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We provide the first next-to-leading-order (NLO) weak-coupling description of the thermalization
process of far-from-equilibrium systems in non-Abelian gauge theory. We study isotropic systems starting
from either over- or underoccupied initial conditions and follow their time evolution toward thermal
equilibrium by numerically solving the QCD effective kinetic theory at NLO accuracy. We find that the
NLO corrections remain well under control for a wide range of couplings and that the overall effect of NLO
corrections is to reduce the time needed to reach thermal equilibrium in the systems considered.
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I. INTRODUCTION

How non-Abelian gauge fields pushed far from equilib-
rium approach the thermal state is a central question in
several branches of physics. In cosmology, far-from-
equilibrium configurations of non-Abelian fields may be
produced during (p)reheating [1–4], caused by first-order
transitions [1,5,6], and are a necessary ingredient for baryo-
genesis [7,8]. In all of these cases, an understanding of
thermalization rates is required for quantitative descriptions
of these phenomena [9,10]. In the early stages of ultra-
relativistic heavy-ion collisions, a far-from-equilibrium sys-
tem of gluons and quarks is created. If and how this system
reaches local thermal equilibrium plays a crucial part in the
phenomenological modeling of the collisions. The recent
discussion about the physical origin of collectivity in smaller
collision systems created in p-Pb and light-ion collisions [11]
further emphasizes the importance of a quantitative under-
standing of thermalization in far-from-equilibrium systems.
Furthermore, connections between systems created in atomic
physics experiments and gauge field models are being
actively studied (see, e.g., Refs. [12–14]).
While first-principles nonperturbative lattice simulation

of far-from-equilibrium quantum systems remains elusive,
the past years have witnessed progress in methods relying

on different approximations—see Refs. [15,16] for recent
reviews. On one hand, holographic methods have been
successful in the description of N ¼ 4 super–Yang-Mills
theory in the limit of large number of colors Nc and large
t’Hooft coupling λ ¼ g2Nc. These studies have advanced to
a mature level, even including subleading corrections in
the t’Hooft coupling [17,18]. On the other hand, weak-
coupling methods are available for generic theories and
have also been widely studied. The first works studying
thermalization of pure Yang-Mills theory from simple
initial conditions [19] have been extended to QCD [20–23],
and calculations based on this physical picture have been
extended to describe systems of enough complexity to be
used in realistic phenomenological modeling of heavy-ion
collisions [24,25] and even in light-ion collisions [26].
This picture has also been applied to parametric estimates
of thermalization times during reheating [27–29]. These
studies have, however, been at best limited to leading order
(LO) in the coupling constant, and it is important to
improve the accuracy—and, in particular, to test the validity
and robustness of the weak-coupling expansion—by find-
ing the first subleading corrections to the weak-coupling
results. In this paper, we provide the first numerical
description of thermalization from simple, isotropic initial
conditions at next-to-leading order (NLO).
A direct diagrammatic description of thermalization is

prohibitively difficult due to a need to resum diagrams of all
loop orders even to obtain a LO result in λ [30]. At this order,
this resummation can be elegantly performed by considering
an effective kinetic theory (EKT) that contains all the
necessary processes required for a leading-order description
of the evolution of the particle distribution functions f [31].
In gauge theories, the derivation of the collision kernels
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required for the EKT is further nonperturbative [32]. This
arises from the Bose enhancement of “soft” infrared modes
at the plasma screening scale m2 ∼ λ

R
d3pf=p, whose

interactions with the typical “hard” particles (with
p ∼ hpi) are nonperturbative. This, combined with the
well-known soft and collinear divergences of the unre-
summed QCD cross sections, necessitates a resummation
that incorporates the physics of in-medium screening [33]
and Landau-Pomeranchuk-Migdal (LPM) [34–36] suppres-
sion in the QCD effective kinetic theory [32].
The physical picture of EKT can be extended to next-to-

leading-order accuracy. The NLO corrections arise from the
interactions among the soft modes. The resulting terms
are suppressed only by m=hpi≳ λ1=2, in contrast to λ in
vacuum field theory. While various NLO corrections to
equilibrium and near-equilibrium quantities have been
computed [37–42], the framework has not until now been
pushed to study thermalization of far-from-equilibrium
systems.
In this paper, we extend the NLO formulation of EKT to

