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SUMMARY

An analysis is presented of thermally induced flow instabilities
in two-phase mixture. The mixture field equations were obtained by means
of a statistical average procedure applied to the two phases. Further-
more, by inteérating the above mixture field equations over a cross sec-
tional area, a one-dimensional mathematical model was developed.

The dynamic response of the system to inlet flow perturbations
has been derived from the above model; thus obtaining the characteristic
equation which predicts the onset of instabilities. Similarity groups
which characterize the phenomenon were derived and discussed.,  The
éharacteristic equation has been solved by computers, and stability maps
in appropriate parametric domain have been obtained. It has been found
that the Stability Plane, i,e., Subcooling;Phase Change number plane, is
best sﬁited for analyzing the problem. The effects of various param-
eters, such as the heat flux, subcooling, pressure, inlet velocity, inlet
orificing, and exit orificing, on the stability boundary have been ana-
1yze&. Particular atfention was directed to the effects of 1) the rela-~
tive velocity between the phases, 2} the nonuniform heﬁf flﬁx profile,
and 3) the static and dynamic influences of various friction factor models.

In addition to numericgl solutions, some simple stability ecriteria
under particular conditions have been obtained. Both results have been
compared with the experimental resﬁlts reported in this country and

abroad,




CHAPTER I
INTRODUCTION

1-1,. Relevanée of the Problem

Thermally induced flow instabilities can introduce operational and
safety problems to systems and components of interest to power generating
utilities, chemical process industries, and aerospace industries. Examples

of such systems and components include nuclear reactors, liquid rocket

engines, heat exchangers, cryogenic equipment boilers, evaporators, and
various chemical process units, |

The existence of thermo-hydraulic excursions and/or oscillations
has been known for some time, ana the appearance of these instabilities
either at suberitical or at supercritical pressures is highly.undesiraﬁle.
They_may not only degrade the performance of the system but can also re-
sult in premature burnout and control problems which can become destruc-

tive .« : 1

I-2. Advances Required

It can be concluded from the discussion of the present state of
the art in Chapter II that the following advances are required:

1) To deriwe from the appropriate mathematical model both sta-
bility maps and stability criteria which can be used to predict the onset
of thermo-hydraulic excursion aﬁd oscillations in twonhase mixture with

relative velocities.




2) To obtaiﬁ correct and important similarity groups which can
reduce the number of governing parameters,

3) To present the results in a parametric plane which is useful
to reéearchers and designers,

4) To obtain simple stability criteria from the analysis which
can be used for design purpoées. |

5) To corroborate the predicted results with experimental data

reported in this country and abroad.'

I-3. Thesis Obiectives

The research program which has been carried out in the course of
this investigation has been designed to provide the analytical results
required for predicting reliably and realistically, the onset of thermally
induced flow oscillations in two-phase mixtures.

The particular objectives of this research are:

1) To derive and discuss one-dimensional two-phase flow field

equations based on statistical and area averaging together with the
necessary constitutive relations.

2) To obtain correct and important similarity groups which govern
the kinematics and dynamics of the system. |

3) To derive the response functions of karious parameters to an
inlet flow perturbation by solving the above field equations analytically.
Furthermore, the characteristic equation which describes the onset of the
instabilities will be obtained from the dynamic response of the system,

4) To present the theofetiéal predictions of the instabilities

in an appropriate parametric domain and to corroborate them with experi-

=y




mental data reported in this country and abroad.
5) To study the effects of various parameters on the extent of
stability regioné, with special emphasis on the influence of the relative

velocity.

I-4, Outline of the Thesis

From the review on the present unﬂerstanﬂing of thermally induced
flow instabilities in Section II.l, it can be seen that several insta-
bility mechanisms exist. 1In this dissertation there is presented a quan-
titativg formulation and solution of the stabilitx problem concerned with
a particular instability phenomenon. The particular mechénism which is

analyzed in this research is based on the effects of density wave propa-

gations. It is well known that tﬁe'propagation phenomena induce time lag
effects in the dynamic response of a system, hence they may lead to un-
stable flow, i.e., low frequency oscillations or flow excursion,

It may be beneficial to present Here a brief outline of the dis-
sertation so that a better understanding can be attained of the material
presented herein.

Chapter II is devoted to a review of the present state of knowledge
of thermally induced flow oscillations and two-phase flow dynamics. The
various instability mechanisms as well as the existing theories explaining
the phenomena are discussed,

The rest of the chapters fall into two parts, Part 1, consisting

of Chapters IIT to VII, presents the development of a theoretical analy-

sis concerned with the dynamics of the system. Part 2, consisting of

Chapters VIII to XII, is devoted to the application of the theory derived




in Part 1 to the stability analysis of the system, the solution of the
characteristic equation, and the comparisons with existing experimental
data. The outline of Parts 1 and 2 is as follows,

Qutline of Part 1 (Theoretical Analysis)

In this part of the analysié there is derived the mathematical
model which can describe the dynamics of a two~phase diabatic system, as
well as the characteristic equation which predicts the onset of the ther-
mally induced flow instabilities,

The present study starts from the rigorous derivation of the field

equations based on the statistical averaging and then proceeds to the area

averaging in order to obtain a one-dimensional model suitable to the sys-
tem, The detailed mathematical procedures of the above analysis are
given in Appendices A to € and the results sre summarized in Chapter III.

The formulétion of the problem is given in Chapter IV, where a
number of.simplifications are introduced. Eventuzally the momentum equa-
tion is decoupled from the energy and continuity equations. Subsequently
the kinematic problem is solved first in Chapter V, then the dynamics of
the system is analyzed in Chapter VI.

Throughout the integration 6f field equations, the'pefturbation
method is used in order to linearize the system, Furthermore, the system
is divided into four regions, i.e., the upstream un-heated section, the
1iquid heated section, the mixture heated region, and the downstream un-
heated region. The kinematic pfoblem is solved by transforming the con-
tinuity and energy equations into the form of Lagrange's differential
equations and integrating them from upstream to dowmstream along the

characteristics,




The analysis includes effects such as nonuniform heat flux and the
influences of various frictional pressure drop models on the characteris-
tic equation., As far as the instabilities due to the density wave propa-
gatioqs are concérned, the present study is quite general, However, it
should be noted here that both thermal non-equilibrium effects and the
acoustical wave interactions with the density wave (kinematic wavé) have
been neglected in the analysis,

Outline of Part 2 (Application of the Theory)

In this part of the dissertation the applicability.of the theory
developed in Part 1 to the stability analysis is demonstrated. Since the
system with uniform heat flux profile has the simplest characteristic
equation and the parametric study on this model gives some general trends
of the effects of various parameters on thé stability, this is chosen as
a basic model.

By taking the system with a uniform heat flux profile the charac-

teristic equation is made dimensionless and thus the gimilarity parameters

governing the stability of the system are obtained. The significance and

the physical meaning of the above Qimensionless groups are discussed in
Chapter VIII, |

In Chapter IX, a brief introduction is given of stabilit} theorems
such as the Mikhailov Criterion and the D-Partition Method which are im-

portant for the analysis of the system, Then the Stability Plane which

is suitable for the presentation of the stability boundaries is discussed,
Based on the characteristic equation and the stability theorems, some

analytical conclusions on the effects of various parameters are obtained.




FurEhermore, in Section iX.A, simple stability criteria which can be used

for design purposes are developed.

In Section IX.5, the excursive stability critefian is derived and

its relation with the characteristic equation is discussed.
| Chapter X consists of the numerical aﬁalysis on the stability of

the system. Two computér programs are developed for the mapping of the
stability boundaries and for the test of the stability at any particular
operational condition, The effects of varioﬁs parameters on the stability
boundaries are examined by means of computers, |

In Chapter XI, the above results as weil as the simple stability
criterion are compared to experimental data reported in this country and
abroad,

The final two chapters are devoted to a discussion and the conclu-

sions,




CHAPTER II
STATE OF THE ART

II-1, Mechanism of Instabilities

Thermally induced flow imstabilities may be divided into two main
categories: excursive instabilities and bscillatory instabilitieé &ué to
propagation phenomena. |

Excursive instabilities were first énalyzed successfully by
Ledinegg (2) in 1938. It has been shown that, under certain conditions, 
the steady state system pressure drop versus flow cqfve ha# é negative
slope hence, as the flow rate is not a single valued funétion of the
pressure drop, a flow excursion may 6ccur. In his analysis, Le&inegg‘
agsumed that the heat flux was uniform, but later this ﬁriterion has been
extended by a number of other investigatérs (3,4) for more generél ca#es.

The oscillatory type instabilities are rather complicated dynamic
phenomena which may be subdivided into four different mechanisms:

a) instaﬁilities due to pressure wave propagation,.

b} instabilities due to thermodynamic nonequilibrium,

c) instabilities due to flow regime change, and

d) instabilities due to kinematic wave propagation,

The most common oscillations (5-10) encountered in heated channels
are loﬁ frequency; i.e., chugging oscillations. There 1is considerable
evidence that some relationship exists betwéén the residence time of the

particle and the perjod of the chugging, i.e., low frequency oscillations,




Thérefﬁre, several analyses have been formulated and carried out by con-
sidering the propagation of kinqﬁatic waves and the attendant time lag
effects,

Although high frequency qscillations, which are associated with
the propagation of preséure waves, have been observed in some experiments
(11), they may be of less importance for practical applications than the
low frequency oscillations. On the other hand, Yadigaroglu and Bergles
3N obéerved frquent occurrences of higher mode oscillations which they
explained by the presence of standing enthalpy waves in the single ﬁhase
region. These two high frequency oscillations (11, 37) may or may not be
related and provide an interesting problem.

The inéfabilities which havé been obsérved by Jeglic and Graée
(12) in experiments conducted with water at low pressures flowing through
a smo;th piﬁe were apparently due to thermodynamic nonequilibrium. Under

these condit{ons and because of poor nucleation, the liquid can become

highly superheated. -However, once a bubble is nucleated, it grows ex-

plosively (because of the high liquid superheat) ejecting the liquid from

the duct while interrupting the inlet flow. After the liquid is ejected
from the duct, the pressure decreases, new 1iduid enters,.becomes super-
heated, and the process repeats itself.

The disturbgnces which are created by flow regime changes can also
produce osciilatory behavior. Wallis and Hensley (19) analyzed the slug
flow in a long, large-diameter riser and concluded that.cyclic variation

of vapor content could producé periodic fluctuations of loop flow rate.




II-2. Previous Work

I1-2.1. History of Analytical Work

There have been numerous analytical studies directed at oBtaining
a better understanding of thermally induced flow oscillations, at deter-
nining their mechanism and deriving stability eriteria. Although most
of the investigations have been done in the last decade, we cannot omit
two outstanding studies of the early 50's (13,15),

The initial analysis concerned with the transient operation of
boiler channels has béeﬁ done in 1953 by the Russian scientists Teletov

~and Serov (13) who were able to obtain transfer functions for a distribu-

ted parameter system, which give the response of the fluid enthalpy and
deﬁsity to perturbations of the heat flux. The derivation of this trans-
fer functiop was based on a simple but important transformation which is
disqussed further in Section II-2,2, Their aﬁalysis was limited, however,
to a homogeneous flow (in which the effect of the relative:velocity be-
tween phases is neglected) and a tﬁermbd?namic equilibrium condition,

Teletov's formulation of the problem became the foundation of the
rather rigorous analysis of Zuber (1) based on the kinematic wave theory
of M, J. Lighthill.(lé). The_analy;is of (1) is applicablé to both the
'slip flow model (in which the effect of the relative velocity between the
phases is accounted for) and thermodynamic nonequilibrium.

Although the excellent studies by Crocce and-Cheng, which are sum-
marized in their book (15) in 1956, are not direqtly related to the two-
phase flow oscillations, since they were concerned with rocket engine
combustion instabilities, their analysis, however, has offered very

valuable information on the instability mechanisms of heated chammels due
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to time lag effects, Furthermore, by cﬁmparing'theoretical results with
experimental data, Crocco and Cheng demonstrated the applicability and
reliability of the linearized (small disturbance) theory to analyses and
studies of combustion instabilities.

Besides these early studies by Teletov and Serov (13) and by Crocco
and Cheng (15), numerous analytical investigations haﬁe been conducted
in this field, although unfortunately many of them are less sophisticated
than the pioneering studies mentioned above.

In general, two approaches have been followed, The first is based

on phenomenological models which are obtained from the assumed similarity

with a simple mechanical system or an electrical circuit having excita-

tions. The second approach is to formulate the problem from the conser-

vation laws for the mixture,

Because of its-simplicity, many of the studies belong to the. first

group; however, the applicability of their results is severely restricted
by its own nature. WNeedless to say, onelmust supply several experimental
coefficiénts or correlation functions into these formuiations, since,
strictly speaking, the assumed models are mot based on conservation laws,

Shortcomings of such analyses afe evidenced by the.fact that the
values of the coefficients or the functions change with operating condi-
tions and design configurations. We may point out two reasons for this
deficiency: |

1} the assumed models are inacecurate, and

2) the lack of knowlédge of similarity groups which characterize

phenomena.

——
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This latter aspect constitutes one of the most important problems
in the general-analfses of two-phase flow systems. We shall close our
discussion of the phenomenological approach without referring to individual
models, because the models seem to be of limited value, TFurthermore, the
phenomenological approach can be looked upon as a transitional.methﬁd of
analysis which leads to the second approach based on the conservatioﬁ
laws.

In general, a tﬁeoretical approach must be based on the éonserva-
tion equations, approériate éonstitutive equations, and imposed boundary
conditions, together with correct physical approxiﬁations{ Particularly
if the system has complicdted characteristics such as existence of inter-
faces, boiling heat transfer, change of two-phase fiow regimes, turbulent
flow, and time dependent variables, the formulation of the model should
be manageable, and, at the same time, it should state the basic physical
nature of the phenomenon. From this point of view two models, a homo-
geneous flow and a'slip flow model, ha&e been used in various analyses,
In the first model the relative velocity between the two phases is ne-
glected, wheréas in the slip flow model this important characteristic of
two-phase flow systems is taken into account.

Besides this classification into homogeneous and slip flow ﬁodels,
generally two distinct methods have been applied to obtain a solution of
the problem. In the first, the system of partial differential equations
is linearized by assuming small disturbances about a steady state. The
response of the system to various perturbations, as well as stability
criteria, is then obtained by using standard techniques. The second

“method is based on a numerical solution whereby the set of nonlinear
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partial_differeﬁtial equations is solved by numerical methods.
Following this elassification, we shall discuss in the sections
below the more relevant and/or represéntative theoretical studies of
thermally induced flow oscillations, particularly\of the low frequency
instability, since it has been chosen as the main subject of this dis-
serfation. |

II-2.2. Homogeneous Flow Model (hinearized Theory)

As previously mentioned, Telefov* and Serov (13) were the first to
formulate the dynamic problem of two-phase flow systems, although the
analyses of similar dynamic problems of a rocket engine combustion insta-
bilities had already been studied in detail by M, Summerfield (16), H, 8.
Tsien (17), Crocco and Cheng (15), among others. The study of Teletov
and Serov (13) is limited to low frequency oscillations and deals with
the transient reéponses of enthalpy and density to a heat flux disturb-
ance, It also takes into account the effect of the wall heat capacity.
By considering only low frequency oscillétions, Teletov and Serov (13)
were apparently the first to realize that the density ﬁas a function of

enthalpy only and not of both enthalpy and pressure, It should be noticed,

however, that, in Ref. (13) Serov did not integrate the momentum equation,

consequently, the characteristic equation was not derived, Furthermore,
his analysis was limited to homogeneous flow and thermodynamiﬁ equilibrium,
| The importance of Serov's first analysis (13) rests on

1) decoupling the momentum equation frqm the energy and continuity

equations,

* - B
Unpublished paper which is discussed in Serov's paper (13).

—h
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2) deriving the transfer function for a distributed parameter
system, and
3) finding a simple transformation (given below) which relates

the divergence of the velocity to the heat flux,

= lwm = : - I12.1)
o .}'3, j':‘j_ A Lj‘g. Ac ( :

Here'vm'ia alvelocity of the mixture and ) is a reaction frequency
‘of the phase change, which.can be.expressed by the densities of each
phaée pg and Pes the density difference Ap, the latent heat Aifg; and ﬁhe'
heat input qw“gfkc.. | ’

An analysis quite similar to (13), but including the response of
the pressure, was given by Terano (18). The system was divided into three
parts, liquid, mixture, and superheated vapor région. Unfortunately he
used a simple capacitance model for the pressure response, which reduces
the generality of the solution for the séme reasons discussed in conmec-
tion with the phenomenclogical models,

Wallis and Heasley (19) used a model szimilar to that of Serov (13).
Using Lagrangian coordinates, they integrated .the-energy ﬁnd confinuity
equations with a disturbed.inlet‘flow. However, in coﬁtrast to the |
analysis of Serov (13), they neglected the effect of a variablé'heat
traﬁafer coefficient, In (19), the characteristic equation was obtained
from fhe momentum balance for a lumped pafameter system, and the Nyquist

criterion was used to discuss the stability. Wallis and Heasley also

used p_ = p(i ) and rederived Eq. (II2.1). Like the analysis of Serov,
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their aﬁalysis is limited to the thermodynamic equilibrium, homogeneous
flow, and low frequency oscillations,

About 10 years later, following his original paper (13), Serov,
et al, (20,21) intégrated the momentum equation and obtained the charac-
teristic equation for a distributed parameter system. Their analysis
takes into account the variation of inlet flow and heat transfer cogffi-
cient; but neglects the displacement of the boiling boundary. The char-
actefistic eduation, derived in (20,21) is a fifth order expoﬁential
polynomial with two time delays. It has been solved for the stability
boundaries in a simplified form by the.D-Pértition method. Some quali-
tative success was shown in the {~plane (inlet orifice).

Bouré (22,23) used a model similar to that of Serov. Consequently,
his analysis is only applicable to thermodynamic equiliﬁrium, homogeneous
flow, and lbw frequency oscillations. Bouré, like Serov, assumed that

Py = pm(im) and expressed the continuity equation in terms of Lagrange's

differential equation and independently rederived the important relation
given by Eq., (II2.1). 1In contrast to the analysis of Wallis and Heasley

(19), Boure integrated also the momentum equation and thus obtained a

characteristic equation for a distributed pérameter system; Thus, Bouré
was apparently the first to integrate the entire set of equations (con-
tinuity, energy, and momentum equations for the mixture) for the homo-
geneous flow model, The characteristic e&uation of t22) is a fifth order
exponential polynomial with two time delays. The coefficients of poly-
nomials differ from those of Serov, et al. {20,21), because the analysis

of (23) accounts for the variation of inlet flow and the dispiacement of

SR
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a boiling boundary (whiﬁh was negiected by Serov), but negle&ts the wall
heat capacity (which was accdunted for by Serov). Satisfactory agreement
with experimental data is reforted in (24) whére the comparison-is.shown
in the dimensionless subcooling and inleg velocity plahe. A parametric
study is also given iﬁ (24); however, the choicg of the.representative
parameters andlthe domain of representation are not ver} satisfactory,
sincé one of the parameters is not bounded as-the inlet veiocity increases.
The method of Bouré (24) was used by Zuber (25) to analyze flow
instabilities in the near-critical and Super-c;itical thermodynamic re-
gion. However, Zuber's analysis,differs in two aspects from (24):
1) the constitutive equatiomns are_différént, and 2) the resulting charac-
teristic equations are different. .The mean value theorem was applied to .
simpiify the characteristic equation which finally took a form of third
order exponenéial polynomials with two time delays. Under some conditions,.

he was able to obtain a simple algébraic criterion which was useful as a

design criterion for the friction dominated flow at high pressure.

So far we have discussed the analyses based on -1) the homogeneous
flow_model, i.e., no slip condition; and 2) thermodynamic equilibrium
condition. Such conditions can be attained with high flow rates at near-
éritical pressures. However, at lower pressures both the effects ﬁf.rela-
tive velocity and of thermodynamic nonequilibrium become important and
cannot be neglected.  This is particularly true for alkali metals and
natural circulation ioops.

11-2.3. S51ip Flow Model (Linear and Nonlinear Theory)

As is mentioned in (1,33), the traditional "slip" flow models are

not formulated in terms of the center of gravity, consequently, they cannot
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be used o analyze and predict correctly dynamic phencmena in a system

where the relative vélocity between tﬁe two phases is important., In

particular, since the traditional slip flow formulations were not ex-

pressed in terms of the center of masslof the mixture, the authors were

forced to use three different expressiﬁns either for the density of the

mixture or for the phase velocity ratio (see for example Ref. (35,7, etc.)),

as well as two different expressions for the enthﬁlpy'of the mixture.
Besides this basic shortcoming of traditional‘fﬁfmulations;'almoSt

all "slip" flow models have been solved directly by computers. Meyer

(35) was an early user of this method applying a momentum integral and

a finite difference method, The works by Jones (36) and by Carver (7),

among_othgrs, are notable in their detailed treatments of various effects,

These direct methods require expensive computer time and great care in

the prograﬁming in order to avoid numerical instabilitiés. We may quote

the words from Carver himself (7, p. 4) in this comnection: "Such ap-

proaches require considerable expensive.computer time, the exbénse in-

creasing with the degree of sophistication. Again they depend heavily

~on void, pressure, drop, and heat transfer correlations used, and under

certain conditions the #alidity 6f;these is qﬁestionable.ﬁ In their

analysis, the set of nonlinear simultaneous partial differential equations

has been solved step By steﬁ,in the time domain with one parameter dis-
turbed, but all others were held fixed., It should be noted that this
approach, in addition to being expensive for parametric studies, does not
provide an insight into the physical aspects of the problem. Consequently,r

it is not very helpful in advancing the understanding of the phenomenon,

However, it also should be noted that a nonlinear theory, by its own
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nature, has an advantage over a linear theéry when ultimate nonlinear
responses in an unstable region or'responses to large changes in steady
state operatipnal conditions arelrequired.'

The extreme care which must be taken when solving the set of non-
linear ﬁartial differential equations by camﬁuter énd the difficulties.
which mayrbe encountered are best exemplified by the fgct that a Ph.D.
thesis, an A.E.C. report, as well as several papers'ﬁere published which
claimed a "new theory" of oscillations and a "new criterion” for predict-
ing the onset of oscillations (40). Two years later it was shown_by
Cornelius (39) that the oscillationg predicted by ﬁarden (40) were numeri-
cal instabilities of the computer progfamming. Here we quote :ﬁe words
of Cornelius. (39, p. 62): ‘

Harden's solution was carefully'examined. It was found that
the solution depends upon the time step employed, and that the
calculated enthalpy distribution was extremely erratic ... .
This indicated that the sustained oscillations resulted from
a numerical instability, and were mot representative of the
physical system,. -

- These shortcomings have beeﬁ removed in the analysis of Zuber (1)
which was formulated in terms of the center of mass and takes into ac-
count both the effects of the relative velocity between the two phases
and the effects of the thermodynamic nonequilibrium condition.

When the. relative motions between phases exist, the field equa-
tiong should be formulated with respect to the baricenter of the mixture,
The idea that physical léws are invariant under a coordinate transforma-
tion and that it is necessary to write field equations with respect to

the center of mass in order to treat the mixture as a whole is well

known, This result first appeared in Maxwell's kinetic theory of gas
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mixtures (26), and was ﬁointed out for heterogeneous chemically reacting

substances by various authors such as von Karman , Prigogine (27),
Hirschfelder (28), and Trusedell (29).

Although two-phase flows are locally separated flow media, i.e.,

separated into the vapor and'liquid regions bounded by the interféces, a

similar approach can be used by proper averaging in spaée and/of in fi'mef
This was done by Zuber (30,31,32,33) and applied to a dynamic problem (1)
in 1967, The detailed averaging of two-phase mixture ;hs given by Ver-
nier and Delhaye (34). 1In (1), the problem was formulated in terms of
four field equations (the continuity, energy, and ﬁomentum equations for
the mixture and the continuity equation for the vapor expreased'in terms
of kinematic waves) and seven constitutive equationé. Ey using'kinematic
Iwaﬁe velocities and small perturbations on the variables, the set of
equations has been integrated analytically resulting in a chgracteriét;e
equation for a system with dlstrlbuted parameters, | |
The study of (1) is not only the flrst, but also the only analysis
which formulates correctly the dynamics of the slip flow with respect to
the baricenter of the mixture and gives the characteristic eduation by
means of an analytical method. However, the effects.of bbfh the nonuni-
form heat flux distribution and of a variable frictionm, i, e., the effects
of static changes as well as of the dynamic responses of a friction fac-
tor, have not been examined in (1), although they are 1mp0rtant for nu-

clear reactor applications. Consequently, it is of great interest to.

derive a characteristic equation which, in addition to the previously

*
See paper by Nachbar, et al. (38).
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considered effecf of relative motion of two phases, would take into ac~
count the nonuniform heat flux distribution and the variable friction
factor. Furthermore, it is highly desirable to obtain a éolution to this
characteristic equation and thereBy obtain criteria for the pfediction.of

the onset of thermally induced flow oscillations.




Part 1

THEORETTICAL ANALYSIS

20
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CHAPTER III
FLUID DYNAMICS OF ONE-DIMENSIONAL TWO-PHASE FLOW

ITI-1, Governing Equations

It is well éstablished-in continuum mechanicé that the‘conceptual
models for single phase flow of a gas or of a liquid are formulated in
terms of field equations which describe the conservation laws of'mass,
momentum, energy, charge, ete. Thése field equations are then comple-
mented by appropriate comstitutive -equations such as the constituti?e
équations of state, stress, chemical reactions, etc., which specify the
thermodynamic, transport, and chemical properties of a given constituent
material, i.e.,, of a specified solid, liquid, or gas.

It is to be expected, therefore, that the conceptual models which
describe the steady state and dynamic characteristics of structured multi-
phase or multi-component media, should be also formulated in terms of the
appropriate field and constitutive equations. However, the derivation of
such equations for the flow of structured media is considerably more com-
plicated than for stricfly confinuous, i.e., homogeneous media, i.e., for
single phase flow.

In order to appreciate the difficulties in deriving balance equa-
tions for striuctured, i.e,, inhomogeneous media, we recall that, in
continuum mechanics, the field theories are consffucted on integral bal-

ances of méss, momentum, and energy. Thus, if the variables in the region

of Integration are continuously differentiable and the Jakobian transfor=-
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mation between material.and spatial coordinates exists, theg fhe Eulerian
type differentiai balance can be obtained by using ghe Leibniz Rule, or
more specifiéally, the Reynolds Transport Theorem which allows us to
interchange differential and integral operations. |

In ﬁulti-phase-of multi-component flows, the:presence of interfaces
introduces great difficulties in the mathematical and physiéal formulation
of the problem, | -

From the mathematical point of view, a multi;phase flow can be
considered as a field which is subdivided into single phase regions.with
moving boundaries separating the constifuent phases. The differential
balance holds ‘for each sub?egioﬁ; however, it caﬁnbt be applied to the
set of these subregions in the normal sense without violating the above
conditions of continuity.

From the point of view of physics,Jghe difficulties wh%gbfare_gnf
countered in deriving the field and constitutivé equatio;s.apprbpri#té.to
multi-phase flow syspems stém from the pfesence'of the interface and the
fact that both the steady and dynamic characteristics'of multi-phése

) *
flows depend upon the structure of the fldw! see Table 1,: For example,

- the steady state and the dynamic characteristics of dispersed two-phase

flow systems depend on the collective dynamics of solid particles, bubbles,
or dropiets interacting with each other and with the surrounding continuous
pﬁase; whereas, in the case of separated flows, these characteristics de-

pend upon the structure and dynamics of the interface.

