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Abstract
Metasurfaces consisting of artificially designed meta-atoms have been popularized recently due to their advantages
of amplitude and phase of light control. However, the electron beam lithography method for metasurface
fabrication has high cost and low throughput, which results in a limitation for the fabrication of metasurfaces. In this
study, nanocomposite printing technology is used to fabricate high-efficiency metasurfaces with low cost. To
demonstrate the efficiency of the proposed fabrication method, a metahologram is designed and fabricated using a
nanocomposite. The metahologram exhibits conversion efficiencies of 48% and 35% at wavelengths of 532 and
635 nm, respectively. The nanocomposite is composed of polymers with nanoparticles, so durability tests are also
performed to evaluate the effects of temperature and humidity on the metasurfaces. The test verifies that at
temperatures below the glass transition temperature of the base resin, the nanostructures do not collapse, so the
efficiency of the metasurfaces remains almost the same. The surrounding humidity does not affect the
nanostructures at all. Hence, the durability of the nanocomposite metasurfaces can be further enhanced by replacing
the base resin, and this nanocomposite printing method will facilitate practical metasurface use at low cost.

Introduction
Metasurfaces consist of nanostructure arrays of sub-

wavelength antennas that can allow control of electro-
magnetic waves. These nanoantennas can allow the
control of optical properties according to their mor-
phology, thickness, and material composition1–6. There-
fore, metasurfaces exhibit novel optical effects and
functions that cannot be easily achieved in nature7–11.
Moreover, metasurfaces can replace complex optical
systems with virtually flat formfactors. The special func-
tionalities of metasurfaces have been applied in various
fields, such as metalenses12–17, holographic devices18–29,

optical cloaks30,31, and color filters32–38. Active meta-
surfaces have also been investigated extensively to facil-
itate dynamic light manipulation39–42, as substantial
research has been conducted on machine learning-based
inverse design methods43–46. However, for the practical
application of metasurfaces, it is necessary to overcome
various fabrication limitations, such as manufacturing
cost and production efficiency.
The realization of optical metasurfaces requires precise

lithography processes due to the necessity of using
resolutions down to several hundreds of nanometers or
less. The two main techniques used to fabricate meta-
surfaces, electron beam lithography (EBL) and focused
ion beam milling, enable precise lithography but come
with optical diffraction issues47–49. Since the total area of
these techniques is very small and expensive procedures,
such as vacuum deposition, are needed, new methods for
fabricating practical metasurfaces are required50,51.
Nanoimprint lithography (NIL) is a method that offers
the advantage of the rapid and easy manufacturing of
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nanostructures using a solution-based process. The
nanostructures are produced using a single direct con-
tact with a replica mold52–54. This method is fast and
cost-effective, as it does not require any vacuum pro-
cesses55. Although the master stamp must be created
using traditional EBL processes56, it can be used
repeatedly. It can also be applied to various resins and
incorporated with light sources of various wavelengths λ
by creating a single stamp57.
In this study, we design and fabricate a metahologram

using NIL. As the designed master stamp has a high
aspect ratio, it is difficult to replicate its nanostructure
with typical polydimethylsiloxane (PDMS); thus, the
master stamp is replicated with hard PDMS (h-PDMS).
In the replicated polymer mold, the pattern is trans-
ferred to the substrate through dielectric nanoparticle-
embedded thermally curable polymer resin (PER),
which has a sufficiently high refractive index for use in
metasurface fabrication. Therefore, by simply duplicat-
ing the master stamp through the PER, a dielectric
metahologram that forms a holographic image can be
fabricated easily. This approach is inexpensive and
highly productive compared to other metasurface
manufacturing processes, as vacuum deposition and
etching are not needed. The durability of the PER
metasurfaces is investigated at different temperatures
and relative humidities. The PER nanostructures do not
collapse under temperatures below the glass transition
temperature of the base resin, and the metasurface
efficiency also remains constant. Furthermore, the
relative humidity does not affect the PER nanos-
tructures and the metasurface efficiency.

Results
Figure 1 presents a schematic of the fabrication of the

metasurfaces using NIL. First, the h-PDMS mold is dupli-
cated from the master stamp. As the single h-PDMS layer is
brittle, it can easily be crushed; thus, an additional PDMS
buffer layer is coated onto the h-PDMS thin film. There-
after, the resin is dropped onto the replicated mold, which
is covered with a substrate, the temperature is increased to
80 °C, and a pressure of 2 bar is applied for 20min. The
PER consists of TiO2 nanoparticles, dipentaerythritol hex-
aacrylate (DPHA), and tert-butyl peroxybenzoate (trigonox
C). DPHA acts as a binder that supports the nanostructures
by connecting the nanoparticles, while trigonox C pro-
motes the action of DPHA as a thermal initiator. The
excess solvent is absorbed into the polymer mold, resulting
in the formation of PER nanostructures. In the process of
transferring PER nanostructures to the substrate, the
adhesive force of the PER on the substrate must be strong
enough for easy demolding from the polymer mold. Once
the polymer mold is removed, a PER metasurface is left on
the substrate.