isotropic far-from-equilibrium systems and apply it to
numerically describe thermalization of two specific sys-
tems initialized with either under- or overoccupied initial
conditions studied in LO in Ref. [19]. In the idealized limit
of weak-coupling, thermalization of underoccupied sys-
tems (including those created in heavy-ion collisions)
proceeds through the process of bottom-up thermalization
[43,44]. The starting point of bottom-up thermalization is
an ensemble of too few particles particles f ≪ 1 with too
high momenta p ≫ T compared to thermal equilibrium
with the final temperature T. In the bottom-up process,
the collisions among these few hard particles lead to soft
radiation that forms a soft thermal bath with a temperature
Ts ≪ T. The further interaction between the hard particles
and soft thermal bath eventually causes a radiational
breakup of the hard particles that heats the soft thermal
bath to its final temperature T. We will consider how this
picture is quantitatively changed when pushing to finite and
small values of λ. We see that the NLO corrections are
under quantitative control for λ≲ 10, and we observe that
the NLO corrections make thermalization faster.
For a second system, we consider an overoccupied,

f ≫ 1 initial state in its self-similar scaling solution, that is,
a nonthermal, time-dependent fixed point that is rapidly
reached from any overoccupied initial condition—see
Refs. [44–49]. In this case too, we find that NLO
corrections bring about a faster thermalization and that,
while a bit larger than the underoccupied scenario, they
remain under control over a wide range of couplings.

II. SETUP

A. Leading-order kinetic theory

In the weak-coupling limit λ → 0, the evolution of modes
with perturbative occupancies λfðpÞ ≪ 1 and whose

momenta are larger than the screening scale p2 ≫ m2

can be described to leading order in λf by an effective
kinetic equation for the color averaged gauge boson
distribution function [32]

∂tfðp; tÞ ¼ −C2↔2½f�ðpÞ − C1↔2½f�ðpÞ: ð1Þ

The elastic 2 ↔ 2 scattering and collinear 1 ↔ 2 split-
ting parts of the collision operator—whose precise forms
are given in Appendix A 1—depend, respectively, on
effective matrix elements jMj2 and splitting rates γ, which
have been discussed in detail in Refs. [19,32,49,50]. The
elastic collision term includes LO screening effects by
consistently regulating the Coulombic divergence in t and u
channels at the scale m. The splitting kernel includes the
effects of LPM suppression [34–36,51–53] which regulate
collinear divergences. These effects depend on m and an
effective temperature T�,

m2 ¼ 4λ

Z
p

fp
p
; T� ¼

2λ

m2

Z
p
fpð1þ fpÞ; ð2Þ

which are self-consistently calculated during the simula-
tion. The effective theory contains no free parameters
besides the coupling constant λ. Our numerical implemen-
tation is the discrete-p method of Ref. [49].

B. Next-to-leading-order kinetic theory

NLO corrections to this kinetic picture are derived in
Ref. [54] for a dilute set of high-energy “jet” partons
interacting with a thermal medium and in Ref. [41] at first
order in the departure from equilibrium, suited for the
determination of transport coefficients. These Oð ffiffiffi

λ
p Þ

corrections arise from the self-interactions of soft gluons
with p ∼m ∼

ffiffiffi
λ

p
T appearing in the internal lines in the

diagrammatic computation of the collision kernels. At this
order, these soft gluons can be treated as classical fields,
retaining only the T=p-enhanced part of their equilibrium
distribution, and their contributions can be treated within
the hard thermal loop (HTL) effective theory [33].
Furthermore, they can be treated analytically without
recurring to brute-force HTL computations, owing to the
light-cone techniques introduced in Refs. [38,54,55] (see
Ref. [56] for a more pedagogical exposition).
These calculations can be extended also to some far-

from-equilibrium systems. As it is known (see, e.g.,
Refs. [19,41,57–59]), for p ≪ T�, the collinear splittings
are very effective and rapidly build up a soft thermal tail.
That is, they ensure that fðm≲ p ≪ T�Þ ≈ T�=p. This, in
turn, implies that, in cases with isotropic initial conditions,
the collision operator can naturally accommodate the NLO
corrections derived in Refs. [41,54]. The NLO corrections
are suppressed—with respect to the LO terms in Eq. (1)—
by a factor of λT�=m. This arises from the product of the
naive suppression factor for loops λ with the occupation
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number at the scale p ∼m, that is λfðmÞ ≈ λT�=m.1