ThlS classification of structured flow has been: obtained from a
personal communication With Dr. Zuber, .
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In order to determine the collective interaction of ﬁafticies and
the dynamics of the interface, it is necessary to describe first the
local properties of the flow and then to obtain a macroscopic-description
by means of appropriate averaging procedures.

For dispersed flows, for exampie; it is neceﬁsary to determine the
rates of nucleation, evaporatidn or cofdensation, motion, and diéiﬁtegra-
tion of single droplets (bubbles) as well as the'c0111$ions and.coales-
cence processes of several droplets (or bubbles). |

For separated flows, the structure and the dynamics of the inter-
face greatiy influence fhe rates of mass, heat, and momentum transfer as
well as ﬁhe stability of the system, For example, the performance and |
flow stability of a coﬁdenser for space appliéations depend on.thé dy;
namics of the ﬁapor interface. Similarly, the rate of droplet entrain-
ment from a liquid £ilm, and therefore the effectiveness of £1ilm cooling,
depends on the stability of the vapor-liquid interface, | B

It can be coﬁcluded from this dis;ussion that, in order to derivé
the field and constitutive equations appropriate to stfuctured, multi-
phase media, it is necessary to deqcribe thé local characteristics of the
flow from which the macroscopice properfies should be obtained by means
of an appropriate averaging procedﬁre. It is evident also that the ﬁesign,
performance, and very often the safe operafion of a great number of impor-
tant technological systems depend on the availability of'reélistic and
accurate field and constitutive equations,

In theofy, the problem could be formulated in terms of_fiéld equa-

tions applicable to each continuous subregion with matching boundary




conditions at the moving interface. Such & formulation would result in 2

multiboundary problem with the position and the condition at the boundary

being unknown, It is evident thét, unless the topography of the interface

1s simple, as it is for example in separated flows, such an approach would

encounter unsurmountable mathematical difficulties. Consequently, differ-

ent methods of analysis must be applied to the different classes of struc-.

tured flows,
For separated two-phase flows, the problem can be formulated by

considering two continua coupled by the appropriate jump conditions at

the boundary, i.e.,.at the interface. It is evident that these jump con-
ditions will play a most important role in such a formﬁlation.

However, for dispersed flows in order to eliminate the mathematical
difficulties caused by the discontinuities of the wvariables, it is useful
to transform the entire field to a continuum, This can be accqpplished by
a fime averaging procedure or by means of Boltzman's equation.app}ied to
the dispersed phase, |

Since a formulation based on the two-fluid model is expressed in
terms of two equations of continuity, two momentum eduations, and two
energy equations, an analysis based on this model may encdunter mathe-
matical difficulties. The model is therefore not well suited for analy-
ses of sistem dynamics, .Neither can it be used to determine the mixture
properties (in particular the entropy) and the éimilarity groups.

The problem of thermally induced flow instability falls into the

above category. Thus, it is better to formulate the'fiéld-equations with

respect to the center of mass by proper averaging procedures, as has been

mentioned in Seection II-2,
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Baaipaily, two distinct methods have been employed, the space
average and the stétistical average, Since in the two-phase flow field
the volumes occupied by each phase are usually of macroscopic scale, the
space averaged field equations become independent of one or two space
coordinateé. This is a significant difference from the equations.for the
chemically reacting mixtures on the molecular level where we can take and
use the mixturervolume element_containiné botﬁ components on a_micro-
scopic scale. Thus, the resulting field equations are three dimenéional.
On the other hand, if the statistical average; i.é., the time average, is
employed, the mixture equations can be considered as strictly iocal.
Therefore, the result is analogous to that of the molecular level mix-
tures, |

In Appendix A the time averaged field equations have been obtained
by a method similar to that used by Vernier and Delhaye (34), but includ-
ing the effect of sqrface'tension, ﬁhich was not accounted for.in the
analysis of (34). Furthermore, their aﬁalysis was based on the two-~fluid

theory. Thus, they did not obtain the mixture field equations in terms

of the mixture variables which have been developed in this analysis.

These field equations are then one-dimensionalized by are& averaging in

Appendix B. Furthermore, the similarity parameters govertuing the system
are obtained from the differential equations in Appendix C, In the fol-
lowing, the summary of Appendices A to C is given in the form useful for
the present analysis.

A, Field Equation

1

We formulate the problem in terms of the time smoothed and area .
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averaged field and constitutive equations, The variables apﬁearing in

the equations should be understood as averaged or weighted mean values

defined in Appendices A and.B. From the summary of field equations, i.,e.,

Appendix €C-1, we have

for the conservation of mass of the mixture:

aﬁm'+ 3 Fm U

ot 33

for the conseyvation of mass of the vapor phase:

IAR . OXPeVy _
5t T o3 =Ty

for the conservation of momentum of the mixture:

oL B F .;
R e =~

for the conservation of energy of the mixture:

5 (2 4 0n a;m_}: LG gy

>t 53 A ce
— 2 {a 88 V.. Al
33 {O{ -%:f'_ va;. AL&s}

(I111.1)

(I111.2)

(II11.3)

(II11.4)

where the explicit form for the terms r%_ . ¥ q)cé , and q-)de,have

o
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been obtained from the interface conditions and are given in Appendix B, -
Hence, the mass generation term due to the interface mass transfer is

given by

L

iteed (L (NS
177 R Jhg'&; (U“H mye | ?3(0"&"17..-.)]}_“ . (B5.8)
the capillary forces -fﬂ_ by

'fu' = 'Z'\H SA Z At \Um){(té o o@f-‘ )ap }i. A | (86-3)

the compfessibility effect q%e by

= _L_ DP - (B7.8)
e A L. At { J[m] Dt dt

+ ( Va+ m)(ti T&dp))p“ (T,: G‘CLd'pU}),p];.}dA

and the dissipation term ﬁe by

Be = '}ITSA Alt “[E] VU it - (87.9)

-2 () [ () v, Jid

Here the variables appearing under the sumnmation signs in the above four .
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equations are the ones at the interfaces, and P, 7% and v in the time
integrals are the instant local values of the pressure, stress, and ve-
locity, respectively, Furthermore, ti, CLaﬁ, and {( )’B stand for the
hybrid tensor, the surféce matrix tensor, and the covariént derivative of
the surface coordinate (58). |

We note that the various terms due tu'the effects of the-éurface
tension aﬁd of dissipation ﬁhich ap}ear explicitly in Eq. (B6.3), (B?.B),
and (B7.9) were not taken iﬁto account nor did they appear in any previous
analysis or formulation of dispersed two-phase flow.. We note also that,
if these surface and dissipation effects are omitted, then the form of
the equations reduces to those reported in (1),

Referring to the above four.field equations, which have been ob-
tained by using time and area averages, we note tha£ mixture continuity,
momentum, and energy equations, i.e,, Eq. (III1,1), (IIT1.3), and (IIIl.&4),
respectively, are somewhat similar to those of the single phase one-:
dimensional model. Actually, the mixturé continuity equation has exactly

the same form as that for the continuum without internal discontinuities.

However, the mixture momentum equation has two additional terms which do

not appear in a single phase equation, One is the capillary (body) force

fcr which takes into account the surface tension effects and can be con-

sidered as momentum source or sink, The other is a drift stress term,
shown as the last term on the right hand side of Eq. (1111.3), and it ex-zl

presses the momentum drift or diffusion due to the relative motions between

| two_phases in addition to the molecular andvturbulent diffusions which has

been takem into account by the friction factor fm‘ In the mixture energy
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equation (IIIl.4), we have also an additional term, i.e., an energy drift
or diffusion term, the last term of Eq, (IIIl.4), due to the transport of
energy by relative motions of the phases. Réﬁalling Eq. (B?.S) and’ (B7.9),
the two-phase compressibility effect on enﬁhalpy ?%é and the.dissipation
term ’4he contain the effects of interfaces in addition to those of the
single phase flow, | | -

The continuity equation for vapor phase, Eq. (IIIl,2), has a vapor
generation term f; which appears after the continuitf equation has been
averaged over time. As we can see from Eq. (B5.8), the constitutive equa-

tion for r% , it accounts for the mass transfer at the interfaces. Equa-

tion (IIIl,2) can be transformed in terms of mixture velocity vm and the

drift velocity ng, thus

LS SPL S 5 Y o} __%{«Psﬁ \/gj}
]

ot - FEYE F, (I111.2")

Since.the frame of referemce follows the.mixture velocity Voo the drift

or diffusion of vapor mass with respect to v, appears on the right hand
side of Eq. (III1.2). With Eq. (IIIl.1), (IIT1.2'), (III1.3), and (IIT1.4)
we have formulated the problem in terms of.the mixture velbcity Ve sta-~
tisticél center of mass velocity, and all the fluxes due to relative
motions of phases are expressed as drift fluxeé, i.e,, expressed tﬁrough

the vapor drift velocity V since the expressions for ng have been pro-

g3’
posed for certain two-phase flow regimes (32).

B. Constitutive Relations

In addition to four field equations, i.e,, the continuity equations
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for the mixture and for the one-phase, mixture momentum; and energy equa-
tions, we need additional information to describe the system completely,
as follows.

I) The Thermal Equation'of State

The mixture density P from Eq. (Bl.6)

__fh = Yg + (11— o )j; (III1.5)

with the thermal equation of state for each phase

' : _ (T111,6)
Fs = 34 (Py, Ty)
' ) (ITI1.7)
L (P} , Tg-) '
II)  The Caloric Equation of State
The mixture enthalpy im from Eq. (B1.18)
i - o(fg J‘-'} + (i-d) fs. 1‘.5:
" 3 : (I111.8)
Tn . .
with the caloric equation of state for each phase
ty = dg (Py, Tq) | - (I1I1.9)
Vol s e (Pe, T) (II11.10)

III) The Constitutive Equation for Phase Change from Eq. (B5.8)

——— e,y
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;-

i (I111.11)

‘The Kinematic Constitutive Equatiom, i.e., the Relation

for the Relative Motion of Phaszes
(Relative Equation of Motion)

The vapor drift velocity Vg from Eq. (B3.8)

]

Vi = (1=d )( U3 -U%) h T (II11,12)

and the drift constitutive equation from Eq. (B6.11)

V)

V1)

VII)

VIII)

. 1I11.13
V‘iJ = fz : ¢ )

The Rheological Constitutive Equation from Eq. (B6.6)

Which Specifies the Friction Factor

'5‘“." = *3 : (I111.14)
The Capillary Force from Eq. (B6.5)

$o = 5, | (I111.15)
Compressibility Effect on Enthalpy ¢Ee from Eq. (B7.8)

@te = §. (1I11,16)

Dissipation due to Irreversible Work from Eq. (B7.9)

b

4>de = 5. ‘ (1111,17)
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IX)

X)

XI)

CXIT)

XIII)

ox

XIv)
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Boundary Condition for Heat Flux from Eq. (B7.6)

“

w = &y (1111.18)
The Definition of the Mixture Velocity v from Eq. (Bl.16)

U =

& Fy Ua + (1~d) e Ve

I (I111,19)

The Definition'of the Mixture.Pressﬁre Pm from Eq. (B1.17)
Fur S T -0, | (1I11.20)
M;ech.;:mical State between Two Phaées from Eq. (86.12)
Py-T = 5-3_ - (III]:.ZI)
The?mal State between Two Phases fr&m Eq. (B7.11)
T - T& = §q | - (1111.22a)
Lg=Ll¢=Alsg = §4 (1111.22b) _'

Geometrical Parameters {(given)

D = constant (III1.23)

E/A = constant . (I1111,24)
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g = constant or function.of t

Here it shouid be noted that ﬁe have obtained the explicit func-
tional forms for {3 , §r , @, » and q:de , i.e., Eq. (B5.8), (B6.5),
(B7.8), and (B7.9), respectively, However, they are expressed iﬁ terms
of the instant local'variableg. Consequently, modifications o# these
relations should be made such that the arguments of the functions for E;,

¢ » and P v Lee., £, £, fs,' and f¢, in Eq. (IIIL.11, 15,
16, and 17), could be expressed by averaged variables._;
In the case of thermal and mechanical equilibrium (60), tﬁe con-

stitutive equations (Bl.1l1l, 21, and 22) reduce to

Pg = Pf = PB
Tg - Tf = TS_ or &ifg ‘_ﬂifg(Ts)
and _ Ps = f (Ts)

Froﬁ the field equations we have two continuity equat1ons, i .,
one for the mixture, one for the vapor or liquid phase, the mixture mo-
mentum, and energy equations. In addition to the above equatioﬁa, we
generally need eighteen constitutive relations and three ggometrical
parameters, D, EIA?, and gfavitational field force g. Accordingly, the
total number of equations is twenty-five, The variables appearing in |
these equations are, P Vo Pm’ i,op,v,P,T, ig’ Pes Vs Pf,

m g B8 B £

T , I V n® fc’ P ce’sb de? q‘w“’ D, §/_Ac, and g. By assﬁming that

g Lo ToVgp £
we can express the functions appearing in'thg constitutive relatioms,
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i.e., from fl to f,, by the above variables and/or by independent vari-

9?
ables z and t, the total number of dependent variables is also twenty
five.,

Thus, the total number of unknowns and of equations is the same.
Consequently, our deséription of systems is consistent and complete in a
mathematical sense.

Although our present one-dimensionmal model is quite general, it
should be rémembered that | .

1. we have neglected the normal stress and the velocity cévariant
terms in the mixture momentum equation (see Eq. (B6.8)), and |

2, we have neglected the axial conduction and the enthalpy-
velocity covariant in the energy equation (see Eq. (B?.?))..

For two-phase flow boiling in a constant area duct, the normal
stress and tﬁe axial conduction can be neg;fcted q1ﬁost always, On the
other hand, the covariant term may not be neglected 1f the flow;is
laminar, In such a case, we should suppiy_additional iﬁformation relatinéﬂ

the covariants to the mixture convective terms.

C. Velocity Field

In general, two-phase flow systems with transport of mass, momen~

tum, and energy'are characterized by the existence of twe different den-
sities and velocities. To say nothing of the importancé of the difference
in the densities, it is necessary to introduce two velocity fields in
order to take into account the effects of the relative motions of the

' phases, i,e,, the diffusion of mass, momentum, and energy. In our analy-
gis, the problem was formulated iﬁ terms of the mixture veloecity Vo and

the vapor drift velocity V_ .. However, there are several velocity fields

g]j
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which are useful in analyzing various aspects of a two-phase flow problem,
In what follows, we shall summarize the definitions and the inter-
relations of various velocity fields which have been develobed in Appen-

dix B. First, we recall that vg and v_ are the area averéged statistical

f

center of mass velocities of the vapor and liquid phase, respectively.

Then the velocity of the center of mass of the mixture is defined by

ol Vg + (i-4 U o
= 2L S Ga) By (ITI1.26)
"

and the relative velocity v, by

Vy = Yg - Vs ' : | (I111.27)

The volumetric fluxes of each phase are given by

bq = < Uy y s = (= d)Ug (1111.28)

which can be comsidered as the velocity when one of the phases super-
ficially occuples the total flow area.

The .velocity of the center of volume, 1,e., volumetric flux.of the

- mixture is thus defined by

} = dq + Jar = AWUgq + (1~o Vs (I111.29)

. ‘1 - . -
If the relative velocity between the phases exists, the velocities Vo and

j are not equal due to the difference in the densities of the two phases.




36

The diffusion velocities of each phase, i.e., the velocity with

respect to the mass center of the mixture, are defined by

.qu = Ug- _U'fm = ('l“d)% Uy (I111,30)
Vim = Vi = U = —d 52 U5 (I111.31)

which are frequgntiy used in the analysis of a heterogenebus chemically

reacting system. In a two-phasa flow system, the drift velocities of

each phase, i,e., the velocities with respect to center of volume ‘are im-

portant (30), are defined by

O-o)Vy (1111.32)

Vg; = Uy — 4

Vij = Vg - & ~ ot Uy (II11.33)

Several important relations between the above velocities can be obtained
directly from the definitions. For example, from Eq. (1111.26) and Eq.

(1111.29).we get

. or

I=Um+ dli-)88 vy, (IIT1,34)
= Um + o ‘%E Vai | B (1I11.35)

From Eq. (III1.30) and (III1.31)
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Ca = S\ | N
Vei —a Vaj _ _ - (II11.36)
Finally, we note, if the relative velocity is zero, then

V.fzm = Vim = 'Vaa‘ =Vy=Ur=0 (II11,37)
and

Vg = Ui = U= §  (II11.38)

which characterizes the homogeneoﬁs velocity field,

D, Alternative Form of Continuity Equations

In order to épecify the conservation of mass in_two-phése mixtures,
it is necessary to employ two continuity equations (33). This has been
done in the previous section by introducing the vapor continuity equation
in addition to the mixture continuity_équation, i.e., Eq, (IF11.2) or
Eq. (IIIl.Zf), and Eq. (IIIl.l), respecttvély. It is of interest now to
consider the alternative fofms of the equatién of continuity by taking
several differént frames of reference and/or introducing transport coeffi-
cients forithe diffusion of masses, .

1, In Terms of Center of Mas§ Velocities of Each.Phase

The most elementary form of the conservation of masses for

each phase can be obtained directly from the time and Area averagé of the

single phase field equations, i.e., Appendices A and B, Thus we have

3?9 * 2;;* UL =[5 1 (IIL3g)
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20-M)% | -dIBW | :
3t v 33)ft“r§“"“r'a , (1111.,40)

which are expressed in terﬁs of the center of mass velocities of each
phase Ve and vc. The right hand sides of Eq. (III1,39) and (IIT1.40) are
the mass generation or phase ﬁhange terms of the -vapor and liquid phase,
respectively. It should be noted that thgse terms do not appea¥ in . -
original countinuity equations before averaging, since they are the tefms
expressing the interfacial transport of masses which can appear in the
differential balance only after the time avefaging.

Furthérmore, in this formulation the diffusion term does not appear
explicitly due to the fact that the frames of reféfence have been taken
as the componenﬁ velocities. Finall&, the mixture continuity equation
(I1I1.1) can be obtained by adding the above two equatioms, i,e., Eq.
(1T11.39) and (III1,40), and using the definitions qf mixture density Pr?

Eq. (III1,5) and of mixture velocity v » Eq. (I111.12),  Hence,

%’% M a_ﬂ_agﬁm -0 ' - (ITIL.41)

2. In Terms of Mixture Velocity
By taking the frame of reference on the mixture center of mass
and expressing the relative motions of phases with respect to it by the

diffﬁsion velocities defined by Eq. (III1.30) and (IIIl.31), we have

9o Py d_ (o
= - E(oc F3Vm) = p? -a.%{o(Pg V _m} g (I1111.42)

and .
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M f 3G Fi Uy, n o2 f -
ot * 33 o=y }')"5{(""')& V;_...} (III11.43)

In this formulation, the diffusion fluxes which represent the transport
of mass with respect to the mass center of the ﬁixture appéar explicitly
in the right hand side of the equations.

Instead of using the volumetric concentration & we may also express
the above equations in terms of mass concentration of vapor ¢ defined by

of fs
c = "T;, : C(I1Il.44)
m

Substituting Eq. (IIIl.44) into Eq. (IIIl.42) and recalling Eq. (IIIl.41),

we get

(TII1,45)

A similar equation can also be obtained for the liquid phase.
Furthermere, the diffusion coefficient Dc can be defined from the

diffusion flux ofKEq. (I111.42) in analogy with a chemically reacting

system, hence
o Py Vam ™= CPBy Ven = = fmD. €
q Vim m Vgm = - e 33 (I1T11.46)

Substituting Eq. (IIIl.46) into Eq. (III1,45), we obtain the following

familiar diffusion equation,

SRR AT & N - 5 oc
52+t Vnss = B g5 (A5

(III1.47)
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3. In Terms of the Volumetric Fluxes

The continuity relation also can be considered from the frame
moviﬁg with the volume center of the mixture. By introducing the drift
velocities of each phase, i.e., Eq. (I_IIl.32)_and (I1I1.33), in Eq.

(IIT1.39) and (IITI1.40), we get

APy . (AP i) A J . ;
SELEIC ~ - $5{ 9-31V33.} e

and - : X
Qi) QIR
It 23

_Pﬁ -.Ga% {(l*&)ﬁ. Vﬁ} (II11.49)

The last terms in the right hand side of each of the above equations
represent the drift of vapor and liquid mass with respect to 'the mixture
volume center.

On the other hand, by carrying out the differentiations of the

left hand side of Eq. (III1.39) and (III1.40), we get

Ju oaV; (1I11,50)
24 ; =3 - & Dy f
ot 23 B Pg Dt
and X 26-10; T '
=) =gl '
+ fe 25 _ (-d4) Dy (II11.51)

at 23 ﬁ Pf- Dt

Here the substantial derivatives are taken from the vapor and liquid
frames of reference. These equations can be considered as the continuity

equations in terms of void fraction, Thus, from the volume point of view,
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each continuity equation has a source term due to the mass transfer and a
sink due to the compressibility of each phase. By adding the above two

equations, we obtain

c)‘a - AP _[gt_\Dg 5 +(i"¢L) D¢ 5

PER X 55 f Dt % Dt (1111.52)

L)

which describes the center of volume'velocity. The first terﬁ of the
right hand side is the volume source due to the phase change and the
second term is the volume sink due to the compressibility. This form of
the continuity balance has already been derived and discussed in detail
in (31)(32).

It should bé noted here that, if each phase undergoes the isochoric
process (60), the compressibility effect drops. Hence, -

2% _ A5 |
9L =T wp (1111.53)

4., 1In Terms of Kinematic Wave Velocity
Under the same assumption, i.e,, the isochoric process for
each phase, Eq.'(1111.50) can be expressed by j and ng in the folloﬁing

form

+ 4 + 53 (d Vﬁa) & fb (III1.54)

Furthermore, if the vapot drift velocity can be considered as a function

of the void fraction only (32), then we have, from Eq. (IIT1.54),
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:by

Ca

i

EP ' ' (III1.56)

Hence, upon substitution of Eq. (III1,56) into Eq. (III1l,553), we obtain

the void propagation equation

i).i". .‘.)_"t.— = ] F '
rid Cg 53 —E——L& s (III1,57)

Under the condition of constant_gg‘and pf; we can express Eq. (III1,57)

in terms of the mixture density, as follows

c)Pn f)F;« = o [}
2y G5 = - fa%%&'- (III1.58)

which is called the density propagation equation.

In most two-phase flow systéms, the change of ‘the drift velocity

with respect to @ is relatively small (32), thus, if we'neglect the term

of %%ii in Eq. (II11.56), we get

C& e J + an (II11,59)

under the condition

: J Vi
d+Vy > —ﬁi (1111,60)
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With Eq. (III1,59) the density propagation equation becomes

| , | AP R
%%" v (§+Vg) 5 "gj”i = T P& (1111.61)°

Py Fe

1II-2, Dimensionless Groups and Similarity Criteria

In Appendix C-2 we developed the similarity groups based on the
one-dimensional two-phase flow model, i.e,, Eq. (ITIl.1), (IIIl,2'),
(III1.3), and (III1.4),

Under the assumption that all of the constitutive relations have

similar functional forms for two different systems, the requirements for

their similarity are:

I) That each of the eight dimensionless groups, i.e., Npch’ N

g2 Npyp» Ngo Ngpo and Ny,

II) The dimensionless form of the boundary and initial conditioms

Np’ N has the same value in system I and II,

be identical in system I and II.

1

Following the scaling of Appendix C-2, i.e.,, Eq. (C2.1), the four

o . ) }
, This form can also be obtained from the mixture continuity equa-
tion (I111,41) with a different assumption., By substituting Eq. (III1.34)
into (IIIl.41), we have

aFm ; . t;qu=_ APF«-; - &/ji ' .
Set (4+Vae)--‘)—? iy abh. AR (£-8) =5 (IIIL62)

Under the condition that the vapor velocity is much larger than vgg or

C‘)}\; ~0 » we can neglect the last term of the right hand side of Eq.
(1111.62). '
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field equations in III-1 can be exXpressed by the dimensionless variables

with the above similarity groups as follows:

From the mixture continulty equation

* ' £ K
—;‘35—"; + %Eg*m' =0 (1112.1)

From the continuity equation for the vapor phase

Ik Pg"' gdfag'* Ui 3 0&?‘5%' -

From the equation of motion for the mixture

W SUT o QUL Q'F’*
P cur g b= -5 N R

(II12,.3)

: *~'-l x
+ﬁ— W NG 5y - N!_Ndaa{* iﬁ_vﬂf}

Fe S T4

From the energy equation for the mixture

P {% + ";;‘:J— Nsc; Bu+ Ne [ do+ N‘CPde] (II12.4)

NP 1
~ (g e 5 [0 0}

Njauo*(‘ 5‘
L
i'! ﬁ . . .
Here N . = e X phase change number . (III2.5)
P .quvmo C :
N, = jﬂ‘—va-"i drift pumber

d ) .Pmc Umo




N = -!Ei—
P fio
W= dwApr
3
NFr = ;ﬁr
g o= MO
8 f%c1jht
N M3 DY
S f, Une Adsac
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density ratio

£riction number
Froude number

surface number
St;nton number

Eckert number

Thus the requirements for two different systems I and II to be similar are:

a) The kinematic, dynamic, and energy similarity conditions re-

quire

NpchI -

Nax

N1

Ner

Ner1 =

sl

St

Ecl

NpchI'I

Nart

N

pII
Verr
NFrII

sll

StII

Ecll

(I112.6)
(1112.7)
(1112.8)
(i112.9)'J 
(1112.10)
(1112.11)

(I112,12)

(1112,13)
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b) The initial and boundary conditions which, for example, can

be stated by

of =0 t*" 20 . (1112.14)

» ¥ -
M'[ = U"‘I
* *
-P“" r-= Pm I
vk — I 3
Impg ™ Amp

c) All of the constitutive func;ional forms including the equa-
tions of state are the same between system I and system II,

In practice, the sbove requirements usually cannot be satisfied
completely due to the large number of conditionsiimposed. fhis-difficulfy
is similar to that frequently exhibited in the case of the modeling prob-
lems of ships, rocket engines, etc. Thus, it is important to know under
what conditions some of the similarity criteria can be relaxed. Let us
discuss the cases which occur frequently and are useful for both modeling
and analysis, |

Homogeneous Flow Model

If the drift number N, is much smaller than the phase change num-

d
. ber Npch
2 Ve, 3 | |
N'd_-.—. -fu!f— < Npc.h = __!_39_,_2_____ {I112,15)

.Pma Ui .P;‘;o Vnmo




47

then the system is reaction (phase change) controlled and the drift or

diffusion of the mass is negligible in view of the continuity equation

for the vapor phase, Eq. (II12.2). On the other hand, if the drift number
Nd is much smaller than unity, then all of the d*ift terms can be neglectéd,
i.e., the last terms of Eq. (III2.2), (1II2.3), and (I1I2.4) can be droﬁped
from the field equations, |

Thus, the condition for the homogeneous flow model is

Ny <« | N (1112.16)

Drift Stress Tensor N

If Eq. (I112,16) does not hold, the effect of thé relative motions

should be included in the analysis. The mass and the energy drift, the

last terms of Eq., (ITI2.2) and (IIT2.4), respectively, are the order of
Nd; therefore, these two terms cannot be neglected unless Eq., (III2.16)

is satisfied. In contrast to the above two terms, the drift stress term

in Eq., (ITI2.3) is the order of Ndez.

smaller and frequently much smaller than unity, Hence, under the condi-

The density ratio Np is always

tion that

N Mf < | - (1112.17)

we can neglect the drift stress term in Eq. (III2.3)

The above order of magnitude analysis only holds whéfe“afl-a ~1,
which excludes the flow with high void fraction, although the similarity
of the dynamic effect of the relative motion in two different systems is

governed by this group.