The effects of temperature and humidity on the PER
nanostructures are evaluated, as the base resin of the PER
is a polymer that is sensitive to heat. A uniform array of
similar cylindrical PER nanostructures constitutes the
PER metasurfaces for the tests (Fig. 2a), and the defor-
mation of the nanostructures is assessed after annealing
for 4 h at different temperatures (Fig. 2b–f). The PER
nanostructures begin to collapse when the temperature
exceeds 90 °C, which is the glass transition temperature of
DPHA. We believe that the thermal resistance of the PER
could be enhanced by using other base resins with higher
glass transition temperatures. The same metasurfaces are
also used for humidity tests where the metasurface is
exposed to different relative humidities in a humidity-
controlled chamber (Fig. 3a–c). The humidity test verifies
that the PER nanostructures are not affected by the sur-
rounding humidity even if the sample is immersed in
water (Fig. 3d).
It is required to arrange the nanostructures according to

phase for the visualization of the hologram. To design
appropriate nanostructures, the refractive index and
extinction coefficient of the TiO2 PER are evaluated for
various nanoparticle concentrations (Fig. 4a). A higher
concentration results in a higher refractive index and
extinction coefficient. By spin-coating and curing the PER,
a uniform thin film is formed (Fig. 4b). The refractive
index and extinction coefficient of the PER are measured
using ellipsometry (Fig. S2). When the concentration of
TiO2 PER is adjusted, 89 wt% PER shows a higher
refractive index than 80 wt% PER, confirming that it is
sufficiently applicable to other wavelength bands (Fig. 4c,
d). A finite-difference time-domain (FDTD) simulation is
performed based on the measured refractive index and
extinction coefficient to optimize the hologram formation
of the green and red lights. The height, period, and

Applying heat and pressure
Mold removal

Demolding polymer mold Resin drop casting

Pressure

Fig. 1 Schematic of metasurface fabrication by nanocomposite
printing

Kim et al. Microsystems & Nanoengineering            (2022) 8:73 Page 2 of 8



diameter of the cylindrical nanostructures are determined
to achieve a transmission phase delay from 0 to 2π. The
FDTD simulation reveals that 80 wt% TiO2 PER is suitable
for green light and 89 wt% TiO2 PER is suitable for red
light (Fig. 4e, f). When the diameter of the nanostructure
is varied from 150 to 380 nm, the TiO2 PER can achieve
the required phase shift for each λ by changing the
concentration.
To design the metahologram, we use the Gerchberg-

Saxton (GS) algorithm, which employs an iteration pro-
cess to reduce the error between the desired and holo-
graphic images. The desired grayscale image is
represented by a two-dimensional matrix consisting of the
target intensity distribution intensities from 0 to 255. The
complex amplitude profile in the object plane can be

obtained by taking the inverse Fourier transform of the
target image. Then, the magnitude of the transformed
matrix is normalized by the GS algorithm so that the
matrix contains phase information only. The Fourier
transform of the consequent matrix represents the holo-
graphic image generated by a metasurface when it is
encoded by the phase-only profile. However, the image
has large errors compared with the desired image, so the
magnitude of the image is normalized again and multi-
plied by the desired image. This process enforces the
reduction of the error during the iteration process. After
taking the inverse Fourier transform again, those pro-
cesses are iterated. When the error becomes sufficiently
small, the normalized phase-only matrix at the object
plane is the phase profile required for a metasurface to
produce the desired image.
The metasurface consists of eight types of cylindrical

nanostructures with diameters that vary from 150 to
380 nm, with a periodicity of 500 nm and height of
800 nm (Fig. 5a). The polymer soft mold has a hole-
shaped pattern that is the inverse of the master stamp.
The SEM images of the h-PDMS verify that the master
stamp is replicated effectively, without any loss of the
desired pattern (Fig. 5b). Furthermore, the nanostructures
of the master stamp are successfully replicated with the
TiO2 PER (Fig. 5c, d). Although the pattern is composed
of nanoparticles, it is uniform and smooth as a result of
the small average diameter of the TiO2 nanoparticles of
27.3 nm, which is small compared to that of the pattern
size (Fig. S1).
The designed metahologram is fabricated using TiO2