Isotropy further ensures that the terms which have not
been determined in the “almost NLO” determination of
Ref. [41] do not contribute here, guaranteeing that what we
are presenting is the full set of NLO modifications.
These OðλT�=mÞ contributions, which we discuss in

more detail in Appendix A 2, consist of new scattering
processes and modifications to the LO ones, as shown in
Refs. [41,54]. The rate of soft 2 ↔ 2 scattering is modified.
This modification, and an OðλT�=mÞ correction to the in-
medium dispersion, also provide an OðλT�=mÞ shift in the
1 ↔ 2 rate. This 1 ↔ 2 splitting rate must furthermore be
corrected wherever one participant becomes soft or when
the opening angle becomes less collinear.
A rather general property of kinetic theory resummations

is that it is possible to construct collision operators that are
equivalent up to a given order but differ by subleading
corrections. This was exploited in Refs. [19,49] to construct
a LO implementation that is numerically well behaved,
thanks to a partial resummation of higher-order effects; a
subtraction will thus be needed to ensure that no double-
counting takes place.
We exploit this same property at NLO: as we shall show

in detail in Appendix A 2, we construct two separate
collision operators, both including all OðλT�=mÞ effects
but differing at higher orders. We call these two schemes
scheme 1 and scheme 2. The difference in the results
obtained from these two, as well as their spread from the
LO results, can be taken as an estimate of the uncertainty, in
particular when extrapolating toward regions where the
expansion parameters are no longer small. One such region
is thus λT�=m≳ 1, while another arises in the region where
p ≫ T�. As is known (see the detailed discussion in
Ref. [50]), the formation time for a collinear splitting
process grows with p=T�, making the splitting process
sensitive not just to the frequent soft scatterings exchanging
q ∼m, but also to the rarer higher-momentum exchanges.
For p=T� ≳ T2�=ðλm2Þ, our form of the LO and NLO 1 ↔ 2
rate, which only includes q ∼m scatterings, becomes
inaccurate. As we elaborate in Appendix A 2, our first
implementation, scheme 1, treats these processes with no
partial resummation of higher-order effects, and the colli-
sion kernel is more prone to extrapolate to (unphysical)
negative values than our second, nonstrict implementation,
scheme 2.

C. Initial conditions

For the underoccupied initial condition, we will use a
Gaussian form centered around a characteristic momentum
scale Q, as in Ref. [19]. To mimic the situation in the last
stage of bottom-up thermalization (and for numerical
stability), we embed this distribution of hard particles in

a soft thermal bath that carries 10% of the total energy
density

fðpÞ ¼ Ae
−ðp−QÞ2
ðQ=10Þ2 þ nBðp; T initÞ; ð3Þ

where A and T init are A≈ð0.419Q=TÞ−4 and T init=T≈0.562.
nB is the equilibrium Bose-Einstein distribution.
In the overoccupied case, we let the system evolve from

the scaling solution [49]

f̃ðp̃Þ ¼ ð0.22e−13.3p̃ þ 2.0e−0.92p̃
2Þ=p̃; ð4Þ

where p̃≡ ðp=QÞðQtÞ−1=7 and fðpÞ≡ ðQtÞ−4=7λ−1f̃ðp̃Þ.
For this initial condition, one has hpi ≪ T, and a direct
energy cascade from the IR to the UV takes place. We
choose Q and an initial time t0 such that f ≫ 1.