48

In order to examine the magnitude of this term accurately, it should

be replaced by T%%C-hblﬂd . This is a consequence.of the fact that o is
a dimensionless variable, 1t should be noted here that.this group is
important,* because it scales the dynamic effect of relative motioﬁ on
the interface. |

Capillary Force

In many analyées of boiling two-phase flow, the capillary (body)
force has beeﬁ neglected heretofore. The scaling of the capillary (body)
force is given by the dimensionless group NS, the surface number of Eq.
(C3,7), If the order of N, is much smaller thlan unity, this effect may

be negleected. Thus, the capillary force can be neglected if

Ns = %‘%% <« { (I112.18)
WL e f_

In view of Eq. (C2.11), (€2.12), and {(C3.7), such is the case when

. .
Using the constitutive equations for V

of (32), we have for a’
churn turbulent bubbly flow regime :

g]

ol e 2 f' 2 i - L
. NeNd =52 2{caPy do ~ 3 ofe ~ O
(-ole § f.‘i- ?5. '-l’_;f i~ de 10 ( ~ o5

on the other hand, for an annular flow

Ida N Ndf‘-‘ F60 (- X) Ae - o1 (odo ~ o.O{,'J
l‘-dﬁ Res l'do .

where these numbers are obtained for the water at 1000 psi, v, =3 ft/
see, D = 0,02 ft, The above results show the importance of tﬁe relative
motion on the dynamics in an annular flow regime in comparison with a
churn turbulent bubbly flow regime.
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the system pressure approaches the near critical value or the number of
the bubbles in the forced convection system is relatively small. On the
other hand, if the velocity.of the mixture is small andithe bubble den=-
sity is large, the capillary force may be importaut and it cannét be

neglected.

Compressibility Effect

| The campressifility effect (or presgsure wave), i.e., the second
term of Eq. (III2.4), has an order of magni;ude of N o the two-phase
Eckert number. Physical meaning.of this number is that it represents the
ratio of the kinetic energy to the latent energy of phase change. Thus,

if the veloc¢ity of mixture is small when compared to the sound velocity,

the effect of the compressibility can be neglectéd. The mathematical con-

dition for this is

2

Neg, = %:;" <1 (1112.19)

With Eq, (I112.19) satisfied, the constant fluid property condition
in the mixture leads to the decoupling of the enérgy and continuity equa-
tion from the momentum equation. This is one of the most.important and
widely used tools' to attack two-phase flow problems.

On the other hand, if the mixture velocity approaches the acoustic
wave velocity, or if a system with a long duct operates under a low, re~
duced pressure, this compressibility effect may not be neglected. |

The Energy Dissipation

In view of the mixture energy equation (III2.4), we can see that
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the ordef of the magnitudé.of the energy dissipation term is NEcfo4.
The order of the friction number Nf for most two-phase flows can be con-
sidered as unity; therefore, the dissipation effect can be treated in a
way similar to the compressibility effect. Furthermore, in forced con-
vection boiling systems, the energy input is quite large; thus, under

the condition that

Neg. - (Fne Ve A ) U_m:-

” < | - 1I112.20
NS(’: gw € € ¢ )

both the compressibility and the dissipation effects can be neglected.




51

' CHAPTER IV
FORMULATION OF THE DYNAMIC PROBLEM

IV-1, Description of the System and Approximations

A, Thermodynamic Process

In order to understand the mechanism of the thermally induced flow
oscillations and to formulate the mathématicdl model which describes the
real physical system, it is necessary to examine the thermodynémic pro=-
cesses and the flow characteristics of the system. The typical components
of the system of interest are shown in Fig., 1. They consist basicéliy of
four different regioﬁs Ay, (B), (C), énd (D).

" (A) TUpstream Un-heated Region
: Single-phase
{(B) Heated Liquid Region
© (€) Heated Mixture Region
Two-phase
(D) Dowvmstream Un-heated Region :

. fhe system of interest extends to the components where the thermally
induced flow instabilities can be affected in a systematic manner. If
the system consists of a single heated chaunel without any bypass, Fig. 2,
a large number of the components in the loop should be considered. This
is because ény disturbance propagating in the loop has a definite fuﬁc-
tional relation in terms of time and space lag to the heated section and,
therefore, it éan influence the stability ;f the system, On the other

P
hand, if the heated section consists of multiple channels which converge
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to one channel at the riser and down comer with sufficiectly large volume
capacitance, Fig. 3., it is scfficient to consider the system between
thcse two volume reservoirs, In this case, the systematic form of dis-
turbance propagation is effectively insulated from the remaining bcfticn
of the system, i,e,, from the pump and the turbine, ete.

The first case of a single heated channel system is, therefore,
far more complicated than the second case of a multi-channel system and
requires information on the dynamic responses of the pump, turbine, ete.
However, in view of-practical cpplications such as nucleaf reactors, con-
ventional power plants with boiling, etc., it is sufficient to consider
the second case,

For generality, we imagine two volume capacitances which can insu-
late an? systematie propagation of disturbances. Then the system between
these capacitances will be analyzed. This system may or may not include
such accessories as the dowu-comey, riser, pump, and tufbine depending
on the positions of the volume reservoifs. The subdivision of the system
will follow the previouc four region approximations, namely, upstream un-
heated (A}, heated liquid (B), heated mixture (C), and downstream un-
heated (D) regions. The thermodynamic process starts witﬁhthe subcooled
fluid having cnthalpy il’ entering the hected duct (B) with the velocity

v As the energy 1s being transferred from the heated wall to the

£1°
‘£luid, the temperature and enthalpy, if, will increase, Due to the de-
velopments of the thermal boundary layer or the superheat capacitance of
the liquid, the boiling boundary may not coincide with the point where

the bulk liquid enthalpy reaches the saturation value ifs’

In our analysis,
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we shall assume thermal equiiibrium betwéen the ph;ses, which is a rea-
sonable aséumption at high pressﬁres. Thus we take the boundary between
(B) and (C) at z = ) where if = ifs' |

In region (C), the phase change takes place and the mixture en=-
thalpy im, void fraction ¢« increases toward the end of (C) as mdre heat
is added to the fluid. For é.number of systems of practical intefest,
particularly for systems ét high reduced pressures, it is reasonable to
assume that this pro¢ess takeslplace at an approximately constant pres-
sure, since the pressure drop is relatively small coﬁpared with the abso-
lute pressure of éhe system,

The processes, in both (A) an& (D), i.e,, the un-heated regions,
can be considered aé isenthalpic., Furthermore, the complete liquid phase
occupies the upstream un-heated region (A). Thus, the assumﬁtion of in;
compréssibility is &ppropriate. On the other hand, in the downstream un-
heated region (D), the mixture of vapor and liquid enters either into
the steam separator or into the wvolume éapacitance directly, From the
previous discussion, either of the system components can be considered
ds the end of the system of interegt. Therefore, from this point any
systematic wave propagation will be neglected. Furthermofe, we assume
that the pressure drop effect on the mixture properties in region (D) is
negligibly small, thus we treat the mixture in (D) as 1socholic (60).

" The assumption that. the effect of pressure variation on the ther-
modynamic properties of each phase can be nepglected is implied by the as-
sumptioﬁ that the density is a function of enthalpy only and not of both

enthalpy and pressure. This condition will be valid if the two-phase
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Eckert number is smaller than unity. From this limitation it can be seen

" that the assumptibn holds only if the rate of propagation of disturbance

is much slower than the velocity of the pressure wave, otherwise these

two waves interact with each other. Thus, under this assumption, only

low frequency oscillation can be analyzed.

B. Transport Frocess

The transport processes‘of mass, momentum, and energy are best
understood from the field equatrions with appropriate constitutive rela-
tions (61);I In our analysis the field equations given in‘iII-l will be
used and some further simplificatioﬁs on this one-dimensional model will
be made. Now, let us examine the transport process in the four different
regions separately,

In the upstream un-heated region (A), the liquid flows incompres-

gibily and isenthalpically, hence, only the momentum transport is important,

The kinematics of the fluid (velocity field) can be obtained directly from
the continuity equation. Knowing the velocity field, the acceleration,

gravity, frictional, valve, and orifice pressure drops can be obtained.

Since, in the liquid heated region (B) the fluid is still congidered

to be incompressible, the velocity field can be 1mmediateiy obtained from
the conservation of mass. The boundary between (B) and (C) will be calcu-
lated from the energy equatiom under thermal equilibrium conditions and

by neglecting the pressure and dissipation effect on the liquid enthalpy

in comparison with the heat input. The pressure drops can be calculated '

by the same method as used in (4).

In the heated mixture region (C), the transport processes are
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complicated. Following the discussion of the thermodynamic process, we

assume that the density is a function only of the enthalpy and not both
the enthalpy and pressure. This important conclusion first obtained by
Teletov and Serov (13) permits us to decouple the momentum equation from

the continuity and energy equafion. Thus, again we can proceed with the

integration of the latter two equations and obtain the kinematics of the

- fluid independent of the dynamic conditions imposed by the momentum equa-

tion., By knowing the demsity and velocity of the mixture, the various
pressure drops may be caleulated. For simplicity and because of the lack
of knowledge on the constitutive equation, we also assume that the capil-
lary body force ;s negligible which implies that NG << 1.

.From the previous discussion, we assume that the mixture in the

downstream‘un-heated region (D) is isochoric and isenthalpic., It should

be noted that this does not imply conétant density, since the mixture
entering the region (D) may have different densities depending on the up-
stream disturbances. The kinematics of the fluid can bé obtained from
the mass conservation law whereas the pressure dfop Will-be calculated in
a way similar to that used in the boiling region, Furthermore, fhe?pres—
sure drop at the orifice or vélve will be caleulated through the érifiéé
coefficients.

C., Time Lag and Space Lag

It is useful to consider the process from the Eulerian and Lagran-

gian points of view. If we follow a fluid particle entering section (A)

. at T, and study the change of its properties from the mass center of that

0

particle in the time coordinate, our observation is from the Lagrangian
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or particle coordinate, Fig, 4. The centér of mass enters in regions
(B), (C), and (D) at time Tys Ty and Tqs respectively, and leaves region

(D) at 7 The transition from (B) to (C), i.e., the iﬁception of bulk

4
boiling, occurs when the liquid enthalpy increases due to the heaﬁ input
and reaches the saturation liquid enthalpy. 1In region (C), the enthalpy
of the mixture cﬁntinpally increases due to the evaporation, The resi-
dence time of the particle in region (B) is denoted by Tyg gnd the total

residence time in the heated section by T In a similar manner, we can

13°

. also define 701 and T34. Since all of these residence times express the

time necessary to bring about specific changes in the position or prop-
erties, it will be called the time lag. Except in the case when the

inlet enthalpy is disturbed, the time lag T_. has no significant physical

01
meaning other than that it represents the residence time, since the dis-
turbances of the velocity, pressure, etc. propdgate with infinite velo-

cities. ﬁn the other hand, the time lags Ti20 T13° and Tay have signifi-

cant relations with the propagation of disturbances, and hence they are Le

-

important for the stability analysis, _ g

It is of interest aiso to consider the spatial or Eulerian descrip-
tion of the process, Fig, 5. In this case the time lags are replaced by
the space lags and hence they indicate the boundaries of the various
operational regions. Among the indicated four space lags, the one cor-
reéponding to fhe time lag T19 and denoted by A is particularly important,
since it defines the boundary between the liquid region and the mixture
region, and it is only obtainable by solving fhe conservation equations,

Other space lags are given by the geometrical description of the system.
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In 2 dynamic analysis, the fluctuations of space lag A are tﬁpor-
tant, since they can be considered as the'squrce of a fluid undergoing a
phase change. By changing the position of this source, the mixture en-
thalpy, density, and thé pressure drop will fluctuate, thus we have a

generation and propagation of waves created at A due to its fluctuation,

IV-2. Governing Equations for the Upstream Un~-heated Region (A4)

Following the discussion in IV-1l, we assume that the liquid density
is a function only of the system pressure PS which can be considered to

be uniform throughout the system. Thus

fo = § (Ps) = const, (Iv2.1)

Without a loss of generality, we can assume that this region (A) consists
of a constant area duct and a pressure drop device such as an orifice.

In this case, from the continuity equation and Eq. (IV2.1), we have

U = SEAG) | ana

Here Ac and Ao denote the flow area for the heated section and upstream
un-heated region (A).
The equation of motion for the duct is
dP -P{aﬂ';o.ﬂao- z
—r = i) == + Vg 288 4 G, -f,;&‘t);o} : (Iv2,.3)
d3 ot 93 Do

Assuming that the position of the orifice or valve is at the entrance to
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the heated region, we have
: " 1 .
AP, = &V (1v2.4)

The friction factor fo can be obtained from the Reynolds number and the

roughness parameters of the duct. Therefore,

o = o (B, Voo , Ky, € Do) (1v2.5)

In addition to the above equations, here we impose the isenthalpic con-
dition, thus
leo
bt

= 0 (Iv2.6)

IV-3. Governing Equations for the Heated Liquid Region (B)
By neglecting the veiocity and enthalpy covariant terms, axial
conduction, normal stress, pressure, and the dissipation effects on the

enthalpy, we obtain the foliowing three conservation equations,

K 3}11&
3" 33 =0 | (1v3.1)
Il ol _ But '
.__—af + U_‘} 33 = .& Ae (Iv3.2)
and P '
3V, DU Fs vzl -
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The constitutive equation of state is given by

Pe = Py (Ps) = const. (IV3.4)

Equations (IV3.1,2,3, and 4 ) specify the four variables P, Pes Voo and
i, in the heated 1iquid region (B). The friction factor f_ should be

given by the constitutive relation,

fs = fs (Ps’ Ves Bes €5 D) (Iv3.5)
These four equations can be solved, Lif the heat flux q_w" iz a known func-
tion of independent variables z and t. Although the wall has some heat
capacity which c;n influence the heat input to the fluid, 'we assume that
it is small compared to the heat capacity of the fluid, This enables us
to neglect the entire wall effect on the heat transfer, if the heat source

generates a steady flux. Thus we take | \
q," = q,"(2) (1v3.6)

Assuming that PS, E/Ac, ¢, and D are known and constant, we have six

dependent variables, Pes Ves if, qw"’ P, and fs’ whereas the equations
describing the system are three field equations (IV3.1,2,3) and three
cbnstitutive equations (IV3.4,5,6). Thus the total number of unknowns

and of equations is the same. Consequently, the formulation is mathe-

matically consistent.
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IV-4. Governing Equatioms for the Heated Mixture Region {g)

Field Equations

In order tS take into éccount the relative motions of each phase,
it is useful to formulate the problem in terms of mixture field equations
with some diffusional equations, This has been done in Chaptef II1. By
neglecting the veloeity and enthalpy covariant terms, axial cdnduction,
normal stress, capillary force, pressure, and dissipation effects on the
enthalpy, Eq. (IIIl,1, 2', 3, and 4) reduce to those reported in (1).
Thus we obtain

the continuity equation of the mixture

ot 9%

-0 (1v4.1)

the continuity equation for the vapor

o2ty , 2 -2 [af .
50 F 35(«*?«;1&)— lg 35{—&?—& \/3,]- (1v4,2)

the energy equation for the mixture

YN Stwl _ Bw _ 9 {afa% v AL
RSty ek SAEU B

and the momentum equation for the mixture

d-P Vi Um L) J > . .
_ 4P _ ,Ja_,.,,m%}erama—g—o—fmvy (TV4.4)

o3 e e
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Here we assumed that

Ns (surface number) << 1 (IV4.5)

NEc (tﬁo-phase Eckert number) << 1 | (IV4.6)

Constitutive Equations

In ad&ition to the above four field equations (IV4,1,2,3, apd 4y, -
we should spécify the constitutive relations 3ppearing in Chapter III.
Following the discussion of the thermodynamic process (see ;V-l), we
assume thermal equilibrium between two phases. Furthexmore, the fluid
properties of both vapor and liquid phases can be assumed to be a func-

tion only of the system pressure Ps which is uniform throughout the system.

This implies that enthalpy. and density of each phase are given constant

once the system pressure Ps is specified. Hence, the thermal and calori-

cal equation of state can be described as

f=&(R) | _ -(wmn

5=RK(P) | o (14.8)
and ' . . - '

(s = i (Ps) - S (1V4.10)

fnsin (P )= ket Goa)b s

.Pm

“(IV4&.12)
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In addition to the above relations, we need

the constitutive relation for the relative motion (32)

V.,=f ' (IV4.13)

fm = fz ) (Iv4.14)
8
and ‘the boundary condition for heat flux
_ dWV = q,"(2) - (IV4.15)

Assuming that Ps; E€/Ac, D, and g are known, the dependent variables
are ¢ , V_, @ P, fm, pg, Fg, Pes ng, im’ qw", igs’ and ifs" The equaj o
tions deseribing the system are the four field equatioms (IV4.1,2,3, and
4) and the nine constitqtive'equations (IV&.7,8,9,10,11,12;13;14;.and 15).
Thus, the total mumber of unknowns and equations is the same.

f

net appear in this formulation explicitly, However, they are related to

It should be ncted here that velocities of each phase vg ahd v, do . .

the mixture velocity and the vapor drift velocity by Eq. (IIIl1l.12) and

Eq. (IIIl.3), as it has been explained in Section III-1.C.

IV-5. Governing Equations for the.Downstream Un-heated Region (D)

In this region the mixture is treated as an isochorie fluiq. |
Furthermore, without loosing generality, we can assume that this region
(D) consists of a constant area duct and a pressure drop device such as

an orifice. The thermal equation of state is given by
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DPme
e = 0 (IV5.1)
And thus the continuity equation becomes
J.. = (AC ) U (L, 1) : 1 .
e T \he/ VAt (TV5.2),

Here Ae is the flow area of the duct in the region (D).

The equation of motion for the duce is given by

d3 Piﬂe 1 3?3 + 1)-1"‘2 E}_fa—e} + qe P‘hc +--'Zﬁqe Pne U:e (IV5 '_3)

J B = Bre £ & V. 2
M 23 { Fme"?r_; Fﬂ: 3) }

For the orifice, assuming that it is on the exit of.fhe heated

region, we have

AP = fe B (L,T) U2(L,L) : (1V5.4)

The friction factor fme can be given by the equation similar to Eq.
(IV4,.14)

= f (1V5.5)

And the vapor drift velocity from Eq. (IV4,.13)

ng = f2 : : (1V5.6).
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In addition to the above equation, we have an isenthalpic condi-

ticen, thus

-D—t'= 0 (IV5.7)

IV-6, Method of Solution

The dynamic problem of our system of interest has been formulated
by considering four different regions, i.é., the upstream u&-heated,
heated liquid, heated mixture, and downstfeam un-heated regiona, In order
to obtain solutions for the system, boundar? énd/dr initial conditions
should be given. Recalling the-objectives of the present analysis, i.e.,
to obtain the transient_response and the stability criteria of the sys-
tem, there are several methods to approach the problem, For example,
linear and nonlinear theories are available and could se usedlto obtain
the solufion. Furthermore, we héve a choice of the disturbance whibh
should be imposed on the system. As we can see ffom our forﬁulaﬁioﬁ, the
governing differential equations are nonlinéar; thus, it will be expected

that in case of an unstable operation the nonlinearity becomes important
for large departures from the equiiibrium state. Due to the ﬁresently
limited knowledge on nonlinear partial differential equations, the general
solution for our system by analytical means is almost inaccessible,

However, in most practiéal cases, the information on the stability
boundary is mugh more important than the ultﬁnaté unstable dynamical re-

sponse beyond the stability boundary. According to the Liapunov theorem

(50), the stability of the linearized system corresponds to the stability
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of the nonlinear system which operates under quasi-equiliﬁrium conditions,
Thus, taking the advantage of this theorem, we will proceed by using the
linear theory, In our analysis the disturbanﬁe will be given in the form
of an inlet velocity perturbation following (19,22,25), though, for example,
the perturbation of the inlef subcooling or of the heat flux is also per-
missible. Consequently, we impose the following boundary and initial

- conditions on the density, pressﬁre, enthalpy, and velecity, By taking

the origin of the z coordinate at the boundary between (A) and (B), the

iniet of the heated region, we have

pe = Pg (P | at z=0 t=0 (Iv6,1)
P =P = const, ' at z=0 tz0 (IV6.2)
if = il = ¢const. ’ at z=0 t£20 (IvV6.3)
vem v () =T, 4 6L(E)  at z=0 t=0 (1V6.4)
i = is(Ps) : at 2 = A(t) (IV6.5)

Hence, the density Pe and the saturation liquid enthalpy ifs’ which are
functions only of-Ps, can be treated as comstants. The steady state inlet
velocity is denoted by Gfi and the perturbation on the velocity is given

by 8v(t). In our analysis we use a frequency response method; therefore,

the perturbation &v(t) can be given by an exponential function.

sv(t) = ee t C(1V6.6) |

and _ S=a+ jw (3 =y~ (Iv6.7)
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Thus, S 1s a complex number, the real part gives the amplification
coefficient of the particular oscillation mode, whereas the imaginary part
represent§ the angular frequency w. For the purposé of the linear ﬁeftur-
bation analysis, we assﬁme that s/?fi

fore, ¢ is infinitesimal compared with finite Vg

analysis, we shall retain the first-order terms in ¢ and neglect second

is much smaller than unity; there-

In the following

and higher order terms.

Substitution of Ed. (IV6.5) into (IV6.4) vields

Ve = Ty cet atz=0 N (1V6.8)

The schematic prqcedure for the analytic solution is given in Fig. 6,
This diagram indicates the dramatic effects of decoupling the momentum
equation from the continuity and energy equatiomns, The kinematics of fhe
fluig, i.e., the velocity field and the density variation, can be solwved
independently of the dynamics of the sysfem. Recalling single phése po-~
tential flow theory, we find an analogy in attacking the two problems.

As will be clarified in what follows, the only differeﬁce is that, in

the potential flow. analysis, the divergence;nf the velocity of the center
of mass is zero, whereas in a two—phasé boiling system, the divergence of

the center of volume equals the volume source due to evaporation.
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CHAPTER V

KINEMATICS OF FLUID

V-1. Kinematics of Liquid Regions (A) and (B)

70

In the liquid region the demsity is constant, thus the velocity

field can be solved immediately from the conservation of mass.

For region (A), from Eq. (IV2.2) and (IV6.7), we obtain

Ge(6)=(R)[ T, v 2]

[=3

Thus the steady state velocity ;fo is given by

Ve = ( 2: ) 53;

and the perturbed part of Veo by

a(e) = () g™ = (42) 500

The density of the fluid is constant, hence

Pe = Pg (Ps) = constant

The enthalpy can be cobtained from Eq. (IV2.6) and (IV6.3)

ifo = i1

(Vi.1)

(V1.2)

(v1.3)

‘(v1;4)_ B

(V1.5)
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The results for the upstream un-heated region (4) show that .the density
and enthalpy are-c0pstant and the velocity vfo.is independent of position,
it is a function of time only.

When solving for the kinematic variablés in the heated liquid re-
gion (B), we recall that the position of the boundary between (B) and
(C), i.e., the point z = 3{t) where bulk boiling starts, is also unknown.
The space lag ) will be found from the boundary condition (IV6.5) and the
conservafion equations of mass and energy. This can be done, becauseé the
differential equations describing the kinematics have the form of an
initial value problem.

The continuity equation (IV3.1l) with constant density reduces to

U3
2Xr .0 _

Hence, upon integration with the boundary condition (IV6.7), we obtain

Uy (¢) = Y (¢) = Ui +o0(t) = Ui +E-e5‘ (V1.7)

The velocity in region (B) is therefore a function only of time.
Knowing the velocity field, the energy equation (IV3.2) becomes

Iy 3'S

IR - 5

ot

This is a first-order partial differential equation whose solution can be
obtained by means of characteristics. In order to proceed with the calcu-~

lation, we define the average heat fluxlqé" by




72

.
2o

]

¢ ) _
EI—J f (3743 - (v1.9)
In view of the above equation

q,"(2) = q " £(2) . (V1.10)

which defines the dimensionless heat flux distribution £(2). We assume

that f(z) is a continuously differentiable and positive function. We also

define the integral of £(z) by F(z), thus

;

| .
F(3) = j $(3) d3 (V1.11)
. .

The function F(z) has the dimension of length and gives the equivalent
distance for the total amount of heat, if the heat flux is uniform-qo".
along the channel,.
Substituting the normalizeéd heat flux, i.e., Eq. (V1.9), into the
energy equation (V1.8), we obtain
s o b 2% § - ‘
35 T Us(E) b o k2 §(3) V1,12
JF 03 T Ak V1.12)
Equation (V1.12) is a first-order linear partial differential equation

which can be transformed to Lagrange form (59).

d3 dig

dt = = — o 1,1
V3 (&) 28 £(3) (V1.13)
Ac S

Equation (V1.13 can be solved through a parameter with a boundary condition
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(Iv6.3). Now the problem can be converted into two initial value problems
by intrdducing the particle coordinate or the method of characteristics,

By taking the first equality of Eq. (V1.13), we have

dt - 42 (V1.14)
Ve (t)
which specifies the particle path. The equality between the first and

third terms gives

(V1.15)

d.i‘.g, = M &(3) dt
Ac §

The initial conditionm will be specified by letting a particle enter region

(B) with eﬁthalpy i,, at time 7., thus,

1? 1’

at t = T and z=0 i.=1 {(Vl.16)

With this condition, one obtéins, after integrating Eq. (V1.14) with Eq.
(V1.7), the following relation

-5(t-2)
3= U (t-2,)+ ge™t 1 - | - (V1.17)

S

or in a perturbed form

z =12z + 8z (v1.18)

Here z corresponds to the steady state particle path and §z to the per-




neglecting.the_secoﬁd and higher order powers of ¢ we get,

Upon substitution of Eq., (V1.19) into Eq. (V1.15), one obtains

|
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turbed part. Using Eq. (V1.18) and expanding £{(z) in a Taylor series and

H3)= §(3r83) = §(3)+ -da-?ﬁ 5% (V1.19)

dig = [_;“Lf]{%( T, [t-01) + £ le-T D (v1.20)

Ik

g '-Slt'?lj,
x €€ [1- 85 ] Jl dt

or simply

diy = [ f’;‘» ] $(3(t, 1) dt | (v1.21)

o

The Time lag and the Space Lag

The integration of Eq. (V1.21) with Eq. (V1.22) yields

Before solving for.the enthalpy, i.e., the integration of Eqr
{(V1.20), let us examine the time lag T12 and the space lag ) defined ih'
Section IV-1l. The time required to increase the enthalpy from 11 to ifs
in the liquid heated region was Ty and the corresPonding_distahcé was i\,

thus we set at

L =Ty, 2= A2 (t) and if = ifS (PS) = constant (V1.22)

-+

[ 4’“2*2”2‘1 5 ]:-.ﬁ 5 : f(}w(t,-c,))d't' (V1.23)

Ly
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Here Ailz

the particle entering the inlet at t = Tys hence

is a subcooling of the liquid and T12 is the residence time of

g
i

i ~ i

,5112 =g (V1.24)

1

Ty = T) + Typ (Tl) (V1.25)

The steady state solution for Eq. (V1.23) can be found by setting ¢ = 0
in the original differential equation (V1.,12) with Eq. (V1.22), thus one

gets

5 |
=S f(3d3y = F(X) (V1.26)

<

[ A A T J
8. ¢

From Eq. (V1.26), the steady state space lag X is obtained by taking the

inverse of function F

- - N = |
A _ F ( ALIZ ”Agc FS' U;& ) . (V1-27)

and the steady state residence time T2 is given by

.
G = (v1.28)
T W
On the other hand, the unsteady solution is given by
' [RaY Tl ' st sk
ALAf il _ 2 Ee'—e
é}g : :I j.(U;n’.t“tl])dt fj {'(U}]{f—t] -—-L—S—-——-—-—Jd_t (Vl.zg)

£y - [ ¥]
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By defining

Gl )= T + 822(2:} (V1.30)

-

and using the Taylor expansion, we can express the first integral of Eq.

