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Using micromagnetic simulations, we have investigated spin dynamics in a nanostructure in the presence of thermal fluctuations.
In particular, we have studied the effects of a uniform temperature and of a uniform thermal gradient. In both cases, the stochastic
field leads to an increase of the precession angle of the magnetization, and to a mild decreas of the linewidth of the resonance peaks.
Our results indicate that the Gilbert damping parameter plays the role of control parameter for the amplification of spin waves.

I. INTRODUCTION

Recent experiments have shown that a temperature gradient
across a magnetic material (conductor or insulator) generates
a pure spin current. This phenomenon, known as the Spin-
Seebeck Effect (SSE) [1], [2] has opened a new research field
in which temperature, magnetism and electronic transport are
considered simultaneusly [3].

In insulating ferromagnets, the spin current cannot be car-
ried by electrons and therefore a spin wave spin current [2]
associated with the magnetization dynamics in the sample is
at the core of SSE. This effect is not limited to ferromagnets:
in a recent experiment Padron-Hernandez et al. [4] suggest
that Spin Waves (SW), excited by a radio frequency generator
in an yttrium iron garnet sample, are amplified in presence
of a uniform thermal gradient through the sample. In their
paper, they suggest that heat flow acts as a thermal torque that
opposes the damping, in a similar way as spin torque does in
spin transfer nano-oscillators [5].

In conducting ferromagnets, pure spin currents are generated
by itinerant electrons with opposite spins that flow in opposite
directions as well as by magnons. Experiments and theoretical
analysis performed so far have mainly focused on the effect
of thermal gradient at the interface between different materials
through the Inverse Spin-Hall Effect [6], [7], or on domain
wall motion [8], [9]. More recently, Machado et. al. [10]
investigated through micromagnetic simulations the role of
thermal gradient on the vortex core magnetization dynamics
in a Permalloy disk.

So far, a micromagnetic study of the effect of heat flow on
SW amplification in a ferromagnet, and a comparison with
the uniform temperature case, is missing. The possibility to
propagate SW using a thermal gradient suggests many possible
applications [11], and an understanding of the direct effect of
heat flow on the magnetization dynamics is highly desirable.

In this paper we present detailed micromagnetic simulations
of the SW spectrum of a nanoscructure in the presence
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of a uniform and non uniform temperature distribution. For
practical reasons we have chosen to use the parameters valid
for Permalloy (Py). However, our results should not been
interpreted as quantitatively specific for Py, but rather as a
qualitative description of the effect of heat flow in a nanos-
tructure. While the studies performed so far have focused on
the local properties of Spin-Seebeck devices (i.e. spin current
propagation), we have here chosen to investigate the effect of
thermal fluctuations on SW.

II. FORMULATION OF THE PROBLEM

The dynamics of the magnetization in a ferromagnet is
described, at the length scale of the exchange length, by the
classical LLG equation of motion [12], [13]

∂M

∂t
= −|γ0|M ×Heff +

α

Ms

M ×
∂M

∂t
, (1)

where γ0 = −2.21 × 105 m/(As) is the gyromagnetic ratio,
α is the dimensionless Gilbert damping parameter and Ms

is the saturation magnetization of the sample. The first term
at the right-hand side of Eq.(1) is the adiabatic torque, which
accounts for the precession of the magnetization M around the
effective field Heff . The effective field itself is the functional
derivative of the Gibbs free energy of the system with respect
to the magnetization [14]. The second term on the right-hand
side, proportional to α, accounts for energy dissipation. In
general, Heff contains a Zeeman term, which describes the
interaction of the precessing magnetization with the applied
field, as well as exchange, shape anisotropy and demagnetizing
field. [14].

Our numerical simulations have been performed with Nmag
[15], a micromagnetic package based on finite-element dis-
cretization of the sample, which is represented by a network
of sites (mesh). In this package, the magnetization dynamics at
each site k of the mesh is described by the LLG equation, and
the interactions with neighbouring sites are taken into account
in the computation of the effective field.
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Figure 1. (Color online) a) Magnetization vector precessing around the field
Hext, aligned with the z axis. The transverse component ξ̄ ≈ mx + imy

is the SW complex amplitude, which describes the magnetization precession
at the Larmor frequency in the x-y plane. b) Cartoon of the Py nanopillar
studied in this paper, showing the mesh used in the computations. A uniform
thermal gradient ∂xT is applied in the x direction, and a uniform magnetic
field Hext is applied in the z direction.