III. RESULTS

The thermalization processes of systems initialized with
Eqs. (3) and (4) are displayed in Fig. 1 for Q ¼ 50 and
λ ¼ 5 for the underoccupied case (left panel) and λ ¼ 1 for
the overoccupied case (right panel). Both are evolved with
the scheme 2 prescription.
The NLO evolutions of these systems exhibit the same

qualitative features as their LO counterparts. In the case of
underoccupied initial conditions, the NLO evolution shows
the characteristic features of bottom-up thermalization: one
can see the hard particles lose energy through the radia-
tional cascade heating the soft thermal bath. Eventually,
the system thermalizes as the hard particles are quenched
in the thermal bath [44]. In the case of the overoccupied
initial conditions, the direct energy cascade to the UV
seen at LO is also seen at NLO. The departure from the
scaling solution takes place once hpi ∼ T, corresponding
to fðpÞ ∼ 1.
To determine thermalization times of these systems, we

characterize them in terms of effective temperatures Tα,

Tα ¼
�

2π2

Γðαþ 3Þζðαþ 3Þ
Z

d3p
ð2πÞ3 p

αfðpÞ
� 1

αþ3

;

which all coincide with T in equilibrium but differ
for nonequilibrium systems. We then define a (kinetic)
thermalization time by demanding that the different
effective temperatures are sufficiently close to each other.
Specifically, we define the (kinetic) thermalization time
using the condition [21]

ðT0ðteqÞ=T1ðteqÞÞ�4 ¼ 0.9; ð5Þ

where we use “+” and “−” for under- and overoccupied
systems, respectively. For the underoccupied (over-
occupied) system in Fig. 1, this condition is fulfilled
for λ2Tt ≈ 1029 (λ2Tt ≈ 67), denoted by the green dashed

1In equilibrium, λT�=m ∼ g becomes the well-known suppres-
sion factor g of loops at the screening scale gT.
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line. At this point, most of the energy is in the thermal
bath, rather than in the initial UV (IR) structure.
We have determined this thermalization time for differ-

ent values of the coupling constant λ and, in the under-
occupied case, a variety of initial momenta Q, using both
the LO as well as the two NLO schemes; the under- and
overoccupied-case results are documented in Tables I and II
and displayed in Fig. 2. Our main findings are as follows:

(i) The qualitative effect of the NLO corrections is to
reduce the time required for thermalization.

(ii) NLO corrections are well under control for a wide
range of coupling constants.

In the regime of small values of λ≲ 3—corresponding to
m≲ T in equilibrium, so that the scale separations assumed
in the derivation of the kinetic theory are fulfilled—the
NLO corrections constitute merely a 5% and 20% reduction
of the thermalization time in the under- and overoccupied
cases. It is reassuring to observe that, in both scenarios,
results from the two NLO schemes are close to each other
compared to the overall size of the NLO correction. In the

FIG. 1. Time evolution from the initial conditions (3)–(4) in solid blue lines to the final equilibrium state in solid black. The dotted and
dashed lines show intermediate steps upon solving the NLO kinetic theory (scheme 2). The values of the couplings are λ ¼ 5 and λ ¼ 1,
respectively.

TABLE I. Table of thermalization times t̂eq ≡ λ2Tteq of underoccupied initial conditions with different Q=T and
values of the coupling λ.

Q=T λ t̂LOeq t̂NLO1eq t̂NLO2eq Q=T λ t̂LOeq t̂NLO1eq t̂NLO2eq

20 1 503.4 465.2 473.2 35 0.1 623.4 614.5 615.7
40 1 818.7 784.1 791.8 35 0.5 707.5 683.3 687.6
60 1 1060.0 1039.1 1044.4 35 1 749.3 712.5 720.7
80 1 1263.9 1261.5 1263.2 35 5 859.4 764.5 803.4
100 1 1443.4 1462.2 1459.8 35 10 910.5 774.3 849.5

20 5 588.4 489.5 528.8 50 0.1 798.9 791.7 793.3
40 5 934.6 845.5 882.4 50 0.5 897.3 878.6 882.0
60 5 1193.8 1142.4 1163.5 50 1 945.5 916.9 923.6
80 5 1409.5 1410.4 1408.9 50 5 1070.9 998.6 1028.7
100 5 1599.2 1661.6 1630.4 50 10 1129.1 1027.6 1086.4

TABLE II. Table of thermalization times t̂eq ≡ λ2Tteq of overoccupied initial conditions with different values of
the coupling λ.