(V1.29) as

Tir E‘; 2

o . ) _ i .
S OB [e-m DAt = 5 F () (v1.31)

)

ey

L

ELA) o (X)) $8.(T)

T
Veu-

By defining a new function g as

_ T $7
4(7,5) ES i) e % dy W1.32)

the second integration of Eq. (V1.29) can be expressed as
% .t'i

L2 (105,915t - 500}

Neglecting the second and higher order of ¢ and using Eq. (V1.28), we get

ST, ¢ ' :
ge”” A ~[§(X)-% |
- S HU"S.) [#(5) - 51} | (v1.%)

Now 6T12 can be obtained by substituting Eg. (V1.31) and Eq. (V1.34) into

(V1.29) thus

-
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| - qlee’™
30‘1(3'-)-‘-_}(}] - [ﬂ(x §)- [f.(i\J"_ﬂ?)JJ? (V1.35)
but at
=0, Let-Ta=t-7F, - Szmz') | (V1.36)
Hence, in the real time scale, t, 8Ty becomes
St ~STa@y)
$Tu(e) = - —L S (X) - o} EC_E (V1.37)
€)== e |96, (s - s} £
Retaining only the first order of ¢, finally we obtain
st . 09 sol) £
ST.E)=—-£€ '-——- A, S)- (A}~ (OJJ (V1.38)
For simplicity, let us defiﬁe
' -Sﬁz
_/L,( )= - —E(A {3(4 $)-[§(x)- 5(0)]} (v1.39)

Upon substitution of Eq. (V1.39) into (V1.38), the perturbation of par-

ticle residence time in the heated liquid region (B) becomes
. >t . ;
$Tu(t)= E€TA(S) = A(s)SV(E) (V1.40)

Knowing T12° the perturbation of space lag )(t) can be found from Eq.

{V1.17) by setting at t = Tys 2 = % (t)
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Aty = T, 7, + €€ [ - 750

43 S (V1.41)
Hence
N sEy _' -st. '
AE) = VG, + EE [‘"‘gg"- + Uy A,(S)} (V1.42)
By defining Jlés)as
g e"'jg.t :
A, ()= -% + U A (S) (V1.43)

the perturbation of ), the heated liquid region, becomes
e St (S)
SAt)= £ A, (V1.44)

FBr example, the response of the boiling bouﬁdary to the sine heat flux

- % sine 2¥ | is given by

profile, qw” =q 7

(o]

| _ i y A -~ .'“
Az - m‘__[ S M(%) [e — €05 (A,Q-I)J}

where A is given by




The Enthalpy Response

Although the response of the liquid enthalpy for the dynamical
problem is not directly necessary, it is important to know the energy wave
propagation which can be applied in a single phase heat exchanger analysis.

to t and then eliminate 1. in view

1 1

of Eq. (V1.17), keeping in mind that z is an independent variable, We

Here we integrate Eq. (V1.20) from 7

get
-Se
o0t <L Ry et~ sln e )
.Lﬁ.\aJC)fL, =m' [ F(3) | S (V1.45)

*I( 3(3.5) - §(3) *«&to))e—%f ]}

V-2. - Kinematics of the Heated Mixturé Region (C)

A.. Volumetric Flux Equation and Density Propagation Equation

The set of governing equations for the heated mixture region (C)
has been derived in.Section IV-4. We recall the condition of constant
properties for the liquid and vapbr'phasé in the mixture region, which is
quite valid for the relatively high pressure system with thermodynamic
equilibrium assumption. Furthermore, by taLing the vapor drift velocity
V . as a constant (see Section III-1 D), we can transform the two con-

8]
tinuity equations (IV4.1) and (IV4.2) into the following form

2 _nosR | (1111.5;*.)
23 YRR -' S

and
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and

2. O Fou AEIE .

ot Ca >3 }! ﬁ}f: (II11.61)
here L. Cp = § + Vi (III1.59)

The first equation can be called the volumetric flux equation
which describes the increase of j due to the phase change. The second
equation has a form of the wave equation and thus can bé called as a den-
sity propagation equation. Féllowing the analysis of Lighthill (14), we
call C, by "kinematic” wave velo;:ity, since it describes the veloeity of
the density wave propagation.

The ébove two continuity relations are not sufficient to solve the
kinematics of the mixture in (C), since we have three unknowns, j, Poy? and
Fg in two equations. However, the additional information can be obtained
from the enthalpy enefgy equation using the equations.of state. Recall-

ing equations (IV4.7,8,9,10,11, and 12), we have

AP

Substituting Eq. (V2.1) into (IV4.3), i.e., the enthalpy energy eqﬁatibn, ﬁ

we obtain
Bf». - .E‘)_.E‘l‘. = __ 3.:% 1 ] AP P %
ot +C*az B [Ac. INTPSITY " (v2.2)
% .

Here we used the same assumption Concerning the drift velocity
change as the one we applied in Section III-1 D. However, in order to ob-
tain the vapor generation Fg in terms of the heat flux, these assumptions
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Hence, from Eq. (V2.2) and Eq..(IIl.lﬁ),'WE have, for the case of thermal

equilibrium

r = WS | v2.3)

Ac Alyg
which relates the vapor generation Fg to the heat flux and the latent
heat. As was mentioned in the footnote on page 80, this result is not
the consequence of the formulation in temms of the kinematic wave velo-

cify, but of the constants i

£ ig’ pg’ and Pg with thermal equiiibrium

condition.
The characteristic frequency {i of the phase change can be defined

now by

_ [yap 20(3)E AP
OG) = -3 1212 V2.4)
) $ 5 Acdisy S8 - (

In terms of the normalized heat flux.f(i), Eq. (V2.4) can be expressed as

N = N §6) o (V2.5)

Here

0, = 85 A4S

= ; V2.6
Ac Algy Ty 8% (72-6)

which is the characteristic frequency of phase change if the héat flux is

are not necessary, since it can be obtained from the energy and continuity
equations directly.
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uniform. Using the above definitions, the governing equatioﬁs for the
kinematics of the heated mixture take the following forms.
From the volumetric flux equation (III1.53)
Y
*é'% = (2, $£(3) (v2.7)

From the density propagation equation (III1.61)

aﬁn + E‘F‘ﬂ -___ & :
5t Cy 53 = D:.5(3) 8, (v2.8)

The constitutive equation for Ck from Eq. (II1I1.59)

C, =i +V., V2.

= g ( _9)
The constitutive equation for j from Eq. (ITIl.35)
§=VUm + (—E"— - ) Va; ' (V2.10)
P
and ng will be treated as a constant. Thus
- *

V . =V _ . = constant (v2.11)

8] 8]

The equations from (V2.7) to (V2.10) with the constitutive equa- -
tion for ng describe the kinematic behavior of the heated mixture region.

In our analysis, it is necessary to assume that the drift veiocity is a

% s
Note that this is supported by experimental data (32) and is
valid for several flow regimes, i.e., bubbly, slug, churn turbulent, etc.
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function only of kinematic variables in order to decouple the momentum
equation from the kinematic of the mixture. Furthermore, for simplicity
we assumed that ng.= constant, i.e., Eq. (IVZ.II), since from this condi-
tion we can linearize the system of governing equations. The analytical
and experimental verifications for this assumption are given in (30, 32).

B. Kinematic Wave Velocity Ck

The integration of the volumetric flux equation (V2.7) yields

. L
Ja,t)= Vi (e)+ Q. g £(3)d3 (V2.12)

A

Using the definition of F(z), Eq. (V1.11), we get

3(5,1’:)- U (t) + L, [F(é) = F(Xl] (V2.13)

which expresses the increase of j due to the evaporation.

By substituting Eq. (V2,13) into Eq. (V2.9), C. becomes

k

Ca(3,t)= V) + Vﬁ + o [‘F(a)-F(F«)] _ (V2.14)

Using the expressions for v_, and ), i.e., BEq. (V1.7) and (V1.42),

fi
in the above equation and expanding the last term in a Taylor series,
then keeping the terms up to the order of ¢, we get

Cel3,t) = Ce(3) + $Ca(t) (v2.15)

C= Ty o+ Vo + N6 [FOOY= RG]+ [sU-n.46)54] -




84

Thus the steady state and perturbed parts of the kinematic wave

velocity Ck are given by

G = Ur t Vy + L. [F(3)-Fo0y] (V2.16)
and

SCe(E)= $SU) =L (A ) SA(E) | vV2.17)

or from Eq; (V1.7) and (V1.44)
S(t)= eest AL (S) S (v2.18)

here _A._a (5) = | = {2 ‘f(X) -A...'L(S) (Vv2.19)

C. Perturbation Method on the Density Propagation Egquation

In the previous analysis, the volumetric flux equation was solved
and the kinematic wave velocity was expressed by the independent variables
z and t. Therefore, by substituting Eq. (V2.15) jﬁto‘Eq. (V2.8), we can
solve for the density of the mixtute. By introducing a new variable P

which is defined by

t(3,t) = [ [ﬁné.’é_?_)_] (V2.20)

the density propagation equation (V2.8) cén be written as

2 ety 2

57 — L2 §(3) | (v2.21)




‘In order to apply the perturbation method, we define

P, ¢) = P3) + SP(3.t)
and

R(3.t) = Bra) + SR (3.t)

85

(V2.22)

(V2.23)

The relations between ¢ and Eﬁ and §¢ and 6p,, can be obtained from Eq.

(V2.20) using the order of magnitude analyéis. Hence

oo - e [ )

and

53, t) = 5B

fom

(V2.24)-I”

- (V2.25)

Substituting Eq. (V2.15) and (V2.22) into Eq. (V2.21) and using the per-

turbation method, we get

th
for the zero order

G4 - — 0, H3)
and :

- for the first order

Y Y - o §(3

Cu(3)

(V2.26)

(v2.27)
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D. Steady State (Zeroth Order) Solution for the Density

i

We integrate Eq. (V2.25) from ) to z, then

- - 3 \ _
P3) — PLA) = - { i_'l_g_fﬁl d3 (V2.28)
- ‘5 Cel3)

But, from Eq. (V2.16) and (V1.11)

O, $(3) = HO% Ce(3) (V2.29)
Hence '
H(3) - @(X)"“S M = ,QM[C‘(?» ] (V2.30)
From Eq. (V2.30) and (V2.24), we obtain
() _ ___5&@ ) |
2 Ge(3) | (v2.31)
or .
f3) _ T+ Vg, | w2.32)"
7 Vi v Vg + 0, [F(3)—R(X)]

E. Parturbed Part (First Order) Solution for the Density

The differential equation for $¢ , i.e., Eq. (V2.27), can be

transformed to Lagrangian form (59), thus

*
This equation has been obtained assuming V 3 = const.; however,
by solving directly the mixture continuity equatioﬁ it can be shown that
it also holds for the case when V_, varies along the channel.

8]
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v

At = —d3»  _ _ G®) d (s¢) |
- Cu(3) SCu(t) £ 4(3) o 23y

Let us solve this equation by the method of characteristics, considering
the particle entering the heated mixture regiom at t = Ty Taking the

first equality, we can integrate directly

t- T, = 5 T"{L _ g (V2. 34)
Az Ce(3) -

Let us define a new function'E(z) by

E(3) = E _;ﬁ_.l___ d
Ca(3) ¢ (v2.33)

Then Eq. (V2.35)_bécomes
t-Z:= E(3) - £ (X + SA(®) (v2.36)
The expansion of the second term into a Taylor series and retaining up to

the first order terms of ¢, we get

t= 7T, + [E(G)- E(X)]—-EL(D ML) s

On the other hand; by bonsidering the first and third terms of Eq. (V2.33)

we obtain

! dCB) oo, 1y dy

dLbcb) = [ ak(3)]z dé | {V2.38)
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The expressions for 5Ck (t) and the particle path equation between t and
z, i.e., Eq. (V2.18) and (V2.37), respectively, have already been obtained.
Thus, by substituting these equations into (V2.38) and neglecting the

higher order of ¢, we get

s{E(3)- E(M}

PR S e ,(s __g)
d{sP)= £C ([Cad)] )45 d3 (v2.39)

By defining

s{E(3)~ B0}

| ) |
H(% 5)- ,( mze .A.3[S) D['é (V2.40)

and integrating Eq. (V2.392) from A(t,) to z and retaining only the first
2

order of ¢, we obtain

843(5, ta..) - 54:‘(;‘\(7.3))= & eS?.'sz 3(5) [H (3.'5) = H(X; 3)] ‘ (V2.41)

In order to determine the boundary value, we combine the zeroth
and first order solutions, i.e., Eq. (V2.30) and (V2.41), respectively.
Thus

PGy = P(3)r SP(, T

(V2.42)

= [ S 6 ALY+ ECEALG)H
Qn[&m] P(am)+ SS)[HB.s)- HU 5)]}

and the'boundary condition for qb is given by




¢ (Mz-) . T=)=a O (V2.43)

Applying the above condition to Eq. (V2.42), we get the solution in terms

~of z and Ty

sb(3,7.) - e oSt {Q%-f(-;)).sz(S) _+A2(s)[H(a,$)-H(E,sJ]} (V2.44)
(A '

Recalling Eq. (V2.37), we have

gee

St . g@St e-s[E(a)—t(A i} 2.45)

We substitute Eq. (V2.45) into Eq. (V2.44), then the solution for 6qD can

be expressed by the independent variables t and z. Thus

sb(3,t)- e e S {E(3)-E (X3} [“ﬂgf(f\lj\.z(s) v 246
' Ca (X))

F AL [H(,5) - H (X,s)]]

Finally, we obtain the response of the mixture density p@ from Eq. (V2.46)

and (V2.31), hencé

£a3) _ Pu(®  ,  5Sa(3t)

) e B (v2. 4.7 )

For the steady state part we have
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al3) Ce (%) (V2.48)
95? Ck(3) .
whereas for the pertﬁrqu'part
$he st o
= EET AL (3.9) (V2.49)

with

gzﬂ) A8+ (v2.50)

5 5y —S[EG)»-ER)]
:lC&(z\JJE { {
Cﬁ(&)

+ Ays)[ H(3, 50 - HfX,él)]}

F. Center of Mass Velocity'vm

In previous anaiyses, the solutions for the volumetric flux j and
for the mixture density P have been obtained., Whereas the solution for

the center of mass velocity v can be expressed by j and p, 28

Fm

Up= § - {_fs_ - l] Va; (v2.51)

Recalling the definition of?Ck, i.e., Bq. (V2.9), and using the series

expansion around the steady state solution, we obtain

| Ua(3,1) = {5&(3) - ,gt‘/c“']a- { sc',l(t;{._g;_i.ﬁgz Vg'}‘} (v2.52)

By usiﬁg Eq. (V2.48) we get
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U (3,t) __) i (3) 1] ‘ SCutt) [Cmﬂ Vo SE. }
T L Ova) % Cal)) T, & (v2.53)

.

Substituting Eq. (V2.19) and (V2.49), we obtain for v the following ex-

pression

U (3,1) | Cal3) St
'ﬁ; i i_C{L'X)} * U? iA (s)+ [Ca(%) ]Vg;/\. 3, 5)} (v2.54)

Finaliy'we ubtain the solution for v in a perturbed form

Vu(2.8)  _ Fu3) + 2Vn(3t)

- - = (V2.55)
Ve - Ve Vi,
For the steady‘state part we have
Vi (3) £= g‘ﬁ.(g] V2. 56)
Vi Ca ) T
whareas for the perturbed part we obtain
S'L%lé’f)s e€™ A, (.5
Vi Uy (v2 ..57)
Here .
Cal |
A (5)“ As(s)+ [ = ] Vai M 4 (359) O (v2.58)
Ce(R) S :
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G. Enthalpy i of the Mixture

Knowing the response of the density, i.e., Eq. (V2.47,48,49, and 50)

the solution for the enthalpy can be calculated directly from Eq. (V2.1).

Thus
w8 R als 0[F3)FG) [5 JzPAv. $8
—_— = —_—n {(v2.59)
Ls AP dps  Cy(d) G aPlss F5

H. The Residence Time

It is of interest to evaluate now the steady state reéidence time,
i.e., the transit tiﬁe of.a particle in the heated duct. Rgcalling that
the particle entering the mixture region at Ty reaches the end of the
heated duct at T4s We can calculate the residence time sz from Eq.

{(V2.30). Hence

P I S VS o
Tas = E(L)~ E£(X) Eli) (V2.60)

_ From Eq..(V2.60), we can decide the steady state ;23 and its perturbation
5723. Hence

Ts = EW)— E(X) (v2.61)

~and

st =S[e()-EM)] :
STslt) = - -CE‘(E’T_) S A (s (v2.62)
- G
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V-3. Kinematics of the Downstreém Un-heated Region (D)

The set of governing equations for the downstream un-heated region
has been derived in Section 1V-5. Under the isochoric conditions, the
continuity equation takes the. form of Eq. (IV5.2). Hence, the velocity
of the mixture ié independent of the position and is given by Eq. (V2.55,
56,57, and 58). Thus |

i

Ve, Tue s\_{mg)=[ ]{Cﬁ( ) e AsL, 5)} (v3.1)
Vi  Uu Uy Cah) Ui \

On the other hand, the equation of state, i.e., Eq. £>Y5.1), is given by

e o ohe _ V3.2
3t +Ume(t) oy = o . : ( )

whose characteristic equation is

dt - —d3

Une (t) (¥3.3)

The integration of Eq. (V3.3) yields

3-0 = ACHC&(“% .3)+,4__::‘(f,s)s'esr'-e_“*”l} (V3.4)
Ae Ce(A) Vg 3

However, the initial condition for the density pme:ggag;ven by Eq.

(V2.47,48,49, and 50) as

B b)) _FBlet) _ [CeD] , ¢
5 3 % _[Cu)} A (43) (v3.5)
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Now we cancel the parameter Ty between Eq. (V3.4) and (V3.5), retaining
the first order of ¢ only. Thus

-5 3R] Gtas ] Ae

g (g R )

—

By defining _/‘,'_G as

_ Ce[i) Ae
Nelas)= € "“J[C““H JA4(Q,5) (v3.7)

we get

Pue (8, 5) | Fue , Shue [&m P L N
i el - 3 3,8 .
fs % & Cﬁ(ﬂJ & _-Ae(_ ) - (V3\8)

The characteristic residence time Tq, €an be obtained by setting z - f =

fe& in Eq. (V3.4) and retaining only the first order of ¢. Thus

Toe = Toe + $ T34 (T) (v3.9)

(Ae)[da(}i)]' [@1()\,1 5(£,9) &e [ SF"*_I

l);JIL Cet)]
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CHAPTER VI

DYNAMICS OF THE SYSTEM

VI-1, Preésure Drop _in the Upstream Un-heated Region (A)

In the previous chapters, the kinematics of the fluid has been

solved. Knowing the veolcity field and the density variation, the pres-

sure drop can be calculated by integrating the momentum equation. For

the upstream un-heated region (A) the velocity and density are given by
Eq. (V1.1) and (V1.4), respectively. Hence, the momen tum equation (IV2.3)
can be integrated directly. 1In single phase turbulent flows, the per-
turbation of the friction factor due to the fluctuation in the velocity
may be neglected for two reasons, First, the friction factor is inversely
proportional to only onme-fourth power of the Reynolds number, second the
existing large turbulent eddies may not be sensitive to the mathematically
introduced small perturbatiﬁn of the local velocity, Thus, in the fol-
lowing analysis, we assume that the,friﬁtioﬁ factor takes the value of

the steady state. Integrating Eq. (IV2.3) from‘-—gb to-0 with an inlet
restriction, Eq. (IV2.4), we obtain

. _

. v . 2 . N I .

ﬁE.’S Ps{%tﬁ +Usca°§°+ 9c+%'0;c}dé+ ki §, 0 (VIl.1)
Lo o :

In view of Eq. (V1.1) and (V1.7), the integrated momentum equation yields,
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ARy = ] 28 v g+ Fo (Tior 0 HEr iy (T #30) OTLD)

Linearizing Eq. (VI1.2) and retaining only the terms with the first power

of €, it can be shown that

ﬂ

AP = .Pf{ 9 G+ (-L) [ -’fziﬁ}f}'*‘

(VIL.3)

,.f;“An)Sg + 'f»ﬂo 2( )U‘ + 24 LL}SU

We now obtain the steady state pressure drop and the pressure drop

response to the disturbance as
AP, = %%l + &Q" (%—-] Fe B ﬁ-‘f} (VI1.4)
SAR, = & {(-%‘:)SL+ %f_g“f.z(%é‘.fﬁﬁ +‘2€5§_.} £ wiLs)
Hence

AP = AP, + S AR, '  (VIL.6)

It should be noted that three terms in the right hand side of Eq. (VIL.5)

represent the inertia, frictional, and inlet orifice effects, respectively.

VIi-2. Pressure Droﬁ in the Heated Liqhid Region (B)

In this region, the pressure drop response can be obtained from
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the momentum equation (IV3.3) by using the expression for the velocity,
i,e,, Eq. (V1.7). Reéalling'the boundary of the region (B), i.e., Eq.

(v1.22), (v1.42), (Vi.43), and (V1.44), the integrated momentum equation

becomes
AtSA
I o ab*]- ]}‘ aaf i '{'5 H
At f?L Iat+ '3 +ﬁ+}f§‘)*}d?" (vI2.1)

where we have taken into account the assumption that the density is con=-
stant in region (B); Upon substitution of Eq..(Vl.?) into Eq. (VI2.1)

and taking into account only the first order terms of €, we obtain

AP.= K14+ j% EH P - (V12.2)

o £ IS + 2% 20, }XSU* f+ ['3*‘ j—g 'I}E:JSA

Hence the steady state pressure drop can be expressed as

»

A.Pn.’ Pi- [ 1+ }E" 6-4? ] A (Viz.3)

And, in view of Eq. (V1.7) and Eq. (V1.44), the perturbed pressure drop

response becomes

$4P.~ K{sh+ f£aG 7+ (34 f5 00 MY e g
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Hence

AP, = AF. + 34F (VI2.5)

The right.hand side df Eq. (VI2.,4) shows various effects on the response
of the press;ré. The first term is the effect of the inertia, the second
term is the effect of the velocity perturbation on the frictional pres-
sure drop, wheréés the last group shows the effect of the fluctuating

boiling boundary. ' : -

VI-3. Pressure Drop in the Heated Mixture Region (C)

A, Integration of Mixture Momentum Equation

The.mixture momentum equation will be integratedlnow in a manner
similar to that used in the single phase region. However, in the heated
mixture region, the kinematic variables, i.e.? the density and velocity
of the ﬁixture, are not only functions of time, but also of the axial
coordinatenz. Hence, the integration of.Eq. {IV5.8) is more_éomplicated
than the previous ones in the liqﬁid regioﬁ. Furthermore, the dynamic
characteristic of the two-phase friction factor fmis quite unknown in the
presént state of art, consequently, certaiﬁ-dynamic modeliﬁg for fm.is
required. In this respéct, we'émploy two distinct approaches: 1) aséum-

ing that the dynamic characteristic of the frictional pressure drop is

similar to that of the inertia force pmv,z, it reduces to the time inde-
m

" pendent fm; 2):the constitutive functional forms of fm for the dynamic '

and steady state cases are the same, and it can be expressed by the

kinematic variables. In either case, without going to the detailed form,
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we can express the perturbed two-phase friction factor as follows

——
-

fm = 5m(3) + SFm(3,T)

(VI3.1)
with ]
5-&. =0 for case (1) (VI3.2)
5€m= &'G“A:}(Sﬁ) for case (2)_ (vi3;3)

Once the friction factor model.is specified, the functions ?ﬁ, 5fm, or
Aq’ can be obtained by the'pefturbation method,
In view of Eq. (V2,47-50), (V2.55-58), and (VI3.1-3), the momen tum

equation for the mixture, Eq. (IV4.4), can be integrated from A(t) to £,

thus

A??,4..;’f€ (£ | 35 35 ] Rt S nauids

(Vi3.4)
pr
ALE) ' D -

E'ﬁ-\. FP ..2' )
+ 5l eralen Vag J}d&

Now, we shall consider each term of Eq, (VI3.4) separately,

B. The Inertia Term

The inertia term, i.e., the acceleration pressure drop in the momen-

tum equation, is given by




L+

Asta.= fon "E"‘"‘ As (VI3.5)
ArSA

Substituting Eq. (V2.47-50) and (V2.55-58) into Eq. (VI3.5) and retaining-

only up to the first power of €, one can show that

ABha = €€ 8&5 hc;w] A (3,5)d3% (V13.6)
5 g lF)

It should be noted that here we used the mean value theorem between A and

A to change the integral limit. By defining a transfer functionj\_8 as

A, = ?5:.5 ’ .‘CTG(;\'J As(3,S o[} - 3.7
¥ l; lCa(%)] 5(3.5) (V13.7)

the steady state and perturbed acceleration pressure drops become

APore = APosa + g?._zm | (VI3.8)
with
'. A_?Ha =0 | | (v13.9)
and - :
§Paa= £ T A4(5)

(VI3.10)




———————

C. The Convective Acceleration Term

The convective acceleration term in Eq. (VI

Ny '
{ 2
_C‘PHL'= 'j ﬁnv‘m%cl}
ArSA

Using the mixture'continuity\equation (IV4.1), the

transformed to

s

[
iC

ﬁifiac = fi‘lfm

QI
-t

£ 4
+- g 1.,
ATSA  iesa
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3.4). is given by

above integral can he

{
o3 (V13.11)

Substituting Eq. {(V2.47-50) and (V2.55-58) into Eq. (VI3.1ll) and neglect-

ing the second and higher order of &, we obtain

Aﬁar_ = Iﬁst + $ 0 Pac

with

and

84?;3.; = %—-egt .A.c'(s)

Here Cr* andj\g are defined by

(VI3.12)

(V13.13)

(VI3.14)
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¢ = éﬁ.&? B (VI3.15).
Ca(X) P (@)

and

Ay(s)= B Gl f CUALLS) mAgRs)]

) ) (VI3.15)
*fﬁ'[ A 10,5) - Ao (A, 5)] Q° ‘J'(AM.
B
+._l_..55 rCﬁtaJ]A (3,5)d3
IJ’,‘ “i LS .h(
D, Th; Gravitational Term
The gravitational term in Eq. (VI3.4) is given by
2 | :
J AP:__:,% = S %F‘m J:a_ (VI3.17)
ATSA :

Applying the mean value theorem between A and I and substituting Eq.