Temperature is introduced by adding to the effective field
Hk

eff at site k, a stochastic field Hk

th, which is assumed to
be a Gaussian random process with zero mean and amplitude
〈

Hk
th,iH

l
th,j

〉

= 2Dkδijδklδ(t− t′). Here i, j = x, y, z stand

for the cartesian components of the field, while k, l refers to
the sites on the mesh. The fluctuation amplitude Dk is given
by [16]

Dk =
2αkBTk

Msγ0µ0Vk∆t
, (2)

where kB is the Boltzmann constant, µ0 is the vacuum
magnetic permeability, Tk is the temperature at site k, Vk is the
volume containing the magnetic moment at site k and ∆t is
the integration time step. We have taken Vk as the average
volume per site, given by the total volume of the sample
divided by the number of sites of the mesh. In agreement
with the results of Ref. [17], we have neglected the weak
temperature dependence of α. Notice that Eq. (2) is valid
in a spin dynamics atomistic description, where each site
corresponds to a single precessing spin. In a micromagnetic
framework, where each site corresponds to a large number of
precessing spins inside a finite volume, Dk has to be multiplied
by a scaling factor, which for Py is equal to 10 (see Ref. [18]).

III. NUMERICAL SIMULATIONS

The sample used in our simulations, shown in Fig. (1b)
is a cuboid with dimensions of 100 × 30 × 30 nm. The
mesh contains 4100 nodes, giving a lattice distance smaller
than 3 nm. This is of the order of the Py exchange length.
The micromagnetic parameters are those of Py: the exchange
stiffness of is J = 1.3 × 10−11 J/m, while for the saturation
magnetization we have taken 0.86× 106 A/m. In most of our
simulations, the sample is saturated by an external field Hext

of 10 kOe applied in the z direction, which corresponds to
the precession axis of the magnetization. The computations
performed at different fields will be clearly indicated. The
temperature T is uniform along the y and z directions, while

a uniform thermal gradient ∂xT is applied in the x direction.
This configuration, with the field orthogonal to the thermal
gradient, is the one commonly used in SSE experiments [1],
[2], [4].

The quantity of interest in our simulations is the normalized
magnetization averaged over the volume V of the sample:
〈m(t)〉 = 1

VMs

∫

V
M(r, t)dV . In particular, the complex SW

amplitude

ξ(t) =
〈Mx〉+ i 〈My〉

√

Ms(Ms +Mz)
, (3)

describes the transverse magnetization precessing in the x-y
plane [see Fig. (1a)]. for small oscillations considered here,
Mz ≈ Ms, so that ξ ≈ 〈mx〉 + i 〈my〉. The LLG equation,
written in terms of this variable, reads [5]

dξ

dt
= iωξ + Γα

effξ. (4)

For a single spin, the solution ξ(t) ≈ exp [(iω − Γα
eff)t] is an

oscillating signal with frequency ω0 = γHeff . In an extended
confined ferromagnet, the effective field is spatially dependent,
so that the solution consists of a discrete set of SW modes with
frequencies ωℓ, whose spatial profile depends on the geometry
of the system [14], [19]. In the cuboid geometry, they consist
of sine and cosine.

The time decay of the signal is controlled by the damping
rate Γα

eff , which in general is a function of α and of the reso-
nant frequency [5]. For small precession angles and damping
parameter considered here, each SW mode has an effective
damping Γα

eff ≈ αωℓ.
The SW power spectrum, given by the absolute value of the

Fourier transform of the SW amplitude, consists of Lorentzians
centered at the resonance frequencies, whose linewidths (full
width at half height) correspond to Γα

eff [5], [14]. When the
system absorbs energy, the heights of the resonance peaks in-
crease, while their linewidths decrease [14]. This corresponds
to and increase of the precession angle.

In our simulations, we started from an initial condition
where the magnetization is uniformly tilted 8◦ in the x direc-
tion with respect to the precession axis z. We then computed
the time evolution for 10 ns with a time step of 1 ps.

Fig. (2a) shows the typical output mx(t) and my(t) of our
simulations at zero temperature, computed for α=0.01, while
Fig. (2b) shows the corresponding power spectrum, which is
dominated by the two modes fℓ, ℓ = 1, 2 with frequencies 31.2
and 40.1 GHz correspondingly. These low energy modes are
the only ones visible in the linear regime, since their damping
is relatively weak. Fig. (2d) shows their spatial profile. These
modes have different linewidths, and consequently different
effective dampings Γα,ℓ

eff .
We performed the computations have in a wide range of

thermal gradients, spanning between 0 and 102 K/nm. Fig.
2c) shows the magnetization as a function of temperature, in
good agreement with Ref. [18]. T he gradients at which SW
amplification is observed are comprised between 10−1 and 10
K/nm, which correspond to temperatures between 3 and 300
K in the hottest part of the system, well below the Curie point.
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Figure 2. (Color online) a) Time evolution of the transverse components of
the magnetization mx and my , computed for α = 0.01. b) Power spectrum
of the system, with the two dominating modes and the corresponding effective
damping rate. c) Magnetization as a function of temperature. d) Spatial profile
of the precessing component of the magnetization mx, which gives the profile
of the standing SW modes in the system, the mode f1 corresponds to the SW
along the z direction, while the degenerate mode f2 to the SW along the x
and y directions.