λ 0.01 0.03 0.06 0.1 0.3 0.6 1 3 6 10

t̂LOeq 40.9 46.2 50.4 54.0 63.2 70.4 76.2 89.5 97.1 101.0

t̂NLO1eq 40.5 45.4 49.1 52.0 58.8 62.9 65.4 67.1 64.1 59.3

t̂NLO2eq 40.5 45.4 49.1 52.1 59.1 63.6 66.6 71.1 71.7 70.7
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λ → 0-limit, the difference between the two NLO schemes
vanishes faster than their difference to LO. This demon-
strates that the observed differences from the LO are true
NLO corrections and are not contaminated by the scheme
differences that affect the result beyond the NLO accuracy.
Extrapolating to higher values of 3≲ λ≲ 10, we see

that in the underoccupied case the difference between the
two NLO schemes becomes comparable to the size the of
the NLO correction itself. This indicates quantitative
sensitivity to corrections beyond NLO. However, taking
the difference of the two schemes as an estimate of the
uncertainty, we observe that, strikingly, the corrections
remain below 10% level even for these large value of the
coupling. In the overoccupied case, the correction reaches
40% level, with only a moderate spread between the two
schemes.
At leading order, the underoccupied thermalization

time is parametrically (up to logarithms) of order teq ∼
ðλ2TÞ−1ðQ=TÞ1=2 [44], related to the democratic splitting
time of the particles at the scale Q in a thermal bath with
temperature T. At NLO, corrections are expected to arise
at the relative order λT=m ∼

ffiffiffi
λ

p
. We find that that LO

thermalization time given in Eq. (5) is well described for
λ < 5 by a fit,2

λ2TtLOeq ≈ ðQ=TÞ1=2ð173:þ 9.8 log λÞ − 277: ð6Þ

For small λ < 1 and 20 < Q < 80, the NLO correction in
both schemes is approximately given by

tLOeq
tNLOeq

≈ 1þ λ1=2
�
0.22 − 0.05 log

�
Q
T

��
; ð7Þ

and similarly for the overoccupied case,

λ2TtLOeq ≈
76:

1 − 0.19 log λ
;

tLOeq
tNLOeq

≈ 1þ 0.14λ1=2: ð8Þ

IV. CONCLUSIONS

The poor convergence of the perturbative series for
several different quantities has limited its usefulness in
many phenomenological applications. The soft corrections
studied here are responsible for this poor convergence for
many observables such as transport coefficients [41,42] or
momentum broadening coefficients [37,38]. For these
quantities, NLO corrections completely overtake the LO
results for λ ≈ 10. On the contrary, in the present case of
isotropic thermalization, these soft corrections seem to be
well under control; the corrections are at most of order 40%
for the overoccupied case at λ ≈ 10. These findings are
ostensibly in sharp contrast.
However, it is important to note that Ref. [41] found

NLO corrections to transport coefficients to be numerically
dominated by the NLO contribution to the isotropization
rate governed by the transverse momentum broadening
coefficient q̂ (which obtains a large positive NLO correc-
tion [38]). The key difference with respect to the present
case is that, in an isotropic setting, the dependence on q̂ is
significantly reduced. Instead of explicitly entering the
calculation as an isotropization rate, q̂ only appears in our
case as the source of 1 ↔ 2 splittings; it does make their
rate larger, but its numerical effect is moderated by the fact
that, parametrically, the LPM-suppressed 1 ↔ 2 splitting
rate is ∝

ffiffiffî
q

p
, whereas isotropization is ∝ q̂. Furthermore,

the other NLO corrections to splitting arising from a soft

FIG. 2. Equilibration times as a function of the coupling and, in the underoccupied case, the initial UV scale. The shaded band between
the two NLO schemes can be taken as a first indication of the theory uncertainty. The coupling λ ¼ 3 for which m ¼ T in thermal
equilibrium is indicated by a vertical gray line.

2Note that this thermalization time approximately agrees with
that of Ref. [19] but differs slightly due to slightly different initial
conditions and the precise definition of thermalization time used
here.
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participant, a wider-angle emission, or a rarer larger-
momentum radiation-inducing scattering tend to decrease
the rate, partially canceling the

ffiffiffî
q

p
-driven increase. This

partial cancellation was already seen in the thermal photon
production rate—another isotropic observable—which also
shows moderate NLO corrections [40]. This is suggestive
of a pattern which we think deserves further investigations.
We note that some of these issues may be ameliorated in
thermal equilibrium by nonperturbative determination of
the soft contributions developed in Refs. [60–64].
However, it is currently not known how these methods
could be extended to far-from-equilibrium systems.
Lastly, we point out that, when trying to apply our