(v2.47) into Eq. (VI3.17), we obtain

APesq= QJ Cud3 + 9 S éPmul’; = 35 SA (VI3.18)

234
A

.In view of Eq. (V2.48) and (V2.49), it reduces Lo

- f ' . :
Afisg = ?R‘H giimds &ebt”‘; A,,(a,sJols-A;(SJJ}- (v13.19)

Hence the gravitational pressure drop can be expressed as
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APaq = APy v 54Fag (VI3.20)

with the steady state part given by

—— f - :
ABisq = ¢ 5 T__s.(’\_’-] d
Alsq = 45 ) les) 3 (VI3.21)
and the perturbed part by
C§AR, = @ [ AL (30~ /AL ()] (VI3.22)

Here the transfer functionj\lo iz defined by

. ,
AolS) = ﬂ&}, ./L;(?»SJCB (VI3.23)

E, The Frictional Term

The frictional pressure drop term in Eq., (VI3.4) is given by

4 '
"E’m y & b{ .

AT33S = [

Ar§A

Using the mean value theorem, the above equation reduces to

¥ _ 2
AP = j fu R0 d3 - £ s (VI3.25)
-

In view of Eq. (VI3.1-3), (V2.47-50), and (V2.55-58) and retaining only

the first power of ¢, it can be shown that the steady state part becomes,

U
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L

— - £ 5* 1 Eﬁ{SJJ CL%
i o I e VI3.26
AP.;? g'x R v s ( )
and the perturbed part is given by
(\' 'CMF,)ES ¢ 8&':" >t 'I 4':-;; :‘} - —(b ﬁ-, {:&‘2 j\_ . (5:‘ ]r (VI3 27)
’ : | 2D < 2 :

where the transfer function_}'g_]1 is defined by

-

' o ~ = 21 A.f2y12 _ _
Ais)s J 'IS {-Jw. il [:‘L%}’J Na(3.5)+ (V13.28)
. - Z Ca | ‘
A |

02 T s (350 ¢ B0 [SEHTAL 5 ol

Hence, the frictional pressure drop can be expressed by the above three

gquations as

Afesy = ATise + SalFae (VI3.29)

o Ly r 2T A, (5) - fER B Aa6)]

F. The Drift Stress Term

The drift stress term in the momentum equation is given by

€

.- o [K-F & .+
APpa = S 03 ‘ P~ Fy Jﬁf’" Vi _}dé (VI3.30)

A¥SA
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After integration and with proper boundary conditions for P> EG- (VI3.30)
yields,
o R-fllt) R% vy ,‘(.g)
All.it'{ = . - . ?J A
full, t)- F  Fa(80) |

(VI3.31)

We recall that, in the present analyéié, the vapor drift velocity ng has
been treated as a.constant° However, this same assumption leads us to a |
_singularity_pr;blem on the drift pressure drop term as the mixture den-
sity approaches to the vapof density, which occurs either at the critical
pressure or at the complete vaporization point. Because this singularity
is not important at all from thé physiéal point of view, since the drift

pressure drop term approaches zero,* we shall eliminate it by further

assuming that, for the case X =0

Z

Ve () < Vg
&df)‘ﬁi ‘ _ﬁmfﬁ)_

(VI3.32)

In view of Eq. (V2.47-50) and retaining only the first power of €, we

obtain
AR, = (C-0C* Fy vy + (-2¢7)C “f ALLS) Vg; ce3t  (y13.33)

* - .
Here, C_~ is the ratio of p. to pm(£) defined by Eq. (VI3.15), By setting

the steady state and perturbed parts of the drift pressure drop as

*

In both cases the fluid becomes homogeneous, thus the vapor drift
velocity is V_. = 0. Thus, in order to retain the exact form of the drift
pressure drop5- it is recommended that the exit value of ng be used.




and

with

s , ]
Rals)= (260878 Ay tes) Vo

we get‘ finally,

JQPAA{{ = [\E{Bd r S‘C!‘.i)dﬁll

G. Total Pressure Dfop in the Heated Mixture Region
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(?13.34)

(VI3.35)

(VI3.36)

(V13.37)

In the previous section, we integrated the right hand side of

Eq. (\VIS.r-'r) separately. By adding the inertia, convective, gravita-

tional, frietional, and drift terms, i.e., Eq. (VI3.8,12,20,29, and 37),

the total pressure drop in the heated mixture region becomes

-

AP-;.;s = &P:ac, v AT, gt AP;._-;; + Aﬁad +

r S‘:"'szm * 5Aa3c + ZAB:";* 'S‘i'\ais + SAP'”d

. (VI3.38)
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Hence the steady state pressure drop EﬁéB ig given by

J.xt‘-_ln = 11.313(_ * ‘E?z.!-‘]- + A_—EB-_(- + AB?t‘l | (V13.39)

In Eq. (VI3.39), each term on the right hand side represents various
pressure drops due to different wechanisms which are given by Eq. (VI3.13),

(V13.21), (VI3.26), and (VI3.34), respectively.

. On the other hand, the perturbed pressure drop 5&P23 ig given by

SAP = 34Taat+ $54Fac+ §4R1q+ $AP g + § ATy .(VIB..40)

or, in terms of the transfgr functions,

.

FYRE LR F WETY WORY MOTY NOLY IO Sy

- Ees‘tfﬁﬂ"g + % P‘e@.{:}/\.z(&)

I P
where)\z au--u-lj\‘8 to.h_12 are given by Eq. (V1.43), (VI3.7), ;VI3.16),
(VI3.23), (VI3.28), and (VI3.36), respectively. Hence the total pressure

drop in (C) becomes

lﬁPza = ﬁaa"' SﬁPﬁ (VI3.42)
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Vi~4. Pressure Drop in the Downstream Un-heated Region (D)

. In order to obtain the pressure drop response in this un-heated

mixture region (D), we shall integrate the momentum Eq. (IV5.3) with

Eq. (IV5.4). Thus we have, _ - “
. trle _ _ y o _
APy = %EF"M)U"‘(“*"S i P“‘*].%TM*U“%E]* (VI4.1)
e - '
- ' ‘{'m me Um: + i ?5 "Pme ﬁ; Pa V - } d} |

The terms on the right hand side of the above equation'reﬁrésent the exit
orifice, inertia, convective, gravitational, frictional, and drift pres~
sure drops, respectively. Each term-cqn be obtained separately in a man-
ner similar to that demonstrated in-tbe preyious section., The fription

factor £ will be given by
me

fne* Foo * Stae .(3,1:.)' - (V14.2)
with

dtme = 0 _ .for case (i) _ (VI4,3)
(VI4.4)

_ st, 7, |
$fme=EC A.q(sf") for case (2)

Here we followed the assumption made in Section VI-3,

Recalling that the velocity v__ is a function only of t, and not-




of both t and 2z, one can show the following results.

For the exit pressure drop

From Eq. (V2.47-50) and Eq. (V2.55-58), we have

APipe = fe Fu Unm = A—P—.H-e + 5’—\?34-&

with

L — . — 2 L
AF;.;,& = e Fe hi Cr*

and

' st -
SA'ij-e = Ee .-A.,s (‘3_)
Here the transfer fuﬁctionjllB(S) is defined by

Np(5)= 28e % Vs Mg (£,5)+ e F Ui CF A4 (0.5)

For the acceleration term

From Eq. (V3.1), (V3.7), and (V3.8), we obtain

A+ d —_— .
A Piga ‘—'f © Fom s &&U;e =~ APya t $AF4a
{

with

109

(V14,5)

(VI4.6)

(VI4,7)

(V14.8)

{(VI4.9)




2;?i4¢x‘? O
and
$ATsaa = | Ee st./\_w(S)
whereJllA(S) is given b&

B

[

A(3)= Sk g5 te (Be) As(09)
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(VI4.10)

(VI4.11)

{VI4,12)

The convective acceleration pressure drop is zero, since we assumed

the isochoric process in the region, and hence the divergence of the velo-

city is zero,

For the gravitational pressure drop

From Bq. (V3.7), (v3.8), and (V3.9), we get

Afeq = 'Mege_ Fae d3 = APyyq + $AR4q
Q _
with
APmg - ge_.._gﬁ':; fe
and

$54P4q =~ ECSTA(S)

(VI4,.13)

(VI4.14)

(VI4.15)
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Here the transfer function ﬁ.ls (5) is defined by

-~ * | - "5”‘7-'_]4
Ais(3)= el 00 O (ﬁs)l 3&

€

AL(e,3) (VI4.16)

For the frictional pressure drop”

From Eq. (VI4.2-4), (V3.1), (V3.7), and (V3.8), we obtain

U+le L2 —_
4%49_’ )( _J'iﬁé‘_ Pme Ume d?} - 4P‘31~5‘- + .—SAEH-& (Vi4.17)
[
with
— _j’___ -— 2 #* AC 2
Aoy = > B: v Cr (Ae-) Le (Vi4.18)
and
. st ' ..
34Pgs = &7 A, (S) (V14.19)
whereﬂ_lé(S) is defined by
y_ - L Y Ac “ : |
N, (3)= 55 {z f..ef%bh (H) fe A (£.5)+ (V14.20)
LR DA AN a3 -8
+ me JF Ly (—A-—e-) Ce ( S — ./l.¢(.f",5)
R N . A 2 ffﬂe . .
+ fvn o (-A;)J A, (S,é)d'é}

L
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For the drift pressure drop

From Eq. (V3.7) and (V3.8), we have

e e P
Afied = ga 33 {h% V; }d3=m§m5ﬂﬂm (v1§.21)

which is approximated by

€ fue BR 2l
Afed = Bllee 3,& Ve (VI4.22)
fme | Bhe L
Hence
A P‘sq—d =0 (VI4.23)
and

3 - - f:v .
éAPﬁq—d = aebt-/\-u_(sj(e > 3—*)

where the residence time f34 is defined by Eq. (V3.9).

By adding Eq. (VI4.5), (VI4.9), (VI4.13), (VI4.17), and (VI4.21),

we obtain the total pressure drop in the downstream un-heated region (D).
Thus

APy = 4Tise + APM«, + A Pigg

(Vi4.24)

+ éd F-,MG' + 54'%-1.& * SABH-‘J + SAP”,Q -+ 5AP§+A
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L :
Here each term on the right hand side of the equation is given by Eq.
(VI4.6), (VI4.14), and (VI4,18),

On the other hand, the perturbed pressure drop 64P,, is given by

34

Sﬂﬁm— = $4 e +54Baat gﬂP’“"i * SAPB"‘S‘*SGE‘““’[ (VI4.24)

or in termg of the various transfer functiouns,
54, = et { A s ('S)‘fﬂ,¢ (s)+ A o(s)+ (VI4.25)
+ Ai(sy + Ap(s)(e S5 *)}
where A-lz tDAlﬁ are given by Eq. (V3.36), (VI4.8), (VI4.12), (VI4.16),

and (Vi4.20), respectively,

Hence the total pressure drop in (D) becomes

APw = AR, + 5403 (VI4.26)

Vi-5, Pressure Response of the System

In previous sections, the steady state as well as the perturbed
pressure drops of each region have been derived separately, Here, we
consider the total pressure drop ﬁPex imposed at the boundary of the
system,

In a perturbed form, the external pressure drop ﬂPex'can be given
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APM = A——]SM + SAPM .' (Vi5.1)

which should be the same as the internal pressure drop obtained by adding
the terms expressed by Eq. (VI1.6), (VIZ.S),I(VI3;42), and (VI4.26).

Thug
AP = (AT v ABa+ AP + 4T )+ (V15.2)

+ ($SAR + SAP.+ SAP,+ SAP)

1f the system operates under the steady state conditionm, all perturbations

go to zero. Hence we have

A_TS@K - AP{,. -+ A?l-:.*‘ &_P-:a +;A—-P.:¢:_ o (VI5.3)

Equation (VI5.3) can also be expressed in terms.of the system parameters
by substituting Eq. (VIL.4), (VI2.3), and (VI3.39) with (VI3.12,21,26,
and 34) and (VI4.25) with (VI4.6,14, and 18).

Hence

ARer i [Botew Bl (BRI RE Rl TR

+{ > U (G- ')*ﬁf’fj é%;g‘ﬁ*

.:_“U};j

Cy(3) - Y (..on nued)
:FMIEL(:JJ ol3+ P(Cr I)V34J+ ..C ti d
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* {&‘-’ fo Ui7 G 4+ 9e B Z‘l? fe +

. .;l_“e =2 _&E 2
N :’__Ee_ fr Ui Cr (Ae) Le

which can be rearranged in the following form

ARy = 4t B Uy
Fex &‘. F k¥ inlet orifice (VI5.5)

—_— .
+ 5 U (e”=1) + convective ]

+ h~1 Qe te + 3[)\ i-I Ef‘:%}- ﬂlﬁ] * 33.%,‘?5 " gravitational
(4

1-&1"7;:{52"5 (’A") + £d +-.[ fa GlY 34 I'me Cr (ﬁc fej+ frictional

5 Ctk) :
. _ 2 : -
+f (G -1) Vg | | drift _.
* fe |7 'B"HL ¢t ' ' exit orifice -

On the other hand, the perturbed system pressure drop GbPex can be ob-

tained by subtracting Eq. (VI5.3) from Eq. (VI5.2). - Thus

$AFux = SAT + SAD.+ $4RL +SAR, (VI5.6)

where each term on the right hand side of the equation is given by Eq.

(VIl.5), (VI2.4), (VI3.41), and (VI4.25), respectively. Upon substitut-
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ing these expreésions into Eq. (VI5.6), we can obtain the relation between

5)_\,Pex and §v, i.e., the perturbed system pressure drop and velocity. Thus

S AB fr A e VT Ry -

sk.'-u B E‘ﬁ%‘:)sh M %5* (AoJ o+ 2407y, } + -(VIS.?)

+ { SA + }% 205 4 -i-(g-‘i- %J};JA;(S)}*
[Asiﬂ*ﬂafﬂ*/tfo(wm,, (s)ulu(s) ﬂc(ﬁ+—£"fs» MSJ}+

{A'”(SJ t )+ A (3)+ ﬁ-;e(&-)* A (S)(e Shy f)}

Here each group on the right hand side of the equation gives the transfer

functions between the regional pressure drop responses and the velocity

perturbation.

For simplicity, let us define the new transfer functions A A®

AB’AC’ and,ﬁD by
A, (5) = Pg-]‘( =) s+ M" 2(A'°) Vs, +21’é* 1};‘} | (v15.8)
Ap(sy= & [T+ £ 2000 | fi(ﬁ** G)As) sy

N(8)= Ay )+ A (S) v Ay (5)+ Nyys Y+ Ay(s)- B3+ %’%@z)ﬂ;(s) (V15.10)

and

| ST, |
Ap(8)5 Aal A (S A9+ A () 4+ 4, 50(E 1) s



VT5.ii

117

where subscripts A, B, C, and D refer to the regions (a), (B), (C), and
(D), respectively. Furthermore, the functions ﬁuB to'f\.16 are defined by
Eq. (V13.7,16,23,28, and 36) and Eq. (VI4.8,12,16, énd 20).

By substituting Eq. (VI5.8,9,10, and 11) into Eq. (VIS.7), we

obtain

5 AR, = seSt [ Ap(si A_B('S)+/LG(SJ*ADf5J] - (VI5.12)

Equation (VI5.12) is a solution for the dynamics of the system, since
this expression gives the response of the system to the initial flow

perturbation or vice versa in terms of the transfer functions.

VI-6. @General Characteristic Equations

In the preceding sections, the perturbation method has been applied
to the analysis of the dynamical problem of the twg-phase flow systems.
The solution has been obtained in a form'of.affuncfiqnal relafion between
the perturbation of the system pressure.dfop aPéx and of the incoming
fluid velocity 5v; i.e., Eq. (VI5.12), which is expressed in terms of the

transfer functions defined imn Section VI. Thus we have

SAPu(S £)= sU(st) [ RS+ Aa(srr Aels) + Ap(s)] (VI6.1)

In order to examine the stability of the system, it is necessary to specify

the generalized input force and the ocutput displacement. Although in our

analysis we assumed the initial flow perturbation §v and obtained the re-

sponse of ﬁpex to it, the physical process occurring in the system is
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exactly the opposite. In other words, the input force imposed on the
system is the pressure drop péerturbation 6&Pex, and it induces the change
in the flcﬁ field, Hence gv is the generalized displacement. This rela-
tionship between input and output can be conveninetly displaﬁed by the
block diagram shown in Fig. 7. Here 1/Q(s) is called the system transfer
function, and the dynamic response can be represented by the transforma-

tion

i i |
o =[G 4P - ww

where the characteristic function Q(s) can be obtained from Eq. (VI6.1)

and (VI6.2). Thus

Q) = ALS)+ Ag(s)+ Ay(s) + Ay(8) (V16.3)

According to control theory, the asymptotic stability of the system can

be determined by the nature of the rocots of the characteristic equation
given by

Q(s) =0 (V16.4)

With Eq. (VI6.4), the formulation is now essentially complete,

since the initial problem of determining the dynamic stability of the

physical system is reduced to the mathematical problem of the complex

functional analysis. More specifically, now our problem becomes: to

examine the nature of the roots In the complex plane for the character- -




§ APey | | - - Y

a(s)

? gt ot Y
{ Input ) _ ‘o )

Figure 7. Block Diagram of the System

6T1
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istic equation given by

Qs)= AL s Ap(s)+ Ap(s)+ Ap(s)=0 (Vi6.5)

Here it can be mentioned briefly that, if the characteristic equa-
tion (VI6.5) has all its roots in the left half of the S-plane, every
component of disturbance tends to zero as t = ». Thus, this is the neces-~

sary condition for the asymptotic stability. Furthermore, if the charac-

teristic equation has a root with a positive real part, the disturbance
grows with time and hence it is unstable.

On the other hand, when the excursive instability is considered,

it is useful to transform Eq. (VI5.5) in the following form

s AP 54%, . $AP. _ $4B; |, $4R
SU“" 50 T 50 " su-t so ~ Q) (6.6

By taking the limit S - 0, the perturbation becomes constant. Hence the

excursive stability condition can be given by

Lo 5APex
590 U >0 (VI6.6)

Recalling that ¢, the magnitude of the velocity perturbation, is an ar-
bitrarily small constant, the inequality (V16.7) reduces to the criteria

obtained by Ledinegg (2). Namely,

d APax

30 > ©

(VI6.8)
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From Eq. (Vi6.6) and (VI6.7), it follows that
kw @Q(s) >0 C (v16.9)
$2»0 .

is the condition for the excursive stability. In view of Eq. (Vi6.5),

this corresponds to a singularity in the dynamic stability analysis.
Therefore, the examination of the characteristic equation (Vi6.3) and of
the nature of its roots in the complex S-plane are sufficient for both the

dynamic stability and excursive stability amalyses.

Vi-7., Summary on_the Transfer Function

In the following, we shall summarize the various transfer functions
as well as the characteristic functions which have been obtained from the

theoretical analysis developed in the preceding chapters.

3%* s A(sy=- -_H;),&;‘_ {9(%.3) - [£(X)- H‘"’]} esh vi7.1)
| ._2% e As(S)= Jis—e—-—h‘& + U A(3) (V17.2)
%, Ni(s)= i—ﬂof(XJﬂz(S) - - (W17.3)
FL%%? (38) “[S:(L;,)] efs['Em—acm][?o(ﬂ/;ml(s, (VI7.4)

» Ay (5) [H(3.5) - H(R, )]

: 2
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+ 2 (V17.6)
%&'ﬂ = Ay (3,9) | | .(v17.7)
ifme = A,;(a s) (V17.8)
égfxu_ Y= Ng(S)= SPJ [ ]/\. (3,S)d3 (VI7.9)
SABm

=Sro= NSy ﬁﬁﬁ‘{ L& Ag (8~ A (X 95)+ (V17.10)
s 20 A LES)]- QX - 1
= [As(t,3)-AsR)] dﬁT‘)A“S’*E':.?SL {gf—g]/l,(s,s)dg

" |
jsTRL_* Aw(s) = 3% Ay(s)

(V17.11)

Aw(s) = 98 L: As (3,8)d3 (VI7.12)
%.%S_F_E A, (s) _3% B U A, () (VI7.13)
A.(3)= J: ;%{‘R f?ﬁf [%“%}FA#%,S) - (V17.14)

+ 2 5B T As (15)+ B[R] A, (3,50} d3

«SAstd = Ma(s)= (1-260)CP R Ay (4.5) Vg (V17.15)
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Si’iﬂe = A(s) = 5T e [ 2 Ag (2.5)+ U, G e t0,5)] (V17.16)
é%gﬁg = Ajpis)= S§ 'cl_ Qe(%i.)‘hs_(e,s) (VI7.17) -
e R TCE :o_—ée S (fef{2fete ds (05D iy

| o SB

— - -

)A,‘(! $)+ UG I j[,, (5,3)d3

S8R _ AL(s) (e S ') (VI7.20)

__g_gl%i_.; = AA(S) ﬁf{%‘ Sﬂo“‘";f—-z )J; +2"&»Uj‘} (VI7.21)
AP, ' | ..__I . - -2 ,

3500 = M- st £ 2B} g 3B N0 omra
$4P:;

25 Ao (SYy= Ay (3)+ Ag(s)+ Ao(s)+ Ay(s)+ (V17.23)

a(s) = fu (34 £257) 4L 0s)

.——-——-SAF‘_"' = Ap(S)= AH(SJ*AMSJ"A:r(s)"'ﬂufﬁ)*/lpfs)(e ")

50 (VI7.24)
The characteristic function Q(s)
RY. Q(8) = Ag(3) + Ag(s) + A ($)+ Ao (s) (VI7.25)

SV
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The various functions appearing in the above formulations are de-

fined as follows.

wa}(%)
+ [ 5. (3)4d3

s/, Ol"[

Gl3) = Ui+ Vg + Q6 [F(3)-F(D))

. - i d
B3] 5 Cul3) 2

s [EG»-EGI g2
iz 02

Hiz,s)=~ (€

where the boiling length X is given by

N o= -F-I( ﬂimﬁcﬁ-ﬁﬁ )
25 €

and the time lags "1:12, ;2.3, and ;34 by

’Z:_z=

r'4>4

Fa = E() - E(X)

(V17.26)
(V17.27)
(V17.28)
(VI7.29)
(v17.30)

(V17.31)

(VI7.32)

(v17.33)

(VI7.34)
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VI-8. Discussion on the Transfer Punctions

Before we proceed with the application of our analysis, we shall
discuss some of the important aspects of the present results in compari-
son with.those reported previously in (23, 25, and 1). It can be said
that mathematical méthods applied to the previous analysis and to the
present study are basically the same. Thus, all of them used the pertur-
bation method, the linearization technique, and the assumption Py = pm(im),
which decouples the momentum equétion from the energy and continuity equa-
tiong. Furthermore, the uﬁsteady state was generated by the inlet flow
perturbation §v, which is in contrast to the analysis made in (21) where
the heat flux was perturbed.

In the present analysis, nonuniform heat flux and the relative ve-

locity between the phases has been-takeﬁ into accoﬁnt, whereas in (23,

25, 1, and 21) the heat flux was assumed to be uniform in the axial direc-
tionm. As it was mentioned in Section II-2, the analysis of (23, 25) is
limited to homogeneous flow; however, this shortcoming has been removed

in the analysis of Zuber (1), who used the vapor drift velocity in the
formulation im order to include the diffusion effects and transformed the
continuity equation intc the density propagation equation (30, 32) based .
on the kinematic wave velocity (l4). Exactly the samé approach has been
introduced in our 2nalysis. Thus, the effects of the relative velocity

on the characteristic equation should be identical to those reported in

il

(1, 41).




L e

126

The nonuniform heat flux effects on the characteristic equation

are clearly demonstrated in the present analysis. Among them, the most

significant and direct result is the existence of the perturbation on the

time lag TIZ’ i.e., the particle residence time in the heated liquid

region. The transfer function between 6T12 and S8V was denoted byj[l(si,

thus

- s ' NP 1 '
’ {‘t%]eﬁdé"u(ﬂ‘}(oﬂj% (VI8.1)
R _

o —

—SIE = Ay(s)=-L H
3J ATV

In view of Section VI-7, this A, appears also in the perturbation of the
1

boiling boundary 6A in a form

-~ 5T

A . 1ZE LT As) (v18.2)
U S ,

b

where the first term on the right hand side is the familiar transfer
function for the case of the uniform heét flux, (1, 22, and 25), although
the steady state residence time ?12 may be different from that of the qw"
constant. Hence the change in the time lag represented'byfkl(s) influ-
ences S) can be shown in a slightly‘different way by integrating Eq.

(VI8.1) by part and substituting into Eq. (VI8.2), which yields

T ~s(Bt)[§E G .
5/\ . E‘- e [_.___.f_._.j Clt (V18.3)

Therefore, the time lag effect on O\, i.e., the integration of the expo-
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nential term, is weighted by the ratio of the local heat flux to that of

the boiling boundary, This result is rather significant, since it shows

that as heat flux in the neighborhood of the boiling boundary increases,

i.e., the weight function becomes less than unity, the effect of the fluc-

tuation of 6A decreases, which can be considered as a stabilizing effect.

4

This is explained by taking the limiting case of impulse heat flux which
can remove the subecooling of the liquid at once., In this case, as we
can see from Eq. (VIS.i), the motion of the boiling boundary becomes zero
and hence it has no influences on the pressure drop response., Conse-
quéntly, there is no phase angle shift due to the residence time in the
liquid region, i,e,, no tiﬁe lag effect from the subcooling. However,
the waves propagate with finite velocities in the mixture region, and thus
there is a time lag effect in the two-phase flow region. Recalling the
mechanism of instability due to timé lag, i.e., the phase angle shifts,
it can be said that the disappearance of one of the delay effects sta-
bilizes* the system,

The transfer_functions, obtained for a general nonuniform heat
flux distfibution_and listed in VI-7, show that thej may not be expres-

sible in terms of elementary functions depending on the functional form

of the kinematic wave veloecity Eﬁ(z). In such a case, it is diffieult to
pursue a closed form stability analysis because of the fact that most

functions to be integrated are complex variable functions. However, in

%
Relative stabilization, i.e., it does not mean that the unstable
system becomes stable., In comparison with the case of the uniform heat

. flux, we should consider also the change in T., which has a strong in-

fluence on the stability, See Chapter XI for a more detailed discussionm.

R
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many practical applications, the kinematic wave velocity Cﬁ(z) can be
approXximated by a linear function of z, though heat flux itself is not
uniform. For example, if the system has a chopped sine heat flux distri-
bution with a sufficiently high base heat flux, the errors introduced in

Ek(z) by taking an average heat flux in the mixture region are sufficiently

small in view of Eq. (V2.9) and (V2,12). This is illustrated in Fig. 8.
This apéroximation seems to be quite.reasonable, since most integrands
appearing in the various transfer functions can be treated as functions
only of Ek(z). Furthermore, they are integrated over the range z=X to £.
Thus, what we assumed; is similar to that of the integral analysis in the i

boundary layer theory.® Yet, by doing so, we still retain some of the

most important aspects of the nonuniformly heated system. Indeed, the

perturbation of the residence time 8T, can be taken into account. Thus,

12
the transfer functions for the boiling boundary and for the kinematic
wave velocity are exact, and they carry the effect of the nonuniform heat
flux into the density, velocity,'and préssure responses.