The low-temperature side is set at 0 K, so that the system is
studied in the simplest possible condition.

The heights of the SW peaks fluctuate considerably from
sample to sample, due to different realizations of the thermal
field. Below follows the results pertaining to simulations
performed on a single sample. An analysis of the signal
averaged over many samples is performed in the subsequent
section.

Fig. (3) shows the power spectrum as a function of fre-
quency and thermal gradient, for α = 0.01. Both the color
code and the gradient are in logarithmic scale. The two modes
f1 and f2 are clearly visible. Their frequency is independent
of ∂xT , while their amplitude grows up to a factor 3, and
reaches its maximum around 10 K/nm. For larger gradients,
the temperature in the sample approaches the Curie point, so
that the magnetization drops and the spectrum is dominated
by noise. Other thermally excited SW modes are visible at
frequencies around 70 GHz. Because of their higher damping,
their height is almost one order of magnitude smaller than f1
and f2, so that they give a negligible contribution to the SW
power.

In our system, the damping parameter α plays a key role,
since it is responsible both for the dissipation and the strength
of the thermal field. To obtain better insight regarding the
effect of the thermal gradient, we computed the linewidth (full
width at half maximum) of the modes fℓ, as a function of ∂xT ,
for different values of α [Fig. (4) a) and b)]. Interestingly, we
find that the linewidth of the two modes fℓ, shows a quadratic

Figure 3. (Color online) Power spectrum (in color code) as a function of
frequency and thermal gradient ∂xT . Two modes f1 (31.2 GHz) and f2
(40.1 GHz) are visible. The frequency of both modes is independent of ∂xT ,
while their amplitude grows as a function of it, and reaches its maximum
around 10 K/nm.

dependence on the damping parameter α and on the thermal
gradient.

Γαℓ
eff(∂xT ) = Γℓ

+(α)− bℓ(α)∂xT − (bℓ(α)∂xT )
2, (5)

where Γℓ
+(α) is the positive damping rate (i.e. the linewidth

at zero thermal gradient) of mode ℓ. From our numerical
simulations, we can extract Γℓ

+(α), which fits the functions

Γ1
+(α) = 166α/(1 + 7.5× 103α2 − 5.5× 106α3), (6)

Γ2
+(α) = 180α/(1 + 4.8× 103α2 − 2.9× 105α3),

and of the coefficients bℓ(α)

b1(α) = 1.7× 10−9α+ 4.5× 10−5α2, (7)

b2(α) = 3.53× 10−8α+ 7.69× 10−5α2.

For low values of α (up to 3× 10−3) the quadratic correction
is negligible.

Let us now turn to a discussion of the amplification of
SW signal given by the temperature gradient. Fig. (4c) shows
the gain Aα (i.e. the ratio between the SW power at a given
∂xT and the SW power at ∂xT = 0) as a function of ∂xT ,
calculated for different values of α. Between 0 and 10 K/nm,
the signal grows as a function of ∂xT . At gradients larger than
10 K/nm, corresponding to an average temperature of 1500 K
(the Curie point of Py), the magnetization drops abruptly and
the signal is destroyed. Fig. (4d) shows the maximum gain
Amax (computed at ∂xT = 10 K/nm) as a function of α, which
fits the function Amax(α) = 1 + cα+ (cα)2, with c = 129.9.
Fig. (4e) shows the gain as a function of the thermal gradient,
for α = 10−2 and an applied field between 1 and 9 KOe.

The amplification starts at a critical gradient gc. This critical
threshold, which is different for each mode, is plotted as a
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Figure 4. (Color online) a) and b) Linewidths of the modes f1 and f2 (in
GHz) vs ∂xT (in Log scale), computed for different values of α. Their
linewidths decrease quadratically with the thermal gradient (see text). c) Gain
Aα vs ∂xT , computed for different values α. Aα grows exponentially with
the gradient. d) Maximum gain Amax (at ∂xT = 10 K/nm) vs α. The
maximum gain increases quadratically with α (see text). e) Gain Vs thermal
gradient (in Log scale), computed for α = 0.01 and different values of the
applied field. f) Critical gradient gc (in Log scale) vs α, for both modes.

function of α in Fig. (4f). Remarkably, an increase in α of
a factor six corresponds to a decrease in gc of two orders of
magnitude.