methods to anisotropic systems, such as one undergoing
Bjorken (one-dimensional) expansion, we would neces-
sarily need to include the isotropizing effect of transverse
momentum broadening, further compounded by the emer-
gence of plasma instabilities [44,65–69]. However, in the
final stages of the bottom-up thermalization of heavy-ion
collisions, the hard particles interact mainly with the
isotropic soft thermal bath. This suggests that the methods
developed here may be extended to improve the phenom-
enological description of the bottom-up hydrodynamiza-
tion in heavy-ion collision.
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APPENDIX: DEFINITIONS AND
IMPLEMENTATIONS OF THE

KINETIC THEORY

1. Leading-order kinetic theory

The precise form of the LO collision operator reads3

C2↔2½f�ðpÞ ¼
Z
k;p0;k0

jMðmÞj2ð2πÞ4δð4Þðpþ k − p0 − k0Þ
22k2k02p2p0

× ffpfk½1þ fp0 �½1þ fk0 � − fp0fk0 ½1þ fp�
× ½1þ fk�g; ðA1Þ

C1↔2½f�ðpÞ ¼
ð2πÞ3
2p2

Z
0

∞
dp0dk0γpp0;k0 ðm;T�Þ× ffp½1þ fp0 �

× ½1þ fk0 �− fp0fk0 ½1þ fp�gδðp− p0 − k0Þ

þ ð2πÞ3
p2

Z
0

∞
dp0dkγp

0
p;kðm;T�Þδðpþ k− p0Þ

× ffpfk½1þ fp0 �− fp0 ½1þ fp�½1þ fk�g:
ðA2Þ

The elastic kernel given in Eq. (A1) depends on the effective
in-medium matrix element jMðmÞj2. As the vacuum elastic
scattering has a 1=t2 ∼ 1

q4 (and 1=u2) infrared divergence,

with momentum transfer q ¼ jp − p0j, it makes the soft
small angle scattering contribution to the scattering kernel
diverge. This divergence is, however, regulated by the
physics of in-medium screening. A prescription that is
accurate to leading order is given in Ref. [49] by the
replacement

ðs − uÞ
t

→
ðs − uÞ

t
q2

q2 þ ξ2m2
; ξLO ¼ e5=6

2
ffiffiffi
2

p ; ðA3Þ

where at LO ξ is fixed to ξLO, so as to reproduce the LO
longitudinal momentum diffusion coefficient [54,56].
The effective medium-induced collinear splitting/merging

matrix element γ is given by [32,70]

γpp0;k0 ðm; T�Þ ¼
λ

32π4p
1þ x4 þ ð1 − xÞ4

x3ð1 − xÞ3 Imð∇b · Fð0ÞÞ;

ðA4Þ
with the momentum fraction x ¼ k0=p and where FðbÞ
resums an arbitrary number of soft elastic scatterings with
the medium. It depends on two dimensionless variables,

M̂ ≡ 1 − xþ x2; η≡ pxð1 − xÞλT�
m2

g
; ðA5Þ

where m2
g ¼ m2=2 is the LO mass for gluons with p ≫ m.

Parametrically, η is the ratio squared of the formation time

of the splitting process τform ∼
ffiffiffiffiffiffiffiffiffi
E=q̂

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp
λT�m2

q
and of the

elastic scattering rate τel ∼ 1=λT�. FðbÞ is the solution to this
differential equation [32,54,70],

−2i∇bδ
2ðbÞ ¼ i

2pxð1 − xÞ ðM̂m2
g −∇2

bÞFðbÞ þ
1

2
ðCðbÞ

þ CðxbÞ þ Cðð1 − xÞbÞÞFðbÞ; ðA6Þ

and CðbÞ is the Fourier transform of the soft scattering rate,

CðbÞ ¼
Z

dq2⊥
ð2πÞ2 ð1 − eib·q⊥Þ dΓðq⊥Þ

d2q⊥
: ðA7Þ

3Our matrix element is related to that of Ref. [32] by jMj2 ¼P
bcd jMab

cd j2=ν, f ¼ fa, and γ ¼ γggg=ν.
R
p ≡

R d3p
ð2πÞ3 and ν ¼

2dA ¼ 2ðN2
c − 1Þ for gluons.
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In an isotropic medium, it reads

CðbÞ ¼ λT�
2π

�
K0ðbmÞ þ γE þ log

�
bm
2

��
: ðA8Þ

By rescaling b ¼ b̃=mg and F ¼ 2pxð1 − xÞ=m2
gF̃, the

coefficient of the second line of Eq. (A6) becomes propor-
tional to η. The method presented in Ref. [71] is then used
for the numerical solution.