Following the above discussion, we recormend that the steady state

kinematic wave velocity Ck(z),'i.e., Eq. (29) of VI-7, be replaced by an

expression

— —_—

Cel(®) ~ Vi r ng * e (3-2) (VI8.4)

*
What we are interested in is the result of the integrated variables,

B
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where

(V18.5)

Do = LF 0. [F(3)-FN1dy
a = Q,-j‘\ by te

Hence, the transfer functions in the mixture region becomes similar to

those for the uniform heat-flux case, except that the expressions for

Az(s) andﬂ3(S) are different.

Besides the effects of the relative velocity and of the nonuniform

heat flux, one more important aspect, i.e,, the time dependent or dynamic

two-phase flow friction factor, has been considered on the present anal-

ysis. Thus we obtain the terms represented by the transfer functions
A?(S) and .A.?'(S) which were negiec’:ted in (1, 19, 22, and 25). Since the
functional forms c:"f_ﬂ,7 and}t?' depend on the two-phase frictional pressure
drop models in use, a more detailed discussion in this connection will be
given in Part 2 where we use the characteristic equation to determine the
stability of the system. Finally, it sﬁould be noted that the transfer
functions and the characteristic equation are for a distributed parameter
system, since four field equations governming the system have been formally

integrated.
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CHAPTER VII
VARIOUS CHARACTERISTIC EQUATIONS

VII-1l. Nonuniformly Heated Systeﬁ with Constant Two-Phase

Friction Factor

In this section, we shall express the general characteristic

equation in Chapter VI in terms of a linear kinematic wave velocity E;(z),

and the constant two-phase friction factor. As discussed in Section VI-B,
the kinematic wave velocity Ek(z) for many practical cases can be approxi-

mated by

203y v Ua Vg + L0 (3-2) (VII1.1)
where the average mixture reaction frequency (). is given by

| ¢
i ’ _—
Q= = [ 00 [FGI-FGIT43 (VirL.2)
L-X I3 .

We will express the two-phase friction factor fm by the following rela-

tion
f =f = constant (VII1l.3)
m m

Thus, we neglect the axial change of the friction factor as well as the

dynamic response due to the perturbations.

Substituting Eq. (VII1l.l) into Eq. (VI7.30), we get
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E(3)- E(A) .f{w Eﬂ[%%] (VIIL1.4)

which corresponds to the steady state residence time in the mixture region
at z = z. Hence, the function H(z,5) now can be obtained in view of Eq.

(VII1.1), (VII1.4), and (VI7.31). Thus

v
- e Ce(3) ] | (VII1.5)
”“3 $) " 5as [ Caml CalX)

By substituting Eq. (VII1.4) and (VII1.5) into the mixture density trans-

fer function, i.e., Eq. (VI7.4), we get

i 3h |
1 2 _ 3. 5) = i
F As(3,8) (VII1.6)

3
ﬁm
[Eﬁ?ﬂ c:m sn;m A9 +[c’(uJ C‘m)"‘s?&«ﬂ’)

where le has been eliminated by means of Eq. (VI7.3).
O

Accordingly, the mixture velocity transfer function A can be ob-
tained from Eq. (VIIl.6) and (VI7.5). Thus

5Un o 5)= Yz;_nm},\ N . ,
SV LeGa ( Celd) $-Nee) [C&(’bl G(x) [l S- A’J (VIL1.7)

Recalling that the two-phase friction factor fm is constant, we have

Ay = _/\?' | (VII1.8)
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In view of Eq. (VIIl.l), (VII1.6), and (VIIL1.7), all integrations
appearing in the pressure drop transfer functions reduce to that of the

binomial, hence they are trivial. Alsoc we note that, from Eq. (VIIl.4)

and (VI7.34), we have
N L (VII1.9)

and hence

|&*] - e (VII1.10)

which gives the time lag in the mixture region. Furthermore, from Eq.

(VI8.3) we have

. A s
_ - $Te st '}(t UuJ C{t _
j_Lz - c L = [f(z‘j‘@j)} (VII1.11)
and
A= i = Q.F(3) A, (S) (VIT1.12)

Following the above development, it can be shown that the characteristic

equation becomes

_5f§3 -5 Tx
! » C )=0vII1.1%)

S-(te 5—;2.{).' ’ As(3), €

Qls, &>

where the function is algebraic in terms of the arguments appearing in

Eq. (VII1.13), and the detailed form of the characteristic equation for
this case, expressed through operational'and geometric parameters, is

given in Appendix D.
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It is important to note here that there are no poles for functiom
Q(5), which can be justified by the theorem of interchanging an integral
with a limit Opération.*

Equation.(VIII.IS) clearly shows the time deiay effects of the

subéooling,_boiligg} and downstream un-heated regions represented by

A, 3 ﬂ_’“ __,J and e—-sﬁ.‘ » Tespectively.

The form of the function Jla- depends on the dimensionless heat
flux f(z);-howeﬁer; as we can see from Bq. (VII1.12), it has a character-
istic of exponential CE-SEL . As a matter of fact, if £(z) has the
form of a trigonometric fundtion and/or polynomials of z, Jl3ﬁﬂ can be

expressed by exponential and rational functions of §. In particular, if

£(2z) is a polynomial of z only,Aﬁ(s) reduces to

A (8) = 1= Qo [Ri(s)- R.(s)e *%]

(VIT1.14)
where Rl(S) and RZ(S) are rational functionsz of .
In either case, the characteristic equation can be transformed to

exponential polynomials, which shows that the system is essentially

governed by the difference differential equation. The order of polynomials

depends on the heat flux profile £(z), and 1t takes the minimum of the

fifth order when the system is uniformly heated.

- . _ .

The theorem is applicable, if the integrand is continuous at that
limit. Indeed, this condition holds for our case (see Eq. (ViIl.ll) and
various transfer functions appearing in Section VI-7).
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VII-2. Uniformly Heated System ﬁith Constant Two-Phase

Friction Factor

By'tfeatiﬁg-the nonuniformly heated system, we cannot avoid arbi-
trariness in the characteristic equation due to the fact thét £(z), the
heat flux profile; is an arbitrary function. In order to eliminate this
indefinite nature in our analysis, we now study in great detail both

qualitatively and quantitatively the system, which is uniformly heated

along thé channel. There are two reasoms for doing this, i.e.,:

1. For fhe uﬁiformly heated system, the characteristic equation
becomes simplé, sincé the function £{z) is known and thus the parametric
study is possible.

2. The characteristic equation for the uniformly heated system is
ﬁ cofollary of the one with nonuniform heat flux derived in VII-1l. Thus
the examination of?the validity in the first case is quite sufficient for
the proof of the applicability of both models. (Remember that there are
no singularities or poles in either casé.)
in.the followiﬁg, we take the case when the two-phase friction facter can
‘be assumed as a constant.

By taking the heat flux as uniform, we seé from Eq. (V1.9) that

the average heat flux qo" is
q " =q " (Vir2.1)

It follows that the dimensionless heat flux £(z) is

£(z) = 1 ' (VII2.2)
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Hence, from Eq. (V1.1ll) we have
F(z) = z (VII2.3)

In view of Eq. (V1.27) and (VII2.3), the boiling length K becomes

Aty Ac B Uy,

A = - (VII2.4)
fw 8
and the residence time in the heated liquid region is
T, =2 (vI12.5)
Vs

The reaction frequencies are defined by Eq. (V2.4), (V2.6), and (VII1l.2)

and thus become identical.

8 E 4P
N=0. =0 = = (VII2.6)
' Acdryg H 5 :

By substituting Eq. (VII2.6) into Eq. (V2.16), the kinematic wave velocity

has the form
Ch(3) = Vo + Vap + Q(3-X) (VII2.7)

Furthermore, the uniform heat flux condition correspends to no perturba-

tion on the residence time. Thus from Eq. (VI7.1l)

5T _ A,(s) =0 (VII2.8)
sSU

T —
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Hence the fluctuation of the boiling boundary expressed by Eq. (VI7.2).
reducés to

o) N -Siﬁ
I NOE 'I'"E_“ | (V112.9)

By substituting Eq. (VII2.9) and (VII2Z.6) into (VI7.3), we have

5% | Ays) - g - 20-€)

- VII2.10
o . ( )

In view of Eq. (VII2.2) to (VII2.10), the characteristic equation for the
uniformly heated system can be readily obtained from Appendix D. Thus
we have, for the characteristic equation

’ o 1 , ST -5t 5B
Q(3)= Q(ﬁ;-é"f =0’ 530 € L, T, T )=0 (viI2.11)

Here the function @ is algebraic in terms of the arguments appearing in
Eq. (VII2.11), By recalling that S=0, § -.Q =0, and § - 200 = 0 are

not poles of the characteristic equation, it can be rewritten as

S(SQ..D.)“(S—-Q 2)Q(s)=0 . (VII2.12)

which in expanded form reduces to the fifth order exponential polynomials

. ) "'Sf& “S? “'52:-'0
with three time delays € ' Y e 3 , € ! . This equation is

exactly the same as that obtained in (1), except in our analysis we have

the effects of the upstream and downstream un-heated regions. Thus, one
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' ' -5 e
additional time delay & , which takes into account the effect of the
. wave propagation time in the adiabatic two-phase region, enters into the

characteristic equation.

VII-3. Effects of Various Praction Factor Models on the

Characteristié Equat{on

The frictional pressure drop response in the two-phase region
largely depends on the friction factor model used. It is best character-
ized by the transfer function fL“ , 1.e., Eq. (V17.14), although the ‘
downstream uﬁ-heated region frictional pressure drop response A, , i.e.,
Eq. (VI7.19), is alsc affected.

To simplify the analysis, let us consider now the effects of vari-

ous friction factor models only in the boiling region.

Recalling Eq. (VI3.1), we have

§o= fp o+ $4m(3.1t) | (VII3.1)

where the first term on the right hand side represents the steady state
value for fm and the second term gives its perturbed part. The equation

for aﬂm is given by Eq. (VI7.7), hence

S%Z - A .5
Sha | 7 (3,8) (VII3.2)

‘In view of Eq. (VII3.1) and (VII3.2), the general frictional pressure

dro§ response can be given by Eq. (VI7.14). Thos
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_ 2D
A

A, (s)= SE L { o B Ui [—gﬁ%]l.ﬂ4(' 3,S)+ (VI13.3)

$250 8 0 Ags (3,5)+ 80 Ig:%pt,(s,s)l 43

i
J

For a given functional form of -fm(z) and A,’,(z,s), the right hand
sides of Eq. (VII3.3) can be integrated.  In order to carry out the inte-
gration in simple form as well as to decouple the effects of nonuniform
heat'fqu profiles from those of the different friction factor models, we

shall confider only the case of a uniformly heated system in the following

analysis, The problem will be comnsidered from both the static aspect,

i.e., the effects of magnitude of friction factor, and the dynamic aspect,

i.e., the effects of perturbation in‘fm.

A, Static Aspect of the Friction Factor fm

A-l, General Fﬁrm of the Transfer Function. By assuming that the

two-phase friction factor depends only on the steady state effects, we
have

£ = "f'm(z) ' . (VII3.4)

and

ﬁfm =0 (VII3.5)

This apprqximgtiOn leads to the conclusion that the dynamic response of
the frictional pressure drop is similar to the inertia wave, i.e., the

response of pmvmz; Hence the transfer function A, reduces to

2

' £ = _ =2 [Au3) - T
A (8) = L - [{m & Ui [%%] Ay (3,3) + 25,80, A;(s,s)}dg (VI13.6)
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In case of a uniformly heated system, 1, ;12, £, Ek(Z), Ay, A,
JLJ (8) are given by Ey. (VIIZ.4,5,6,?,8,9, and 10), respectively. Thus,

from Eq. (VI7.4) and (VI7.5), we obtain

U Sh '___s_. &GN, -G " st
E S J'L (3,9)= ';3-1’1{ cta)J A [5?5 e (VII3.7)

and .%4

- V. Celdl 5T
S = 1003~ A i g (A[GE] €T o

A-2. Lumped Friction Factor Model fm = fsaﬁ. The simplest form

of the friction factor model can be obtained by the lumped parameter

method. Thus fm is given by the following equation

T =£C (VII3.9)
m S m

where fS is the liquid friction factor at the boiling boundary, and Eﬁ =

constant.

By substituting Eq. (VII3.7), (VII3.8), and (VII3.9) into Eq.

(VI13.6), it can be shown that

A (s)= 'J"* C"“&U"(!Z A)H (Q) Q%L%*]\WJSQ AG)-  (vins.in

_ (X Vo &_1_1_)( Q )l-e-:.m 3
[ Cr (X) Js‘ﬂ s—20 )7 ar o J
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A-3. Priction Factor Based on the Void Fraction. In order to
take into account the effect of the void fraction on the friction factor,

w2 consider a simple model given by

Q-x]

§ %\
3 —5
s R > I 112
(ua.)“"{"‘(ﬁ“) (VII3.12)
Since the steady state density ratio can be expressed in terms of the

kinematic wave velocity, i.e., Eq. (V2.48), we have

b = %5 [g“(;_’) (VII3.13)
&

where _ 0< M’ < | ' (VI13.14)

The-magnitude of N depends on the inlet Reynolds number NRes as well as

on the system pressure.

In view of Eq. (VII3.7), (VII3.8), and (VI13.13), the integration

in Eq. (VII3.6) reduces to that of the binomials, hence it can be shown

w

that

o G Cr(A )+ +1 o
;,(SJ-—- %UZ;(Q ")Hz(san)“" EMV”J%.(S: ._.)ﬂ Ass)- (VII3.15)

- Eﬁ(i)i‘\/%j-( QN A Ve ~5%, C*(zm)e._sm)}
Calh) S'Q}kﬁ-[xa-rrjn}k o .

By comparing Eq. (VII3.1ll) and (VII3.15), it can be seen that the

forms of the transfer function jLu for the case of the constant friction
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factor and of the distributed ?; are quite similar. The first terms of
each transfer function represent the effects of the kinematic wave velo-
city. They differ only by a constant.. The second term corresponds to
the time delay effects in the mixture region; there is, howevef, a slight
difference in the functional form between the models. However, S=(2+n’)0
and §=2/() are not poles of 'Aq,, consequently, the latter difference
is not essential in a dynamic analysis.

By setting the first terms of each transfer function, i;e., Eq.

(VI13.11) and (VII3.15), to be equal, we obtain

- ) I N

On the other hand, the steady state solution requires

— LSRN _ i
Co = 2311" (Ccr* y ) | (Vi13.17)
' _

For high pressure systems with reasonably high exit qualities, the value.

for Eﬁ ranges from 1.5 to 2.5, thus we may approximate'cm by

Em'z 2.0 - (VII3.18)

A<4. Other Frictional Pressure Drop Models. Although most of the

two-phase frictional pressure drop models are not written in theIEOrm of
Eq. (VI3.24), the equivalent two-phase friction factor corresponding-to
fm can be obtained easily. The resulting friction factor is usually a

*
function of the wvoid fraction ¢, the gquality x, and the density ratio pg .
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For example, the wall known correlation of Martinelli and Nelson (43) can

be closely approximated by

L 60" g,
T §s {(‘1-e<)‘ b J (VII3.19)

On the other hand; the model obtained by Wallis {(44) gives

- 0.02 M&}
{mw= 0.0 l(i_“; e (VII3.20)

Following the assumption given by Eq. (VII3.4), the variables x, o, and

P take values at corresponding steady state conditions. Thusg, the liquid

quality is given by

X e | = T Uty G ] VI13.21
and the }iquid void fraction by
i.— - e — L]
* T af |Temr) T 2F | |

Recalling Eq. (V2.48), the mixture density can be expressed by

E; N EE.LX)
ﬁ Cu(3)

(VI13.23)

In view of Eq. (VI13.7,8,21,22, and 23), the variable of integra-

tion in Eq. (VIL3.6) can be transformed from z to Ck(z). However, due to
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the existence of the (l-a)2 term in the denominator of the two-phase fric-
tion factor models, i.e., Eq. (VIL3.19) or (VII3.20), the anélytical ex-
pression for qu may not yield a simple form. This difficulty can be
eliminated by taking only the first term of the right hand side of Eq.
(VII3.22) under the condition that Ps > p3 and the quality x is suffi-
ciently less than 1. 1In any ﬁase, the dynamic characteristic of the
transfer function jlﬂ corresponding to the Martinelli and Nelson correlé-
tion or to the Wallis model is expected to be quite similar to those ob-
tained in Sections A-2 and A-3. This can be justified by comparing Eq.
(VIIS.Ié) or (VII3.20) to Eq. (VII3.31). By taking a proper value for

in Eq. (V113.13), the former two equations can be closely approximated by
the latter for a wide range of the void fraction o. Furthermore, it
should be remembered that the transfer function /l" does not have any
poles. Thus, the continuity of the solution for A, is expected.

B. Dynamic Aspect of the Friction Factor fm

The dynamic effects of the friction factor fm can be studied by
considering the perturbation 6fm’ i.e., Eq. (VII3.1), then the general
form of the transfer function jL"(s) is given by qu (vII3.3).' The first
two terms of the right hand side of Eq. (VII3.3) represeﬁt static effects
of the two-phaée frictiop factor, whereas the last term takes into account
the dynamic response of fm due to the velocity perturbation U , i.e.,

1A7{3,sj. In order to carry out the integratiom in Eq. (VII3.3), it is
necessary to know the equation for fm under the steady state as well as
the dynamic condition. As it has been explained in Chapter VI, we assume
that the steady state equation for fm can be written in terms of kinematic

variables and, furthermore, this relation can be extended to the unsteady

1
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conditions with perturbed kinematic variables.

Thus, if the two-phase friction factor can be written as
S = e (P, U, X, o) : (VII3.24)

then the steady-state part is given by

gt
'
;h
o
—

m,-lfm,.,Y,E)=fﬂ(§(33) (V113.25)

and the perturbed part by

Ofm T (5B, 2BafS0, SBfSX ) I (44 2
SU A9(58) aﬁ..(w)'* a‘&',,(%)*_ X (su}+ azh l,s&_r)‘ (V113.26)

The void transfer function can be obtained from the definition of the

mixture demsity, thus
e e =~ AL (s) (VI13.27)

And the vapor quality transfer function is given by

b (1§ L B0t
SU AP [ 6&(%)] 'l_r;‘; ( ) i}{; 5( } (V113.28)

~ B G [ETOPA L (ss)
a¥ i, [é&mJ *
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where A3 , .A,. s and AS , i.e., the transfer Ifunctions fof the_z kinematic
wave velocity, for the mixture density, and for the mixﬁure ve1ocity, are
defined in Section VI-7. |

Hence, By knowing the steady-state fric;idn_factor ﬁbdei; i.e.,
Eq. (VII3.25), the dynamic resﬁonsé of the friction factor.Aﬁ Z,5) can
be oﬁtained.. Substitﬁting the expression for E; and for.qu, i.e., Eq.
(VII3.25) and (VII3.26), respectively, into Eq. (Vi13.3), we get the two-
phase frictional pressure drop response.Jlu {S). Since ﬁhe quaiity ;
and the void fraction « as well as ;ﬁ and ;Q'can be written in terms_of

Ck(z), the variable of integration in Eq. (VIi3.3)-may_be transformed

from z to Ck(z).

In view of Eq. (V113.7,8,26,27, and 28), we caﬁ_see that the intg-

grand of Eq. (VII3.3) increases in complexity as the.degree of sophistica-
tion in the two-phase friction factor quel fm, i.e.,_qu (VII3.24),_1¢7
creases, From the numérical point of vieﬁ; it ig-deéiféﬁle-to.h#§; §s

few ﬁerms as possible in the expréssion forlﬂj , thé ffibfidﬁ factof re-
sponse function. By considering the entire functional dependence of

P> Vi? ;, and ¢ in fm, it can be_said that the two-phasé frictional pres-
sure drop response afm ggneraﬁes a large number of terms.in the character-
istic equation; Thus, a higher degree of achfacy is required to deter-
mine the dynamic response of'fm. On the other_hand, our aﬁal&sis is based
on the assumption that the steady state relation for fm can be extended to
the unsteady operation. The reliability of Eq. (VIIS.26) is limited. As

a conclusion, a simple friction factor model such as the one based on the

void fraction is better suited for our analysis than the correlations
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' *
given by Martinelli and Nelson (43) or by Wallis (44).

Thus we recommend the use of

fu = A, - a29)

for the analysis of dynamic response of the frictiqg_factor; However, the

relation given by Eq. (VII3.29) has a singﬁlarity at g=1; the modification
similar to the one made in A-3 is desirable.
Hence, we approximate

Se )”ﬂ

fn & Fs (-?; (VII3.30)

which we call the density type friction factor. On the other hand, Eq.

(VI13.29) can also be approximated by the velocity ratio instead of the

density ratio. Thus, we have the velocity type friction factorx

. U YV | |
fm= ¥s (—_L) ' (V1I3.31)
Vg, o
In view of Eq. (IV4.4) and (VII3.4,30, and 31), it can be seen
that the dynamic response of the two-phase frictional pressure drop takes

the form for the static type model, i.e., Eq. (VII3.4)

S(aé]m ~ §(Fm V) | (V113.32)

* .
Note that the form is as justified as that of Wallis or Martinelli.
Also that it gives good agreement with experimental data for the steady
state. : '
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-

the density type model, 1.e.,3Eg;_cv1i3;30) o
- éﬁ) -~ _. ..__na“ua ) .' . \
é’(az 2Pf 5.(_&‘ '_‘)- _ o (—_‘_’113.33)
and  the velocity type model, i-e-,'Eq. (v113.31)
P) (V) |
3(‘3_3 aps 5(_3'" " ) e g_(vus._sa)

The three relations above clearly show the fesponses characteristic
of %?3) with respect to the inertia of éhé ﬁixtufe p v.z.for the ﬁér-
._ o laps . Pam _
ticular friction factor models, whereas the steady state friction factor
fm is given by the common ekpressionvfor these'three'qases. Th@s o

-

fm = fs.li%i%%%}

n’ '
- (VII3.35)

-

B-1. Density Type Friction Factor. FirStulet us consider the case
of the density type friction factor modeli i.é.; Eq. (VII3.26). Recalling
Eq. (V2.48), (V2.49), and (VI13.2), the friction factor transfer function
qu becomes | | |

L .7 183 | -
which shows the dependence of the friétion.factor on the mixture density,

i.e., Eq. (VII3.30).




- have

149
Substituting Eq. (VII3.35) and (VII3.36) into Eq. (VII3.3), the

right hand side integration can be calculated with Eq. (VII2.7). Thus we

obtain the two-phase frictional pressure drop tramsfer function Aq,,

A,(8)= ?sw (e~ /\){[ ( ﬂ) A]( ! C*"l )(S-ﬂ 3= (VII3.37)

. n . - Sﬁ,__ ;-(zm’)e'* $Ty .
—A (g}l)( s-*[n'arz]n)[ = X :I }

where A is given by

=) G+ () Vg 13.38)
= - . I )
) R (V11

By comparing this result to the one with the sfatic friction féﬁtor model,
i.e., Eq. (VII3.19), it can be seen that the.dynamic friction factor in-
fluence appears only in the terms represented by A, ‘Furthermore, éﬁese.
effects are limited“to the shifting of the coefficlents and thus éhelfunc-

tional form of A, is preserved.

B-2. Velocity Type Friction Factor. For the case of the velocity '

type friction factor model, i.e., Eq. (VII3.31), the tranéfer function

A, , can be obtained from Eq. (V2.56), (V2.57), and (VIIB.Z); Thus we
7 .

t

Ay = 1’ Fn [%a-)-} As - I13.39)

whichlshows the dependence of fm on the mixture velocity *m' Substituting

Eq. (VII3.35) and (VII3.39) into Eq. (VII3.3) and integrating the right
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hand side, we get

. — - ’) - s . '
h= 20 (0 [[2(+E)52) ) G B A qass.an

- 5Ta, (#1530
'r

-8 &S

S=N
where B is given by

g CeD+ () Vi
_ e (%) (VII3.41)

Comparing these results to the case.of the static friction factor
or of the density type friction fadtor, i.e., Eq. (VII3.19) and Eq. (VII
3.37), resbéctively, it can be seen that the differences are limited to
the magnitude of the coefficients, whereas the functiomal forms of Jlu
for each case are the same. |

Ag a conclusion, thé effect of the two-phase frictional pressure
drop on the dynanics of the system'can be expressed by a similar transfer

function Aa; either for the static type or dynamic type friction factor

_model,
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Part 2

APPLICATION OF THE ANALYSIS

In what follows, we shall demdnstrate thg’appliCability'tf the
analysis developed in Part 1. Bf considering the systeﬁ with an érbitrgry
heat flux profile, the characteristic‘eduationjintludés the unknown func-
tion f(z), which precludes a parametric study of the stability of a system.
For e#ample, in or&er to have a similaritj betﬁeeﬁ two systems, it is
obvious from the discussion given in Section III-2 that we should have
the same dimensionless heat -flux £(z). Sihce the System with a qniform:
heat flux profile ﬁas the simplest characteristic équation and the para-
metric study on this model can give some general trand of the effects of
various parameters on the stability of general systems, we shall choose
this as a basic model, The analysis of any other nqnuniformly heated
system can be developed in exactly thé same way prtvidéa the fuﬁction f(z)
is known. However, in such a case it is expetted that thé order of the
.exponential polynomial will increase.

By taking the system with the uniform heat flux: Erofile we. shall
eipress first the characteristic equation-in a dimensionless form in a
manner quite similar to that in Section III 2. From this we can obtéin

the similarity parameters which govern the stability of the system. After

a brief introduction on the stability theorems (such aS'D-Partition Method

and Nyquist Criterion), which are iﬁpbrtént.for the analysis of the system
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governed by the exponential polynomials in terms of the auxiliary param-
eter 8, we shall solve the characteristic equation for the stability

boundary.




——

153

CHAPTER VIII

SIMILARITY GROUPS GOVERNING THE STABILITY OF THE SYSTEM

VIII-1. Dimensionless Characteristic Equation

Dimensionless Parametetrs

In the following analysis, we shall non~dimensionéiize the
characteristic equation for the uniformly heated system in a waf very simi-
lar to that employed in Appendix C. We choose the length scale as 4, the
heated channel length, and the time scale és l/h, the reaction time in the
mixture given by Eq. (VII2.6). |

Based on the above fundamental scales for the time and length, we

define the following dimensionless paraﬁeters.

The geometric psarsmeterg:

3= T}— ) ﬁ: = ﬁo - fe* = Le » D:='D° » (VIIIL.1l)

4 £
% D * De * _ Ae :__ Ao
D = ] > De = 2 » Ae. = Ac 1 A = Ae

The boiling length »* from Eq. (VII2.4)

* A _ Al ARV (VIII1.2)
£

fu £ 4

The velocity fleld:

For the inlet velocity




* ;’;};‘ = 651 Ac A‘:fg PSEF
ne - Af

EN

where (1 is given'by

Q=-Qo"ﬂcn’= gwg AP

Acdisy  R&

For the drift velocity

Vi Vs

Vat = =
1} 1_}5; . -Q-»Q U:'H*

For the kinematic wave velocity

EL (3)

e (2) = =57

Hence, from Eq. (VII2.7), we have

Co ()= U (1+ V] )+ (1-27)

and

e (X)= vl (14 Wai")

From Eq. (VIIIL.6), (VIII1.7), and (VI3.15), we have

Fo) Y
Chf = __;;ngl_._ |+ __%r_é__jf
'C-ﬁ (A) B U;.; (I-I'qu
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(VIII1.3)

(VIII1.4)

(VIII1.5)

(VIII1.6)

(VIII1.7)

(VIII1.8)

B
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The residence time:

We define the dimensionless time by

t* = ) (VIIT1.9)

Hence, for the residence time in the heated liquid reqion from Eq. (VII2.4)

and (VII2.5), we have

* = * Z&Lu AP
K T (A - Al AT (VIII1.10)
G = Ca Vil Arig Py

For the residence time in the heated mixture region from Eq.

i

(VII1.9), we have

U = %
Tia = 3l = Ru Cr | (VIII1.11)
and for the residence time in the downstream un-heated region from

Eq. (VI7.35), we have

oy X _ fé‘ Ae?'
Gi = Taell = Cypy (VIII1.12)
4 Y )

-The independent variable

% _ S Qa i W ¥l ¥
.S _ o L " (VIIT1.13)
T N a2
The density ratio
fy = Rl (VITI1.14)
s
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The pressure drop

* AP
The gravitational force
P *_ B  (VIIIl.16
3 = a7 te = roY) ( )
or '

-1 2 - . 2 .