PER, and the holographic image is observed by shining
lasers of λ= 532 and 635 nm (Fig. 6). When λ= 532 nm,
the 80 wt% PER yields the clearest image (Fig. 6b).
When λ= 635 nm, the 89 wt% PER yields the clearest
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Fig. 2 Effect of temperature on PER nanostructures. a Original PER nanostructures. b–f PER nanostructures after 4 h of annealing at different
temperatures at a surrounding humidity of 30%. The PER patterns begin to collapse above 90 °C, which corresponds to the glass transition
temperature of the base resin
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Fig. 3 Effect of humidity on PER nanostructures. The test sample
is identical to that of the temperature test. a–c PER
nanostructures after 4 h in a humidity-controlled chamber. d PER
nanostructures after soaking in water. The PER nanostructures are not
affected by the surrounding humidity
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image (Fig. 6h). Figure 7 depicts the hologram effi-
ciency, which is the optical power ratio of the incident
light to the holographic image. The maximum efficiency
is 48% at λ= 532 nm and 35% at λ= 635 nm. The FDTD
simulation and experimental values are consistent, but
the efficiency of the fabricated metahologram is lower
than the FDTD simulation result because of fabrication
defects. The transmission coefficients of the meta-
surfaces are affected by the physical shapes of the

individual nanostructures, but the metasurfaces in this
work have several kinds of defects, such as slanted
sidewalls and random deformation (Fig. S3).
NIL is a solution-based and direct-contact type of

lithography. As the replicated mold is flexible, patterns
can easily be printed on various substrates. In addition to
flat glass, the patterns can be formed on flexible and
curved glass substrates (Fig. 8). Although the clarity is
reduced owing to the phase deviation resulting from the
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Fig. 4 Optical properties of TiO2 PER thin films. a Refractive index (dashed lines) and extinction coefficient (solid lines) according to TiO2

nanoparticle concentration following solvent removal. b SEM image of a spin-coated 80% TiO2 nanoparticle layer on a glass substrate. Optical
properties of TiO2 PER thin films: (c) measured refractive index and extinction coefficient and (d) simulated transmission of 80 wt% PER. The
transmission is simulated at λ= 532 nm. e Refractive index and (f) simulated transmission of 89 wt% PER. The transmission is simulated at λ= 635 nm

Kim et al. Microsystems & Nanoengineering            (2022) 8:73 Page 4 of 8



substrate curvature, the hologram can be easily recog-
nized. Moreover, less distortion of the structure occurs
on substrates with higher curvatures than other litho-
graphy types. Therefore, our approach can be applied to
create metasurfaces on curved substrates.
A reliability test is again conducted in a high-

temperature and high-humidity environment to verify
the durability of the PER metasurfaces that are produced
through the solution-based NIL process. The metasurfaces
are stored for 24 h in an atmosphere of 70% humidity at
70 °C. The SEM images confirm that the nanostructures
are not deformed (Fig. 8g). The PER synthesized in this
study was stable in high-temperature and high-humidity
environments. Figure 8h depicts a holographic image fol-
lowing the reliability test. Moreover, the conversion effi-
ciency of the metahologram is 43% after the test. No
significant performance degradation occurs compared to
the efficiency of 48% before the reliability test.

Discussion
There have been various reported works on mono-

lithic TiO2 metasurfaces, allowing for comparison. In
the case of polarization-insensitive metasurfaces, a
transmittance of 83% at a wavelength of 532 nm has
been proven58. The efficiency of the monolithic meta-
surfaces is higher than that of TiO2 PER metasurfaces in
this work because the refractive index of TiO2 is much
higher than that of TiO2 PER. However, it is expensive
and time-consuming to fabricate monolithic TiO2

metasurfaces because they require challenging pro-
cesses, such as the atomic layer deposition of TiO2 over
500 nm. In contrast, our TiO2 PER metasurfaces can be
rapidly fabricated at very low cost once a master mold is
prepared. Moreover, TiO2 PER metasurfaces can be
defined for any kind of substrate, including flexible
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Fig. 5 Scanning electron microscopy (SEM) images. a Si master
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λ= 532 nm with concentrations of (a) 67 wt%, (b) 80 wt%, (c) 86 wt%, and (d) 89 wt% and at λ= 635 nm with concentrations of (e) 67 wt%, (f) 80 wt
%, (g) 86 wt%, and (h) 89 wt%. i Measured hologram efficiency according to TiO2 PER concentration
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polymers and curved glass, which are not compatible
with typical monolithic TiO2 metasurfaces.
In this study, although it is necessary to produce a

master stamp using electron beam lithography, a high-
efficiency metahologram is produced through a semi-
permanently usable master stamp. By producing reusable
polymer molds using h-PDMS with excellent mechanical
strength, metasurfaces can be replicated repeatedly with a
low cost. The TiO2 PER, which has a high refractive index,
is synthesized and applied in the production of metaho-
lograms. Furthermore, the concentration is optimized to
control the refractive index of the PER. Using the
solution-based NIL process, it is possible to create
metasurfaces on flexible and curved substrates. The
reliability test validates that the PER metasurfaces main-
tain their optical performance at temperatures below the
glass transition temperature of the base resin. The sur-
rounding humidity does not influence the PER metasur-
face. As high fabrication cost is a major limitation in the
metasurface field, this low-cost and high-efficiency NIL-
based manufacturing method may provide a breakthrough
in the commercialization of metasurfaces.
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