Thus, both the critical threshold and the SW amplification
are dramatically affected by the Gilbert damping parameter α,
but they do not depend on the applied field. A simple analysis
can give a qualitative understanding of this phenomenon. The
SW power spectrum for the SW amplitude of a single spin
obeying Eq.(4), in presence of thermal fluctuation, reads [20]

p(ω) =
D

(ω2 − ω2
0)

2 + Γ+(α)2
, (8)

which is a Lorentzian centered around the resonance frequency
ω0 ≈ γ0Hext, with damping rate Γ+ ≈ ω0α. The strength of
the fluctuations D ∝ αT is given in Eq. (2). Thus, the height
of the resonant peaks is proportional to α. On the contrary,
The applied field Hext controls the resonance frequency and
the damping rate, but not the height of the peaks, so that it
does not influence the amplification. However, this qualitative
consideration is strictly valid only for a single spin in the linear
regime, where the random field acts as an additive noise. In the
case of many interacting spins, and in a non-linear regime, the
noise acts in a multiplicative way [21]–[23], and the damping
rate itself is not anymore linear function ω0 α. Thus, the
behaviour of the resonant peaks is expected to depend strongly
on the geometry of the system, and on the intensity of the
thermal gradient. The transition between linear and nonlinear
regimes, and between additive and multiplicative noise, has
not yet been investigated in within the SSE.

Figure 5. (Color online) Computations of gain and noise/signal ratio for
α = 0.003 (black dots) and α = 0.01 (red squares), and an applied field
of 10 KOe. Panels a) and b) show respectively the gain and the noise/signal
ratio for a system with uniform thermal gradient (in Log scale). Panels c)

and d) show respectively the gain and the noise/signal ratio for a system with
uniform temperature.

IV. COMPARISON BETWEEN THERMAL GRADIENT AND

CONSTANT TEMPERATURE

The results shown in the previous section suggest that a
thermal gradient is an effective means to amplify SW in
a ferromagnet. However, a uniform temperature distribution
might lead to a similar effect. In both the isothermal and the
uniform gradient case, only a part of the thermal excitation
contributes to SW amplification, the rest being wasted into
thermal noise.

In this section we analyse these issues, comparing the effects
of thermal gradient with the ones of uniform temperature.
For this purpose, we have averaged the SW spectrum over
24 samples with different realization of the random thermal
field, and we have analyzed the average amplification and the
noise/signal ratio for a system with thermal gradient and for
an isothermal one. The computations were performed for an
applied field of 10 KOe, and for two values of the Gilbert
damping parameter, α = 3× 10−3 and α = 10−1.

The gradient in the non-isothermal system spans between
0 and 10 K/nm, while the temperature in the isothermal one
spans between 0 and 1500 K. The panels a) and c) in Fig. (5)
show the average gain of the SW signal respectively for the
non-isothermal and for the isothermal system, with the error
bars indicating the variance of the average signal. In fact,
the amplification is similar in both systems, where SW are
amplified up to a factor 2 (for α = 10−2), with large error
bars exceeding 2.4.

Apart from a slight overestimation of the amplification
effect, the study performed on a single sample agree with
the sample-averaged results. In the non-isothermal system,
the maximum amplification is between at 10 K/nm, which
corresponds to an average temperature between of 150 K in
the system, and a maximum temperature on the hotter side
of 300 K. In the isothermal system, a similar amplification
is reached at a temperature of 300 K. The panels b) and d)
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show the noise/signal ratios for the two systems, whose values
are similar in the amplification region. Remarkably, the Gilbert
damping parameter α has a negligible influence on noise/signal
ratio.

V. CONCLUSIONS

We have performed a numerical study, which analyses
the effect of thermal excitations on SW amplification in a
nanostructure. Our simulations suggest that the system should
behave in a similar way with a uniform temperature and
a uniform gradient. The Gilbert damping parameter affects
dramatically the SW amplification: a system with higher
damping dissipates energy at a higher rate, but is also more
effective in absorbing thermal energy.

In this study we have not taken into account the spin
transfer effect, since our objective consists in studying the
effect of thermal gradient on the LLG equation in the simplest
possible configuration, where the only source that affects the
magnetization dynamics is the stochastic thermal field. A
thorough simulation of the spin-Seebeck effect, which takes
into account the effect of electronic transport, will be the
subject of a future paper.

Concerning possible experimental study of SW excitations
through a temperature gradient, the paper of Naletov et al. [19]
analyses the SW modes excited by various means (rf field and
rf current) in a perpendicularly magnetized nanopillar, using
a magnetic resonance force microscope. This is an effective
means to investigate samples buried under several electrodes,
and is sensitive to all the SW modes excited in the system.
We believe that an experimental investigation performed with
a setup similar to the one of Ref. [19] could elucidate the effect
of thermal gradient on SW modes with different symmetries.
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