Np = 2w B, N = L mmma
By

IETERE XN

Dimensionless Characteristic Equation (Uniform Heat Flux)

Using the dimensionless parameters defined in A, the characteris.

tic equation corresponding to Eq. (VII2.1ll) reduces to

Q) _ ot AA o, A AL LAY

— L) 4 2 i | (VEIIL.18)
fs(2r)ur : Vs2 h Vi VU

where eacﬁ term in the expression for Q*(S*) repfesenfs the:dimenéionless
pressure drop responses of the upsfream un-héa;ed,.heated'liquid, heated

mixture, and downstream gn-heated regions, respectively. The parametric

expreséions of the.abcve terms are given by the following expressions.,

for the upstream un-heated region

sO* U Uy




' wheref\ *, C.%, C*
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for the liquid heated region

$A Pu.r .!1- ,!3,é * S"‘ ‘5‘5 1&
= =8 _ ) > J - (VIII1.20)
i e L LT L;J( -3

for the heated mixture region

MBS AL
I

- V‘ia (S’Ll) $'G } ]Y_ fl/‘('-ﬂa)+ﬂ'"c' (.S_)A, [J—) “V‘uf'] ‘Jl

(RN 3 5 Ao e frofast AT -

{fm(‘r | i vy )+ V‘h TS IJ s*A3 -~ (VIII1.21)

~ U (2% )5 X—S:r—) } £l U;,(l-_/l;) F "’ [2::*It l]%*_.}

for the downstream un-heated region

SARS _ A = 2o [2 A+ G"Z-Vi“]_l___c'f]+ (VIIIL.22)

S0* Ut Ui . (it Va)*) s*)
e ) o Looas i e
‘{?;,J T (-*-f:"?“*)m meﬂe et

1*s €%, 3*, and'C4* are given by
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o s

A - 3 Ca - |- (-e )  (VIIIL.23)
-1 SU* S* .

- _ . » : o
crta o T _ e'sir” (VIII1.24)
. ‘ - * _ — " : .

cr= € T _ e VO S (L)
o —5'??; w2~ S 2';: k -
G= € - Cr € | | - (VIIIL.26)

% # * _-S*THt :
Co= Ny -G € 7 7 (VIII1.27)

and 713* is the residence time in the heated region and thus gi?en by

' Ty g® = Tyt Ty = Ty, 4 gn'cr* (VIII1.28)
We note here thac the terms-undeciiced_;n the_expresaicﬁc of. the
pressure drop response cancel each other im the charccterictic'cquation
(VIII1.18). Hence, they have no effect on the.stabilicynof the systems.
Furthermore, in this characteristic equation, thc-cwo-phase fric-
tion factor was taken as a constant fcr'siﬁplicity'in thc analysis., How-
ever; mcre.sophisticated, though far mcre ccmplicated, fciction factor

models cculd be used as we demonstrated in Section VII-3.

VIII-2. Similarity Groups from the Characteristic-Equacicn

~A. Similarity Groups from the Heated chions

In order to satisfy the similarity conditicn in the heated region,

it is necessary that the dimensionless total pressure drop response of the
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heated region should be the same between the two systems.
Recalliné that 8%, the perturbation parameter, is an unknown in

the characteristic equation given by Eq. (VIII1.18), the above fequirement-

is satisfied if and ohly if all the coefficients of the pressure drop re-

sponses are the same for the two different}sjstems. Hence; iﬁ view of
Eq. (VITII1.20,21,23,24,25, and 26), we obt#in:iOldiménsionless.g;oups,
Lo T B AT U NG, A8 Vgt TS, e
and Pt o _ -
However, not all of the.aboﬁe éroups are independent, since they
are interrelated by the parametric equaﬁions givén.bj Eq. (VIIIl.8),
(VIIIl.10), énd (VIII1.28). As a ¢onsequencé,'we'have Anly seven basic

similarity parameters which are

* * ¥ PR
o.", Vit V?J ’ P% » NFr_ ’ ‘2‘.%; . and 2;*‘

B. Similarity Groups from the Un-heated Regions =

The similarity groups for the un-heated regions can be obtained in

view of Eq. (VIIIl.i9) and (VIIIl.ZZ).. Thus ﬁe have three similarity par-
amefers for the upstream un-heated r;gion and five fbr.the dowmstream un-
heated region in addition.to the &imensionless,gtoups abtained from the
heated regions in A, They are |

ke, Bhe s B (BT b 48, A, Nie, a'na_ e

Lap*’

C. Similarity Groups for the System

The foregoing analysis shows that a complete geometrical similarity
is not necessary between two systems in order to have the same dynamic

characteristics, though they are restricted inJSGme aspects.. However, in
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order to perform a parametric study.by'changiﬁg'the kinematic and thermal
operational conditions, it is important to have a complete geometrical

similarity, owing to the fact that once the geometry of the model system

is chosen the friction factors and Froude numbers camnot be'independent of

the flow fields. Thus, in the following,-we_assume_that the geometrical'
similarities are established. Consequently, we have'nihe paramgters,

i.e., ki, DO*, Lo*, Ab*’ D%, ke’ ze*, Ae*, and_De*§ which are basically
the hydrodynamic conditions. We note here that the thermal condition,

Ac/€£ need not enter explicitly into the geometrical'rebtrictions.

The remaining parameters to be examined are r,,*, v . ¥, ng*’ pg*,

NFr’ NFre"fs’ fm’ ang fme' In view of Eq. (VIIII.l?),-the tﬁo Froude

numbers are related by the geometrical orientations of the heated duct

and the downstream un-heated region. By taking the angle between the two

portions of the system as 6, we have two similarity parameters, N {or

Fr

NFre) and cos@, where the latter is a pure geometrical hafametef;f
Now let us examine the relations between friétiOn.faétoré:fs;'?

and Eﬁe' The liquid frictiom factox fs can be considered as a function

only of the Reynolds number N

Res for the smooth pipe. Thus,.we have

$o = $s (Negg )= ____0.-:_811__ B oz

Res

On the other hand, the average two-phase friction factor Eﬁ and fme can

. ’ B .
be assumed to be a function of NRes’ the kinematic conditions at the end

of the heated duct and the geometry of the system. Hence we have

m’
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£ =G - (VII12.2)
and '
f =c¢C ¢ - (VI1I2.3)
me me s ] - .
where
= % * : * * ' .
Cp = Gy (T15% Vgi*s Voi¥s pg®) _. (VIII2.4)
and
= * % % * * . :
Cae = Cne (T1z% Ver*s Vgg¥s og%s D (VIII2.5)
As a consequence, we can replace the three friction factors by Neeosr Coo

ini R * o % ' -
and cme' The remaining parameters T12.’ Ve ®s Véj , and pg are.inde

pendent and important for the dyhémic characteristic of the system.

D. Summary and Discus$sion on the Similarity Parameters
As a summary, we obtain the following dimensionless groups from

the characteristic equation (VIII1.18)

1) The Geometrical Similarity Groups
k;, k, D *, D¥, De*', AK*, A%, g%, 1%, cosd
From now on we shall represent the geometrical similarity groups, except

i

k, and ke,.by NG' Thus we have ki’ ke’ and NG.

2) The Froude Number N from Eq. (VILIL.17)

2

Nz, = Vel o | (VIII2.6) -

12

3) The Reynolds Number N S from Eq, (VIII2.1)

Re

£ 0 D
Hs

,\,th-zs'"==

C o (VIII2.7)
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4). The Subcooling Number N_ from Eq. (VIII1.10)

b

' | e A _
Nsup = 2.7,_* = AF‘“ _i (VIII2.8)
. Alsg §

5) The Phase Change Number Npc from Eq. (VIII1.3)

h

for a mixture in thermodynamic equilibrium

L dwefl AP
YUY AU duy R%

NFck = _(VIII2,9)

or more generally for a mixture in thermodynamic nonequilibrium

yoy g A
Npck = S % ?; (VIIIZ2.9a)
. - Vg %
6) ‘The Drift Number N, from Eq. (VIIIL.4)
Na= Vg;* = Vi - (VIII2.10)
¢ T _
‘7)Y The DPensity Number ND from Eq. (VIIIl.1l4)
- £ _ P& (VIIi2.11
N.P" F} =i | (VIII2.11)

5

The above groups are independent of each other. Thus they are the

basic parameters governing the dynamics of the system. In addition to

them, we should supply parametric equations given by Eq. (VIII1.8),

(VIII1.10), (VIIIl.28), and (VIII2.1,2,3,4, and 5) with the relation

i
P o
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between NFr and NFre through 6. The geometrical parameters, the Froude

number NFr’ and the Reynolds pumber NRe

Oa the other hand, the subcooling, phase change, drift, and density num-

s have the standard significances.

bers given by N and Np are associated with the two-phase

sub’ Npch’ Nd’
flow systems.

takes into .account thé time lag effects

The subcooling number N
. sub

in the liquid region due to the subcooling of the fluid entering the
heated duct. Thus it is one of the important parameters for the stability
analysis.

The phase change number N c corresponds to Damkoeler’s Group I

pch
(45) in chemical kinetics, and it scales the change of phase due to the

heat transfer to the system. In view of Eq., (VIIIL.8), (VIIIl.l0), and

(VIII1.11), it can be seen that N o

pch is one of the decisive parameters for

the time lag in the mixture région. Both Nsu are significant

b
not only for stability analyses; but also for the description of the

and Npch
steady state operational conditions.
Since we assumed the thermal equilibrium in the mixture, the ex-

pression for Npc takes the form of Eq. (VIII2.9), which is inversely

h
related to the ones proposed by Bouré (24). However, in.general, it is
-given by (VIIIZ.9&).Which is based on the vapor generation Fg and pro-
posed by Zuber et al. (33). The latter expression takes into account the
effect of the thermal nonequilibfium and the equality ﬁf the phase change
number Nbéh in two different systeﬁs and ensures that the phase change
has progressed equally in both.

The drift number Nd takes account of the diffusion effects due to

— o m m—



164

the relative motion of the fluids and thus plays a fole.in two-phase flow
similar to that of Damkoeler's Group II (45) in chemiéal reaction kinetics.
Since the vapor Qrift velocity ng.&epends on the flow regime (30;32);
thié group charabterizes the flow.pattern. We note here that.two-ph;se'
diffu;ion, i.e., drift, processes are not due to the molecular random
motions but to the macroscopic geometrical orientation of each phase.
The drift number is important in thé kinematics of mixture and if

Nd > Npchs then the change of the density and velocity are controlled by

the drift, i.e., redistribution of phases,

The density number Np explicitly appears only in the drift stress
term of the characteristic Eq. (VIII1.18). Depending on the constitutive
equation for Cm and Cme’ i.e., Eq. (VIII2.4) and (VII12.5), this group

Np may also appear in the two-phase frictional pressure drop terms; The

density number Nﬁ actually scales the system pressure Ps, and this is

. quite importﬁnt in connection with the above statements on the drift and

frictional pressure drop terms.

For example, if the condition given by Eq. (III2,17) is satisfied,

then

R ARS | (VIII2.12)

And also,'if we can assume that, for a wide range of system pressures

C)cm . IQCMQ_
aNg INjp

20 (VIII2.13)

then the system pressure influence can be effectively taken into account

Al

e TR R

ST = AT

1
1
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by the groups N and N

sub bch® Biven by Eq. (VIII2.8) and (VIII2.9). In

this case, Np can be eliminated.

Following the above'similarity analysis, the characteristic equa-

tion given by Eq. (VIII1.18) can be rewritten as

i

O = ¢ =¢* (l_ci, ke Ngo Npes Mpeor Noup> Npen® a0 N §%) (VIII2.14)

Equation (VIIIZ.lé) shows complete parametric dependence of the
charactéfistic equation. In usual circumstances, NG cannot be considergd
"as an operational paraﬁeter, but rather as.a design parameter. Thus,
once the system is given, the dynamic behavior can be represented in eight
dimensional epace with §* as a pérameter. It should be noted here that

1/N

Noch? and,l/NFr Npchz’ in addi-

Bouré (24) obtained three groups, N

tion to the geometrical groups.
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CHAPTER IX
STABILITY ANALYSIS

IX-1. Stability Theorem

The.éystems which we have analyzed in the previous chapters are
‘governed by the differential difference equations. Therefore, the solu-
tion at any instance is coupled with the past history of the process.

Such a system is characterized by time delay effects induced by the finite

time that is required for the propagation of the signels. As it has been
discussed in Chapter VII, if the kinematic wave velocity is a linear
function of the axial coordinate z, the characteristic eduation can be

expressed by the combination of the rational functions and the exponential

functions, i.e., Bq. (VII2.11). Thus, in hon&imensibnal form, we oBtain
the characteristic equation

| | ~S*E e:-s"t;;‘ —s*zsq-‘.‘)

Q*(S*’—é’ﬁ)ﬁ)e ) )e =O (IXl.l)

which, in terms of the operatiomal parameters, is given by ﬁq.“(VIIIl.lB)
or Eq. (VIII2.14). It should be noted here that Eq..(131.1) doeé not
have a form of exponential polynomials. Howeﬁer; by fecalling that 5% =
0, 1 and 2 are not the poles of Eq. (IKl}l), we can define a shifted

characteristic equation as

1= S*(S-1P(s%=2)QF 20 Cax
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The function I# takes a form of exponential characteristic poly-

nomials with a single root at §*% = 0 or 2, and a double root at 5% = 1.

Therefore, the stability analysis_using Eq. (IX1.1) and (IX1.2) is slightly’

different. For the system with Eq. (IX1.1), no roots in the right hand
half plane of 8% are necessary for the stability df.the system, whereas by

using Eq. (IX1.2) we should take into account the roots which we have

created artificiallyf In particular, the shifted cha:acteristié fuﬁction

L* has one of its zeros on the imaginary axis, which causes some diffi-
culties in the application of the existing stabiliﬁy criteria, We re-

commend the form
Z’I*s (s*-t)zfs’;z)a*.-_-o '- _ ] (1X1.3)

.Tne stability theorem applicable to our characteristic equation

can be classified in two groups, the stability test ériterion and the

gtability boundary criterion. In the foliowing,.we shall discuss the

above groups separaéély._

A, Graphical Method Based on Encirclement Theorem (Mikhailov Cfiterion)

" The stability criterion froh_the encirclement theorem'was first
developed for the linear system with no time delays by Mikhailov (46),
Leonhard (47), and slightly modified by Nyquist (48) for the closed loop
control.system...fhe theorem is well known and not restricted to the
rational algebraic functions. IThe_extenaion of the criterion to the
timé-delay system was studied by A. Sokolbv,.niasnikov, and Satche amoﬁg'_
others. The detailed Treview of these workers can be found in fine books

by E. P, Popov (49) or by B. Porter (50). Briefly, the criterion was

i
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obtained from the application of conformal mapping and the residue
theorem.
‘Let us take a complex variable function F, which can be considered

as the combinafion of the rational and exponential functions. Thus .
F=F(s*, 89"') (IX1.4)
Then the encirclement theorem (or the principle of argument) gives that

Jd AC, argh = P-Z : (IX1.5)
5T ' |

-

where Z and P are the number of zeros and peles inside the contour C,
ﬂc+ arg F is the total change in the argument of F or the anti-clockwise
encirclements of the origin in the F plane around G . The theorem is de-

rived under the condition that F is analytic except for a finite number

4

of poles inside C, and that F has no.zeros on C.
When the charéﬁteristic equation &pes not.have reots on the imagi-

nary axis and at the infinity of the right half plane, the stability of

the system can be studied by direcf application of the above theorem.

By taking the contour C shown in Fig. 9, thé right hand side-plane'is

entirely covered.-_Now we use the mapping of 8* on C into £he F plane,

thus the right hand side of Eq. (IX1.5) can be found. Hence, by knowing

the number of poles in the right hand half plane, the number of zeros Z

can be found.

In our application, the characteristic equation has




In & _ S-Plane

FIm _ F-Plane
(w)

t) increasses

Re ' o | =0 Fre

Figure 9, Conformal Maping
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1. the.principal term §*" (the highest polynomial with positive
coefficient)

2, no poles

3. no zeros on the contour C-gnd'k.zeros in C.

Then the theorem (IX1.5) can be modified to
-+ 00D
| _ | ’ :
* =5 {“ 7 [AF J-w} (IX1.6)

where IA-F:E: corresponds to the change of argument of F when S*% traﬁels
on the imagiﬁary part of the contour C.

If the original characteristic equation (IX1.1) is used in place
of F, the number of roots k should be zero for the stability of the sys-
tem, whereas if the shifted characteristie equation (IX1.3) is in ﬁse,

k should be 3 for the stability.

The above c;iterion is extensively based on the graphical means,

and the piotting of}the Nyquist or Mikhailov diagram is required. The

algebraic criteria of stability for the linear time deléy system were

developed by L. Pontriagin (51); however, the application of the criteria
to the practical-problem usually becomes quite complicﬁted. Therefore,
it is not recommended here.

B. Stability Boundary Criterion (D-Partition Hethodl

The criterion discussed in the foregoing section is best suited
for the examination of the stability when all operational parameters are

known constant. On the other hand, if a parametric study for the system

is required, the D-Partition Method is preferable, It was first studied
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by Y. Neimark (52) and the detailed discussion om the application for the

time-delay system could be found in (49, 51). By taking the characteris-

tic function F, we have
F(S*, d.; ’ dl, 'd_a, . - -,'_am)=l O . o (I_XI'?)

where @ to @ tepresents the paraméters'whicﬁ éan'be'dhanged independently.

Now we consider the harmomnic oscillatibﬁs;'-Thué we féke.
§*=jw . (IXLB)

By substituting Eq. (IX1.8) into (IX1,7), we obtain

FOIW, o, olm) = Fre (@ i, © )+ R (W5, o) (1X1.9)

which reduces to
Fee (0% oy, -« " dm)=0 | (1%1.10)

PR o(.;)__*o )

Equations (IX1,10) and (IX1,11) give the harmonic frequency surfaces in

m-dimensional space, il.e., ., + + ., & a8 coordinates, with w* as an,
— | ST m . o

auxiliary parameter,
- Since the domplex roo;sJaré'aiways ¢onjugate for the function with

real coefficients, the domain of w* becomes

. R - - - - - - — e L e ——
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O<wk<o - (IX1.12)

with two?singular surfaces

Ion; F =0 ' (1x1;13)'
'-a-O )

and

L F =0 (1X1.14)
| L*-» 00 S

Now the m-dimension spaée is divided into;fegiops bounded by the harmonic

frequency surfaces, i.e., Eq. (1X1.10) and'(txl;il)_with Eq. (IX1.12) and
two singular surfaces glven by Eq. (IX1. 13) and (le 14), |

The theorem states that the number of roots lying in the right
half 8% plane for each region'divided by the surfaces do not change within
a subdivision. Therefore; the stability.ofleach :egion can be decided by
testing the stability for any point in that région._ For this purpose,

the criterion derived in the previous aectiou is useful, We-note here

that the D-Partition. parameter D@m) denotes the existence of 5 roots in

the right half S* plame for that particular region.

"IX-2. Stabllity Plane

The parametric study of the stability Qf the system can proceed by

using the D-Partition method discussed in #ection'lx-l.' The governing par-

I

ameters obtained from dimensional analysis in Chapter VIII are k,, ke’

N Nd,'and Np, whefeas the harmonic frequency @*

G? NFr’ NRes’ Nsub’ Npch’ _
is an auxiliary variable at the stability boundaries. As has been shown

in a previous section, the neutral stability surfaces in a multi-dimensional
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space are given by setting S* = ja* in the characteristic equation,
However, in order to present these stability boundaries_in a two-

dimensional plane, it is necessary to select two representative param-

eters for the coordinates of such a stability plame. Since, for constant

system pressure and inlet velocity with fixed geometry, the parameters ki,
o e . *

ke,'NG, N, NRes’ Nd’ and Np are fixed, the Subcooling and Phase Change

‘numbers are best suited for the'coqrdinate of such a plane. For example,

it was found that the operational domain in the stability plane was bounded

by the physical restricfions on the subcooling and the heat flux.- From the
‘condition that the subcooling is a positive entry and is upper bounded by

ﬁis, corresponding to the freezing point, we have

0 <

- L
Nswy < 55 : (1x2.1)

A£§1 _?3
On the other hand, from the condition that indeed boiling takes place in

the channel and the super-heat of the vapor would not occur, we obtain

Npch = "'P_:" < Ngup < Npc.h (IX2.2)

In addition to the stability boundaries, some important operational
characteristics can be répresented in simple form on the stability plane,

For exampie, the constant exit quality line is given by

*
The expression used for N cﬁ, i.e., Eq. (VIII2,9), is for the
case of thermal equilibrium, P
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N Sub = .NP'J‘ — Xe (%%) | (IX2..3)

whereas the length of the non.boiling region is given by

Ak =N L/ (IX2.4)

sub Npch :

The basic characteristics of this stability plane are illustrated in

Fig. 10.

- IX-3, Paramétfic Study of_the Systém

(Aﬁaiytical Conclusions and thé Scheme for the Numerical Study)

+  In Section IX-1 we have studied the stability theorem applicable

to our case, and then in Section IX-2 the stability plane suitable to the
parametric study has been chosen. Now we shall build up the scheme for

the parametric analysié on:the stability of the system.

" A. Influence of N . and N (Subtooiing and Hest Flﬁx)
sub pch

Following the discussion in Section IX-2, first we fix the param-

eters, ki’ k, N, N N

or Voo Nppo Nd’ and Np. Thus, the systgm pressure, in-

Res®
let velocity, flow regime, and geometry are temporarily frozen. The re-
maining free parameters are the subcooling and Ehase'change numbers which

correspond to the subcooling and heat input to the system. . Hence Eq.

(IX1.7), in terms of the chérécperistic funetion Q%, can be written as

Q" (™, Nsub , Npew)=0 (IX3.1)

| : e e - e e e e e
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or in terms of the shifted characteristiec funetion Z¥%

zF (XF N (s*-1)% (s%-2) v = 0 (1%3.2)

, sub? Npch) =

By setting S% = jw* and separating the imaginary and real parts, we

obtain
%* * - '
2 Re (@ ’.Nsub’ Npch) 0 (1%3.3)
and
;3 (wE =
Zép Wk, N, N ) =0 | (IX3.4)
with | 0 < u* <o | (IX3.5)

Since Eq. (IX3.2) élready hés three roots in the right half S*
plane which are artificially produced by multiplying (S*-l)2 (5*%-2) on Q*,

the system is stable in the region of D(3). The other regions with D(4),

D(5), etc. should befexamined by the criterion based on the encirclement

_ theorem. The singularity corresponds to w¥* — « which has no importance in
our case because Z% = W.* On the other hand, the second singularity given
. by Eq. (IX1.14) has a significant ﬁhyéical interpretationQ Recalling the

inequality (V16.9), the excursive stability condition is given by

%f.:o Z*(w*, Nsup, Npey )<0 | (1X3.6)

*Actually the condition gives Ci* (A) = vgy* (1 + ng*) = 0. Thus
it corresponds to the starting point of flooding. However, this usually
happens for the downward flow and is not important for the system operat-
ing in standard circumstances., It may be important, however, for space
application, where the acceleration force may act in the direction of the
inlet liquid flow. '
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By taking the limit w* = 0, it can be shown that

E,;':.‘ " &t‘o 'ZEZ (0%, Nsup MP‘-h) (13.7).
o _

Hence the singularity expressed by Eq.'(IXl.lS) corresponds to the excur-

sive stability boundary. In view of Eq. (IX3,7) and the inequality Eq.

(IX3.6), we obtain the condition for the excursive stability., Thus

i Z@:(‘*‘*, N sus Npew }< 0O i (1X3.8)

W0

Now we can plot the neutral stability curves expressed by the re-
lations (I1X3.3,4, and 5), where w* is an auxiliary parameter, and the ex-
cqréive stability condition expressed by the inequality (IX3.8) on the
stability plane, Fig. 10. As a result, we shall obtain various region3
bounded by the above curves and:the lines specifying the operational do-
main, i,e., the relations (1x2.i) and (IX2.2). The stability.ﬁf each..
region should be examined by taking anj point:inside the subdivision and
applying the Mikhailov criterion at that point. By taking ith region and -
. ubi, NPChi)f fhe stabiliéy
criterion can be obtained from Eq. (IX1.6). (Recall that k >_3 corres-

denoting any sample point inside of it by (Ns

ponds to an unstable condition.) Thus we obtain the condition for the

dynamical stability

[+-xloz)fes o

L
Z

where we have subétituﬁed,n wm 4, since the highest order of the polynomials
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in 2% is four.
The number of roots for the characteristic equation Q¥, lying in
the right half S$* plane,is given by

| e :
R=-l~ﬁ1AZ]o_ | (1X3.10)
(oo _ ' : :
where LAZ ]o denote the change of argument of 2% (jw*) in the anticlock-
wise diversion when w* travels from 0 to +=.
Due to the coﬁplexities of the characteristic equation and of the

coefficients in terms of Nsub and Npcﬁ, the above steps cannot be carried

out analytically, and the use of a computer is required, However, the

computer programming is quite aimple, since it basically.reduces to the
problem of célculating the known function ZRe* and zIm* for various values

of the parameters w¥, N and Np Furthermore, we note that these

ch®
variables are bounded. The domain of (Nsub'and Npch) is exptgssed by the

sub

relations (IX2.1) and (IX2.2). For w* we should recall the characteris-
tic Eq. (VIII1,18) with Eq. (VIII1,19,20,21, and 22) and Eq. (IX1,3).

From the above equations it can be seen that the highest order of w* in

ZRe* is four and appears as a pure polynomial; hence, it is easy to show

that there exists a number M such that for w* ?'Mi Eq. (IX3.3) has no

|
roots. As a consequence, we only need to examineifor wk < M, Actually

M is a funetion of Ns and Npch; however, the crﬁde upper boundary for

ub
w* is easily found from the coefficients of ZRe*'E (It is not necessary

!
to obtain the least upper boundary for w¥.) ' i
Typical plots of the Mikhailov diagram for!z* are shown in Figs.

11-14,
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Figure 11. Case of D(3)

Z* Plane

Figure 13.

Case of D(7)
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Z* Plane

7
L

Figure 12. Case of D(5)
» %
Ztm Z Plage
0 *
Zee

Figuré 14. Case of Zge(0)> 0
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From the four diagrams, only tbe one shown in Fig. 11 expresses
the stable system. The number of roots in the right half S* plane for
the ones shown in Figs. 12 and 13 is two and fonr, respectively, and thus
they are dynamically unstable. The diagram shown in Fig. 14 represents

the excursive unstable system.