2. Next-to-leading-order kinetic theory

Let us start by discussing the corrections to Eq. (A4). As
shown in Ref. [54], its form remains valid at NLO, but
the LPM resummation in Eq. (A6) must include two
OðλT�=mÞ corrections. The dispersion relation gets shifted
to m2

gNLO ¼ m2
g þ δm2

g, and the soft scattering kernel is
modified in CNLOðbÞ ¼ CðbÞ þ δCðbÞ. For an isotropic
state with a T�=p soft thermal tail, the equilibrium results
for δm2

g [39] and δCðbÞ [38,40] can be used with the
replacement T → T�, mD → m. The former reads

δm2
g ¼ −

λT�m
2π

: ðA9Þ

In our first implementation, i.e., scheme 1, we treat δm2
g and

δCðbÞ as perturbations to their LO counterparts. Hence, F
is perturbed as FNLO ¼ Fþ δF, and the latter is computed
exactly as in Appendix E of Ref. [54].4 The resulting
γNLO ¼ γ þ δγ can become problematic when extrapolated
to large values of η and λT�=m. As per its definition, large
values of η correspond to formation times larger than the
mean free time for soft scatterings, so that rarer, harder
scatterings, which are not included in the form (A8) of the
scattering kernel, would have a chance to occur. As shown
in Ref. [50], for η≳ ðT�=mÞ4, scatterings with q⊥ ∼ T�
would need to be included, which is far from trivial in an
off-equilibrium setting. At LO, one can, however, expect,
as in equilibrium, that the approximation introduced by
extrapolating Eq. (A8) to η≳ ðT�=mÞ4 amounts to an
overestimate of γ at the 10%–20% level. That happens
because large values of η privilege the small-b form of
CðbÞ, which at leading order is approximated by
λT�m2b2 lnð1=bmÞ, with a coefficient that varies in equi-
librium by 25% between 1=T ≪ b ≪ 1=mD and 1=T ≫ b.
At NLO, this translates for large η into a strong

sensitivity on δCðb ≪ 1=mÞ ≈ −λ2T2�b=ð32πÞ, which is
the Fourier transform of the subleading, ∝ 1=q3⊥, form
of the collision kernel for m ≫ q⊥ ≫ T�. Its negative
coefficient, for large enough λT�=m and η, makes γNLO
negative. We thus propose a second implementation,
scheme 2, so that the difference between the two can be

taken as a proxy for the reliability of these extrapolations.
In this second implementation, we do not treat δm2

g and
δCðbÞ as perturbations. We rather solve

−2i∇bδ
2ðbÞ ¼ i

2pxð1 − xÞ ðM̂m̄g
2 −∇2

bÞF̄ðbÞ þ
1

2
ðCðxbÞ

þ CðbÞ þ Cðð1 − xÞbÞÞ
�
1þ δC

C

�
F̄ðbÞ;

ðA10Þ

where we have defined the mass self-consistently as

m̄g≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

gþ
λ2T2�
8π2

s
−

λT�
2

ffiffiffi
2

p
π
≈mg

�
1−

λT�
2πm

þ…

�
; ðA11Þ

i.e., the positive solution to m̄2
g ¼ m2

g − λT�m̄g=ð
ffiffiffi
2

p
πÞ, so

that, by resumming some higher-order terms, it stays
positive at large λT�=m. In a similar spirit, we have
implemented the collision kernel as

δC
C

≡ δCðbÞ þ δCðxbÞ þ δCðð1 − xÞbÞ
CðbÞ þ CðxbÞ þ Cðð1 − xÞbÞ ðA12Þ

so that δC is not treated as a perturbation in this scheme.
Hence, the difference between the two schemes, in par-
ticular at small to moderate values of λT�=m and large
values of p=T�, is a measure of the uncertainty caused by
the lack of harder scatterings in the implementation of LPM
resummation.
The remaining genuine NLO corrections are:
(1) wider-angle “semicollinear” 1 ↔ 2 processes,
(2) contributions to longitudinal momentum diffusion

arising from soft legs in 1 ↔ 2 processes and from
soft loops in 2 ↔ 2 processes.

