= 1,
hence this is well-defined). It follows that τ (n) and σ(n) are mutually orthogonal Λn-translation-invariant states that
commute with Hp

Λn
.

The sequences of real numbers S(σ(n))/|Λn|, tr(σ(n)Hp
Λn

)/|Λn|, tr(τ (n)Hp
Λn

)/|Λn| and λ(n) are all bounded (the
latter sequence bounded away from zero by assumption). Thus, we can find a subsequence (nk)k∈N such that

λ(nk) k→∞−→ δ > 0,
1

|Λnk |
S(σ(nk))

k→∞−→ s1,
1

|Λnk |
tr(τ (nk)Hp

Λnk
)
k→∞−→ u0,

1

|Λnk |
tr(σ(nk)Hp

Λnk
)
k→∞−→ u1,

where s1, u0, u1 are real numbers, and 0 < δ ≤ 1. Due to (67), computing the von Neumann entropy, we have
S(ρ(nk)) = λ(nk)S(τ (nk)) + (1 − λ(nk))S(σ(nk)) + O(1). Since S(τ (nk)) ≤ log tr(π

(nk)
i ) = o(|Λnk |), this implies s ≤

(1− δ)s1. Thus, s > 0 yields δ < 1. Similarly, computing the energy expectation value, we obtain u = δu0 + (1− δ)u1.
Suppose that s1 ≥ s(u1), then s1 − βu1 ≥ p(β,Φ) for β := β(u1), hence [C1, Lemma 8] implies that we must have

equality, i.e. s1 = s(u1). In summary, we conclude that s1 ≤ s(u1). Therefore

s(u) = s ≤ (1− δ)s1 ≤ δ s(u0) + (1− δ)s(u1).

Since s is strictly concave at u due to Lemma 40 above, this is only possible if u0 = u1 = u. Hence

0 < s(u) ≤ (1− δ)s1 ≤ (1− δ)s(u1) = (1− δ)s(u)

which is a contradiction.
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This allows us to obtain a corrected version of [C1, Theorem 31].

Theorem 42 (Correction of [C1, Theorem 31]: Thermalization, periodic boundary conditions). Let Φ be a translation-
invariant finite-range interaction which is not physically equivalent to zero. Suppose that the maximal energy degeneracy of
Hp

Λn
grows at most subexponentially in |Λn|, i.e. log max{tr(π(n)

i )} = o(|Λn|), where (π
(n)
i )i denotes the eigenprojectors of

Hp
Λn

, and supnDG(Hp
Λn

) < ∞. Let (ρ
(n)
0 )n∈N be some sequence of initial states on Λn which have energy expectation value

Un := tr(ρ
(n)
0 Hp

Λn
) with density Un/|Λn| converging to some value u ∈ (umin(Φ), umax(Φ)) as n → ∞, such that there is a

unique Gibbs state around inverse temperature β(u).

Define the ‘population entropy” S̄(ρ
(n)
0 ) := S(λ1, . . . , λN ), where S is Shannon entropy, and λi := tr(ρ

(n)
0 π

(n)
i ) is the

probability that the i-th level is populated. Suppose that for every n large enough, either Hp
Λn

is non-degenerate or every
π

(n)
i ρ

(n)
0 π

(n)
i is Λn-translation-invariant. Then, determine the inverse temperature βn for which

tr(Hp
Λn
γpΛn(βn)) = Un, where γpΛn(βn) :=

exp(−βnHp
Λn

)

Zn
.

If the initial states have close to maximal population entropy in the sense that

S̄(ρ
(n)
0 ) ≥ S(γpΛn(βn))− o(|Λn|),

then unitary time evolution ρ(n)(t) := exp(−itHp
Λn

)ρ
(n)
0 exp(itHp

Λn
) thermalizes the subsystem Λm for most times t:

lim
n→∞

〈∥∥∥∥TrΛn\Λmρ
(n)(t)− TrΛn\Λm

exp(−βnHp
Λn

)

Zn

∥∥∥∥
1

〉
= 0,

where Zn = tr(exp(−βnHp
Λn

)), and 〈·〉 denotes the average over all times t ≥ 0. Furthermore, in this statement, βn can be
replaced by β := β(u).

Proof. The only ingredient in the proof of [C1, Theorem 31] that has to be corrected is the argument that lower-bounds
the “effective dimension” deff . The old proof erroneously claimed that deff grows exponentially in |Λn|, but this relied
on a wrong claim about the Rényi entropy of Ref. [C3]. We now give a simple alternative argument which makes
use of the Rényi entropy S∞(λ1, . . . , λN ) = − log maxi λi and the inequality S2 ≥ S∞ [C4]. Namely,

deff = exp(S2(λ1, . . . , λN )) ≥ exp(S∞(λ1, . . . , λN )) =
(

max
i
λi

)−1 n→∞−→ ∞

according to Lemma 41 above, applied to the sequence of states ρ̄(n)
0 =

∑
i π

(n)
i ρ

(n)
0 π

(n)
i . Since we have assumed that

the gap degeneracy is uniformly bounded, this is enough to show that ρ(n)(t) is close to its time average for most
times t if n is large. The rest of the proof works without modification (note that ρ(βn) should read γpΛn(βn)).

Finally, [C1, Theorem 33] has to be corrected analogously. We omit the obvious details.
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