We implement the two together, following Ref. [41]. This
amounts to the addition of this extra 1 ↔ 2 splitting rate,

γpp0kjsemi¼
λ

64π4p
1þx4þð1−xÞ4

x3ð1−xÞ3
Z

d2h
ð2πÞ2

Z
d2q⊥
ð2πÞ2

×δCðq⊥;δEÞ× ½Vð1ÞþVðxÞþVð1−xÞ�; ðA13Þ

where

δEðhÞ¼ h2þM̂m2
g

2pxð1−xÞ;

VðvÞ¼
�

h
δEðhÞ−

hþvq⊥
δEðhþvq⊥Þ

�
2

;

δCðq⊥;δEÞ¼
λT�m2ðq2⊥þδE2Þ−1
ðq2⊥þδE2þm2Þ −

λT�m2ðq2⊥Þ−1
ðq2⊥þm2Þ : ðA14Þ

In a nutshell, this implementation subtracts the single-
scattering term of Eq. (A4)—the second term in δCðq; δEÞ

4b here corresponds to pb there; FNLO here corresponds to
p3ðF0 þ F1Þ there. δCðbÞ can be found in Ref. [40].
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is precisely dΓðq⊥Þ=d2q⊥ in Eq. (A7)—and replaces it with
a form that keeps track not only of the medium-induced
changes in the transverse momentum of the particles
undergoing splitting but also of the changes in the small
light-cone component of the momentum, i.e., p0 − pz for
p0 ≈ pz ≈ p. Indeed, as shown in Refs. [40,41,54], for
larger emission angles, these changes are no longer
negligible with respect to those in transverse momentum
and give rise to the form shown here. The soft gluon carries
q0 − qz ¼ δE and is no longer kinematically constrained to
mediating spacelike-only interactions with the medium.
Finally, as anticipated in the main text, we need to avoid

double-countings. The 2 ↔ 2 collision kernel in Eq. (A1)
integrates over values of k; k0; p0 that can be of order m,
with q ∼m as well. In this region, the formulation in
Eq. (A1) is no longer accurate. These slices of phase space
can be shown to be an OðλT�=mÞ contribution [41,54],
though obtained with an improper treatment for these soft
modes. Thus, this contribution needs to be subtracted, as it
is properly included in the NLO contribution to longi-
tudinal momentum diffusion, incorporated in Eq. (A13).
This subtraction is analogous to that discussed in
Appendix B.3 of Ref. [41]. Here, we perform it by shifting
the value of ξ to ξNLO ≈ ξLO þOðλT�=mÞ. We recall that
the LO value of ξ is fixed by imposing that the expansion of

Eq. (A1) with the replacement (A3) for ω≡ p − p0 and q
much smaller than k and p matches the LO hard loop
evaluation of that limit, which is proportional to the LO
longitudinal momentum diffusion coefficient [54]. To get
ξNLO, we must now also expand for k ∼ ω, q ≪ p, gen-
erating a term of relative order λT�=m. We then impose that
ξNLO cancels this term, yielding

λm2

4πp
ln

μ

mg
¼

λm2ð5
6
þ ln μ

2
ffiffi
2

p
ξmg

Þ
4πp

þ 3λ2mT�ξ
ð8πÞ2p ; ðA15Þ

where the lhs is what we impose, i.e., the hard loop form,
with some UV cutoff μ, corresponding to the LO longi-
tudinal momentum diffusion term, while the rhs contains
the terms arising from the explicit expansion of Eq. (A1).
Keeping only the first, leading term, we recover ξLO. We
solve Eq. (A15) self-consistently, finding ξNLO in terms of
the Lambert function W as

ξNLO ¼ −
16mπ

3λT�
W

�
−
3e5=6λT�
32

ffiffiffi
2

p
mπ

�

≈ ξLO þ 3e5=3T�λ
128πm

þO
�
λ2T2�
m2

�
: ðA16Þ
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