B. Influence of the Inlet Velocity
Following A, we shall now examine the influence of the inlet ve-
locity on the.stability boundaries. Assuming that the system pressure

and the geometrical parameters are fixed, the change of the inlet velocity

Ve is characterized by the shift in the Reynolds number NRe

and Nd, are also affected through Eq.

i - however,

the two other parameters, NFr

(V1112,6), (Viii2.?7), and (VIII2.10). From the-characteristic equation

(VIII1.18) with Eq. (VIII1,19,20), it can be seen that the increase of
VEi

velocity. By keeping in mind the above consideration, we can obtain

reduces the effects of both the gravitational force and the relative

another set of the stability boundary curves in the stability plane by
the method described in A. This new sek of boundaries will be compared
with previous curves having a different Reynolds number.

It should be noted here that the kinemstic effects of the inlet
velocity are largely taken into account by the coordinate itself, i,e.,
Eq. (VIII2.9). Thus, by recalling that the turbulent fS is proportional
to only one fourth_power of 1/N a? and assuming that the dynamics of
flow are dominated by the inertial, frictiomal, and orifice pressure
drop, it is easy to conclude that the most significant influence of the

inlet velocity is included in the phase change numbeﬁ?Npéﬁ.
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C. IInfluence of ﬁhe Relative Velocity.

The influence of the relative velocity on the stability of the-‘
system can be examined by changing the drift number Nd; i,e., Eq. (VIII-
2.10)., . For examﬁle, the reSult.of the homogéneous flow assumﬁtion can
be obtained by merely setting Nd =0, It is eﬁpected that the effect_
of the relative velociﬁy is to stabilize the flow, since én increase of
Ny decreases the void fraction o and thereby increases the mixture den-
sity which has a stabilizing effect.

D. Influence of the System Pressure

The influence of the system pressure is cliaracterized by the den-
sity number Np which appears in the drift pressure drop term and in the
friction factor coefficients Cm and Cﬁ;, i.e,, Eq. (VIII2.2,3,4, and 5).
From the discugsion in Section VIII-2, the effect of the system pressure

on the stability boundaries in the Nsu -Npch plane is quite limited. Thus

b

in view of the expressions for Nsub and Npch

(VIII2.9), it can be concluded that the system pressure effects are

, i.2., Eq. (VIII2.8) and

largely taken into account by the coordinates of the stability plane.
Therefore, in terms of the exit quality, the increase of pressure stabil-
izes the flow.

E. Influence of ki and ke

The effects of throttling at the inlet and -the exit can be studied

by comparing the stability maps for different values of ki and ke' By

taking only the inlet and exit orifice terms in the characteristic equa-
tion (VIIIl.S), it is straightforward to conclude that the increase of
ki is a stabilizing effect, whereas the increase of ke destabilizes the

éystem.
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IX-4. Simple Stability Criteria (Dynamic)

The stability analysis described in the previous sections is rather
complicated in view of its algebraic calculations, though once the computer

program is written, the stability test can be carried out in a matter of

| seconds, Here we shall develop a simple stability criterion which can

be used for the first hand design purpose without going into the detailed
calculations, It can be said that the-sophistication'of the model is

coupled with the complexity of the sfability analysis, thus the simplifi-

. cation of the model by introducing various assumptions leads to the quali-

tative rather than to the quantitative description of the system;

A, Lumped Parametér Model

The simplest model can be obtained by assuming that the pressure
drops in the chamel are concentrated at the inlet and outlet orifices.

In this case, the characteristic equation takes the form

*_ n0yp. ’ % 1+ 2 Vi)
Q 2£‘+&e'{2A3+L—(|+V“)sl[A“ -ve JJ’O(IX&l)

Substituting Eq. (VIII1.23) and (VIII1,27) and setting S* = jw* for the
harmonic oscillation, we obtain two equations corresponding to Eq; {IX3.3)

and (IX3.4). Thus

Zp:':'a,l""{ [2K+(2-H)]ro + (2-H)Swd T+ [2- Hcr]no’cosw*&j ((1X4.2)

7% -E:)-;{-zkufi (2-H)~(2-H) oo W‘Z?z*+[2~HCv’]w“S°'“w‘f}l‘}= 0 (IX4.3)
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where K and M are given by

bl eV
K "’&";*_& - M - '|:2V%?: . (1X6.4)"
e ¥ .

It is well known that the first encirclement of the origin in the .

Mikhailov diagram for the time delay system is largely govermed by the

lowest order terms of the polynomials, particularly of the exponential
polynomials. This can be explained by the fact that the first crossover
of the real axis in the Mikhailov diagram happens with relatively small

w* due to the large changes in the exponential terms, Therefore, in view

of Eq. (IX4.2) and (IX4.3), we may conclude that the time delay in the

subecooled liquid region, leﬁ, has more significance than the one in the

heated region, 7T except for the case of very small subcooling.

%
13

Furthermoré, the time delays 7

# and T,,.* are related by Eq. (VIII1,28).

12 13

*, we may apﬁroximate TlS* as

Thus, for large T12

- ,Z:;i - 2_;:& + . 0n Cr* ~ Z}';_* (1X4.5)

By substituting Eq. (IX4.5) into Eq. (IX4.2) and (IX4.3), we can eliminate

the trigonometric functions befween the two equations, Thus we obtain

4K‘(:+w*‘)4- (2-M)= (2~ Mc}*)z (1%4.6)

* ' :
The recommended expressions for ki' and ke' are

b= ki EE0 A= der BS G
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* Equation (IX4.5) expresses the frequency in terms of the system param-
eters K, M, and C_*. However, if w* << 1, Eq. (IX4.6) gives the astability

boundary curve. Thus

* z _. z
¢ = B | 4K (2-1) o axa.)

Recalling Eq. (VITI1.8), (VIII1,10), (VIII2.8), and (VIII2.9), the above

equation can be expressed in terms of N c

peh and N_ ., hence the stability

criterion becomes

N peh = Naup I - ' -
Gr V‘}é*; <G laece oMy -1 L RS

From this relation it can be seen thaé ki’ the inlet restriction, has a
stabilizing effect; on the other hand, kE’ the exit restriction, has a

destabilizing effect.

B. Asymptotic Solution for w* << 1 (Higg Subcooling Number)

In many practical caées, the effects of the upstream and dowmstream
un-heated regions can be heglected except those of throttlings, as has
been explained in Chaptér IV, Thus, in the following, we ;hall consider
the dynamics of the Heatea region with only inlet and ek;t orifices from
the un-heated regioms.

In this case the characteristic equ;tion IVIIII.18) can.be'rewritten

as
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*em . ’ {B, $* % B,s*t Bas* B;‘S*:-B S*B, - (IX4.9)
VE) T N¥{s%2) ’ P PEe TR

A *' )
2 7 (Bt e By S T4 BeS N B oS 4B

~* g 3 2 | '

-+ e za( B};Si “l'B|33* -l'BH-S""BIs)}“O
where the coefficients B, to B, are listed in Appendix E. We substitute
S* = jo* into Eq. (IX4.9) and separate the real and imdginary parts; then

‘we get

Q(dw*)= Re | ; _Ln.jw  (IX6.10)

!
fwr2 sut P s (a2 2)" [ w* w

Consequently, we obtain parametric equations for the neutral stability

surfaces )
ox = 0 /(IX4.11)
1
Im
= 0 : {(IX4.12)

Here Re and Iﬁ are complicated triéonometric polynomial fuﬁctioné in w¥;
however, by using the asymptotic condition wk << 1, they can be simplified
to a great extent.: As it has been explained in_A'of this seétion, the ex~
poﬁential terms have more significance than the polynomial parts for the
first crossover of the real axis in the ﬁikhailov diagram, Thus,; by

considering the asymptotic case of w* << 1, the higher order terms of w¥
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can be neglected. Furthermore, using the assumption of Eq. (IX4.5),

l.e., T,o% = T 4%, Eq. (IX4.11) and (IX4.12) can be reduced to the follow-

12
ing forms.
E; % —2Bs ~ 2(Bp+Bu)cod W (IX4.13)
=~ 5By (1= coa W'Y *)-—285 Stn WT =
and

,.,%* x 2 (Biot Ba) S WS - 5Be S * T (1x4.14)

L+ 2B (1ol ) =0
' w* o ,

‘where we used the identity

Bﬁ + Bll + 315 f-q : | _ . (IX4.15)
which ensured us that
L Im _ 4 o | (1X4.16)
o W* : :

With Eq. (IX4.15), the excursive stability condition given by the relation

(vV16.9) yields

35 + (310 + 314) +_BG le* <0 (1X4.17)

. *It can be showmn that the order of w*T *, w*T % should be Zn.
Thus w* << 1 corresponds to le* > 1, Under is con ition

= & * o *,
T13¥ = Tyt I G T12




187

By rearranging the trigonometric functioms in Eq. (IX4.13) and (IX4.14)

we obtain

~2[ By = (Bjp+ Biw )+ 5 B]- - (1X4.18)

*2COSF)EE£J {[”Bw*BH) 58] cos Mz&f 2¢oB& M_} 0

and
‘ N f - “j*az‘ . E I |
2 s LG i[z (BiotBu )~ 5 Bs]co.s--;__ + 1—5} Stm J73t uf* “#_(” o (IX4.19)

hS

The solutions to Eq. (IX4.19} give the crossover ffequencies.” Thus

lez* =0, 2m, 4n
and
UJ*Z': 255 w y .
[2(B:o+13.+) 5B Cos 2 + <=k Lk Stn 1' =0 (1X4.20)

However, it can be seen from the above roots that the first crossover of
the imaginary axis occurs with w*¢12* between 0 and 2g. Hence, the

smallest positive root for Eq. (IX4.20) gives the first _crossover fre-

quency. By substituting Eq. (IX4.20) into Eq. {IX4.18), we obtain

Lf) = - 2[Bs-(Bi+Br)+5B¢]=0 (1X4.21)
w* Jje . _

which gives the first neutral stability surface.
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The formal application of the D-Partition method to ﬁhe full char-
acteristic ;quation shows that the first neutral stability surface always.
corresponds to the dynamic stability boundary (see Fig. 15-22). Cénse-
quently, in view of Eq. (IX4.17) and (IX4.21), it can be concluded that
the necessary condition for the sysfem to be stable is given by
+ B 4) +3B, <0 (I1X4.22)

B - B

In a parametric form it reduces to

v"."

s £5 Cm (1=2%) ;3**
o ekt g

) L (2w g€ ?_LV3 .
| + \ e )( 25 +24 ) Cf e
By.defining the dynamic stability numbef 84 s

£ Cm1=1") Ve
Sd = A’ [‘& -20* A + JD* +&-e] '+‘v?-i

. (1X4.24)

| |+| 12 V3" s Con )U-“l___ 4 Vg™
){ (H'V‘h 2D" ke nf;-rc" ihvi:

The condition for the system to be dynamically stable is given by

5,>1 - (IX4.25)

Fa

On the other hand, the neutral frequency is given by
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fam 0% _ _ [2 (Bet Bi)-5Be | w*gsd
2 Be 2,2 2 (1X4.26)

Recalling the relations (IXA.I?)'anB_(IXk.ZI), it can be shown‘thaﬁ

- {_; (Bao-l;eE;r*)_*S'Be } 5 |

So fhat the magnitude of the left hand side gives the excursive stability

margin. From Eq. (IX4.26) and the inequality (IX4.27) we have
0 < W*7T* <1 ' - (1%4.28)

However, for the system with sufficiently large excursive stability mar-

gin, it can be said that w*le*_is close to 11, thus we have
"w*le*':51T © 0 (IX4.29)

Now let us consider the homogeneous flow witb no gravity effect. Then

we have

g *=0 _  ax.
ng 0 o .(Ix430)

Np = | - : (IX4.31)

And, furthermore, if the two-phase friction factor coefficient Qm is not

-

* B ' . _ '
From Appendix E, the coefficlent B, is positive for most of the

cases, thus B6 > 0% 6

%
(1%4.27)




190

much larger than the unity, the stability criterion (IX4.23) reduces to

[&;_QM + ke |

2D
H b (Bh k)

Xe P NP""‘ NSub< 2 (134,32)_

It should be noted here that the stability boundary expressed by Eq.

(IX4.32) gives a straight line in the stability plane, which is paréllel"

to the constant quality line, if Qm is taken as a constaﬁt.

IX-5. Excursive Stability Criterion

The excursive stability criterion for the general dase“has been ob-

tained in Section VI-6 and given'by the iﬂeqﬁalit& (V16.9). Thﬁs, in the

dimensionless form, we have

L QF (s)>o' o asay

S*>0

for the excursive stability of the system.

By substituting Eq. (IX4 9) into (IX5. 1) and taking the limit
S% - 0, we obtain |

B'+B' + B

o * * ’ . ‘..
By + Byy + By, -yt B B, <0 (1X5.2)

11 7.T137 15

| | - . :
where the coefficients B are given in Appendix.E. Thus, the sufficient

condition for the excursive stabiligj of the Syétem.is.giﬁan'5y=the_
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inequality (IX5.2). The condition given by Eq. (IX5.2) ensures that the
I total pressure drop-inlet flow curve has a positive slope. This criterion
has been obtained from the perturbation analysis; however, it can also be

darived from the steady state relation between the total pressure drop and

the inlet flow velocity.

By substituting the coefficients B into Eq. (IX5.2), we have

| N - 2‘§5 . | . C' "" - -
28— zD*A +NFertk{ E, (1= Nsus ) PMCF‘J+ (IX5.3)

. A1) — ' r* ;
55 LD {(Na) = 0 ) (S520)] +
._'V-iz - * . ._ - L3
+ %*Fyﬁ (o=} (CF- )+ Nsub]fﬁ [;Cf-i)+ Nsuo =267 (Vg )]+

j _ *_ . +
i | Now = €GF-0 0 2D

If, for simplicity, we neglect the effect of gravity and relative motion

between the two phases, the above criterion reduces to.

e e

_-2{[.f;§:+ae]m—t) k: +cu}v;.gr

il

+ {x( f;g;)+—ﬁe+ '} >0

for the excursive stability of the system.
! )
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CEAPTIER X
NUMERICAL ANALYSIS

In the previous chapter, the application of.the dynamic analysgis to
the stability problem has been explained. Although the solution for.the
stability boundary can be expressed in a closed form, the exact parametric
study requires the use of a computer due to the complexity of the boundary
equations, i.e., Eq. (IX3.3) and (IX3.4). Nevertheless, we coﬁld obfain'
qualitative conclusions on the effects of farious parameters for the
stability of the sysfem by analyti?gl means. Furthermoré, the character-
istic equation was simplified under particular conditions and the algebraic

stability criteria have been derived.

In this'chapter, we shall develop a numerical method not only for
the examination of the stability at any particular operating condition,
but-also for the parametric study of the system. Recalling the discugsion
in Section IX-3 where the basic steps for the parametric study have been
explained, the necessary computer érogramming can be classifieﬂ into two
groups as

1. the éomputer programming for the neutral stability curves
(called PNS), and

2. the computer“progfamming for the test_of the stability at any
particular point (called TSP).

In the following, the above twe computer programs, (PNS) and (TSP),

will be discussed in detail.
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X-1, Computer Programming for the Neutral Stability Curves (PNS)

Objective of the Programming (PNS)

The objective of the programming (PNS) is to obtain the functional

from Eq. (IX3.3) and (IX3.4) by cancelling

relation between N .- and N
su C

b pch

the auxiliary parameter w¥.

Recalling Appendix E and Eq. (IX3.2), the parametric equations

(IX3.3) and (1X3.4) for the neutral surface reduce to the| following

forms:
Zpe = K‘F [(B. W*5- By W Bs W*)+ (-Bgw* > é.aw*) osW'ed)  (x1.1)
~ (Brw*=Byw" % Bu) s (w %) )+
+ (~Baw*+ Bw* ) cos (whe)-

- (__;8'3 w4 B.s ) 'Si:h (witn*)}=.o'

and

ZIm = - EIJ-* {(Bz w* *. B-(. w* 2‘-‘|' B6)+ (qu*i Be‘lﬂ*z'f Bu)m ("d‘z}:) (x1.2)

+ (B W't B * ) sim (W Tit) 4 (B} Bus )0os (W 27)
+ (“'B;:.LU* 3+ B;y.w*)sv.n (f-i.ld'f 273*)} =0

where the coefficient B's are given in Appendix E.

By taking the limit w* = 0 in Eq. (X1.1) and (X1.2) we get
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* | | .
Zpe (O) = Bs + Bio+Bu~ Bu %~ B¢ (X1.3)

and

Zy,(0) = 0 | | (®1.,4)

Thus, in view of the inequality (I%5.2) and Eq. (X1.3), the initial value

1

for zRe* decides the excursion stability.
The domain of the positive w* which can satisfy both Eq. (X1.1)

and (X1.2) is bounded by Eq. (X1.1), since

L Z.F et o o (X1.5)

Q¥ o0

#

It;can be shown from Eq. (X1.1) that
| _' 5
o< w* < Hm{ Ty [’53’*’35“%7’8"]} (x1.6)

is sufficient range of m*.where Eq. (X1.1) and (X1,2) are to be examined.
Input Data

Input data can be provided either in a dimensional or a non-
dimensional form depending on the system of interest. Following the dis-

cussion in IX-3, the non-dimensional input data for the PNS become

N.? (= ?Q-*) 1 Nd (=V3.i*); N&(zbi) )NFr) NRES 3 '&f. > 4&&

and (N for the boundary of the stability plane.

sub)max

The constitutive equation for fs’ Cm or ' must be supﬁlied in

addition to the parametric equations for A* and Cr* given by
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% =

A Nsub/Npch (X1-7)
C*"‘—"l-l-"'—:!'——-(N - N ) (Xlg)
T (1+ng*) pch sub 7

!

In a dimensional form, the input data become

Property;

Ps 5 fis ,P'ss,Hss; G-, argg , Alg

Geométry;-
D , £  1%lcose’, Ac .8 . ki, £e

Inlet Velocity:

Vil

Furthermore, the constitutive equation for ng and the definitlons of the
N

s _ "
dimensionless groups D%, N Res’ Nsub’ Npch’

Fr’ Nd’ and Np should be

given.

Basie Structure of PNS

The stability plane is bounded by inequality (IX2.1) and (IX2,2),

thus we have a finlte domain either for N or N + This plane can be
. gub pch

divided by the constant subcooling and quality lines, each of which is

equally intervaled; so that the stability plane is covered by the meshes.
At each intersection of the above lines inside. the operational plane, the
coefficients A and B can be calculated. Then we find the crossover fre-
qugncies wc* from Eq. (X1.2) by changing w* stepwise and using the "Inter-

polation Method." These wc* will be substituted into ZRe*’ the real part
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of the characteristic function. If the value of ZRe*Gnc*) is non zero,
then the system is in a stable or unstable region, which will be decided
by the pfogramming TSP. However, when zRe* is zero, the point of interest

in the stability plane is on one of the harmonic frequency curves which

~constitutes the D-Partition boundaries. Thus by changing the point sys-
tematically in the stability plane and repeating the above step, we can
construct the complete D-Partition boundaries. It should be noted here
that the singularity curve given by Eq. (X1;3)1must be added to the har-

monic frequency curves, since it specifies the excursive stability

boundary.

Qutput of PNS

The desirable output, therefore,.is the functional relations be- =
tween Nsub and Npch which correspond to the excursive stability boundary.
However, due to the continuity of the system characteristic, it may be

sufficient to obtain the values for ZRe*GDc*)-at the properly intervaled

points in the stability plane.

X-2. The Computer Programming for the Test of the Stability

at Any Particular Operational Condition (TSP)

The test of the stability at any particular point can be achleved
by the direct application of the Mikhailov criterion in Section IX-1l.
3 " -
Input data for (TSP) will Pe Npch (pr 9, ) and Nsub {or ﬁisub) in addi
tion to the input data for (PNS) given in Section X-1 ,
The computer programming is straigﬁtforward and it is basically td

Im
by the inequality (X1.6). By plotting this result in the Z¥*(jw*) plane

calculate the funetions Z. *(w*) and ZRe*(w*) for the range of w¥ given

I
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and applying- the Mikhailov criterion, the stability of the system can be
examined. The detailed discussion on the graphical method has been given

in Section IX-1 and Section IX-2.

X-3. Results of the Parametric Study from Numerical Analysis

and General Conclusions on the Effects of Various Variables

The analytical conclusions on the effects of the various parameters
have been drawn from the characterisfic equation in Section IX-3. Fur-
thermore, in Section 1X-4, simple algebraic criteria which can give not
only the qualitative parametric dependence of the stability boundaries,
but also the quantitative characteristics are given. 1In this sect.ion, we
shall stu&y the effects of various operational variables on the boundary
of the stability of the system by using the results from the compuier
runs, The typical staﬁility maps obtained from the utilization of (PNS)_
and (TSP) are given in Figures 15 to 22,

It has been found that more than one neutral frequency curve exists

and w¥* appears quasi-periodically. However, the most important curve is

the first neutral stability curve, i.e., boundary between D(3) and D(5),

since it is the stability boundary.

A, Effects of Nsub (Subcooling)

In view of Fig. 15 to 22, it can be seen that there is a character-

ized (Nsub)c such that increasing Nsub is stabilizing when Nsub > (Nsub)c

and destabilizing when Nsu < (N

b
For the range of Nsub > (Nsub)c’ the stability boundary curve is

sub)c'

almost a straight line nearly paréllel to the coanstant exit quality ;ine.
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'This result and the form of the simple criterion (IX4.23) or (IX4.32)

suggest that they can be applied for the case of Nsu > (N

b sub)c’
The large change of the stability boundary curve at the neighbor-

hood of (Nsub)c can be explained by the fact that the frequency w¥* in-
creases as Nsub decreases along the curve and thus the higher order poly-
nomial term in the characteristic equation becomes important as w* ap-

proaches 1. From this argument, it can be said that (N happens at

sub)c

wk = 1, By setting w*¥ = 1 in Eq. (IX4.26) and eliminating Npc with Eq.

h
(IX4.21), we may obtain (Nsub)c' On the other hand, from Eq. (IX4.29)

we have

(N, ) S \ | (X3.1)

c'-'.f

In terms of the subcooling at a given Npch’ we conclude that the increase

of Nsub is stabil?zing for Nsub >'(Nsub)c and destabilizing for Nsub <

(Nsub)C°
B. Effects of N (Heat Flux)
pch

From Fig., 15 to 22 as well as from the simple criterion (IX4.,32),

it can be seen that increasing Npch is always destabilizing. Thus in-

creasing heat flux at constant inlet velocity shifts the system to the

unstable direction.

C¢. Effects of System Pressure

At has been explained in Section IX-3, the effects of the system
pressure are characterized by the density number Np' In the characteris-
tic equation, it appears only in the drift term and in the friction fac-

tor coefficients Cm. Thus it has been concluded that the system pressure

2
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effeects in the stability pldne are quite limited. This result is further

backed up by the computer run for three different pressure levels, which

is shown in Fig, 15, where the stability boundaries obtained on the N b=
sub -

Npch plane for different pressure levels cannot be differentiated. From

this we conclude that the important part of the system pressure influences

on the stability boundaries are takem into account by the subcooling num-

ber Nsub and phase -change number Npch"

D. Effects of Ny, (Inlet Velocity) .

The analytical conclusion on the effects of inlet veloeity is ex-
amined by plotting the stability maps for different No..» i.e., Fig. 16.

The results show that the most significant influence of the inlet velocity

are accounted for by the phase change number Npch' Thus, increasing the

velocity'is stabilizing. In terms of the critical heat flux, i.e,, maxi-

mum heat flux for the system to be stable, it can be said that it is

almost inversely proportional to the inlet velocity.

E. Effects of Relative Velocity

By changing the drift number Ny (= ng*), the effects of the rela-

tive velocity have been examined. -The result is shown in Fig, 17 and it

agrees with the analytical conmclusion that the relative velocity is a

stabilizing effect,

F. Effects of the Inlet Restriction ki ' : §

Figure 18 shows the drastic influence of ki on the stability bound-

ary. As it has been concluded analytically, increasing ki is a strong

stabilizing factor.
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G, Effects of the Exit Restriction ke

Figure 19 shows the important influence of ke on the stability of

the system. The effect of increasing ke-is shown to be strongly destabil-

izing as has been expected.

H. Effects of Statiec Friction Factor

The effect of the static magnitude of the friction factor is ex-
amined by changing the value of the friction factor coefficient Qm. As

can be seen from Fig. 20, the increase in two-phase frictional pressure

_drop is destabilizing. The quantitative effect of Cm on the stability

houndary 1arge1y depends on the values of k, and ke. Thus, it can be

i
sald that the friction factor becomes more important as the values for ki
and ke decrease,

I, Effects of Dynamic Friction Factor

The dynamic effects of the two-phase ffictional pressure drop have
been examined for three different modéls, i.e., Eq. (VII3.9), (VII3.30),
and (VII3.31). The results are shown in Figs., 20, 21, and 22. By com-
paring the above three Qtability maps, Wwe can see some differences between
them; however, by tﬁking the proper values for Cm arid n’ , the differences

are limited. Thus we may conclude that, for a system with sufficiently'

large k, and/or ke’ the difference in friction factor model is not impor-

i
tant for operations at high system pressure, However, it also should be

noted that, by introducing the complicated dynamic friction factor into
the characteristic equation, a numerical instability may be gengrafed due
to the complication in the transfer function for the frictiomal pressure

drop.
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X-4. Comparison with Experimental Data

The analyses developed in previous chapters have been compared to
the experimental data of Levy (5), Solberg (9), and Carver (7). The
geometry of the'three independent experiments includes both circular and
annular tubes at different diameters. The working fluid in all three
cases was water. The experimental data reported by these investigations
were obtained at relatively high pressures, consequently, they are par-
ticularly well suited to test the present analytical results because:

1. The present analysié is limited to the mixture in tﬁermal
equilibrium.and, furtﬁermure, the pressure drop effects on the flhid
properties are neglected.

2. The low frequency oscillatioﬁ was chosen as the mechanism of
instabilities.

Comparisons of the theory to the_expefimental data are showm in

. Figs. 23 to 28. The quantitative agreements of the stability boundary

as well as of the frequency of the oscillation are excellent. In 90
percent of the cases the agreement in heat flux is within 10 percent.
However, it can bé.seen that, at very small subcooling regions, the ex-
perimgntal data exhibit more unstable systems than the one; predicted by
the theory. Two feasons for this discrepancy can be considered. Fifst,
at the extremely low subcooling, the stability boundary curve itself hés
a large change in Npéh compared to Nsub’ which is also confirmed by
various experiments (37). Thereforé, both the experimental and the nu-
merical points of the starting of the oscillation are difficult to bbtain.
accurately. Second, at the lower subcooling, the effect of subcooled

boiling.may have a gignificant influence on the stability of the system,
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since the amount of heat necegsary to remove the subcooling is ﬁery small

and the portion of the subcooled boiling may dominate tﬁe entire 1iquid
heated region of the present analysis. If this is true, the phase change
ﬁroceeds further than the case of thermal eqqilibrium, thus the value for
-Npch incréases,
| Although the agregment-of the theoretically obtained stability

boundary to the experimental threshold of oscillations is satisfactory,
the analytical descript;on of the unstable state operation itself is
limited by the linearization of the mathematical model, However, the
_ﬁreseht analysis does predict the mummber of undamped roots in varioué
unstable regions. Such roots appear usually as a couple, thus the number
of roots in the unstable regions increases as an even series with an in-
| creagein the degree of the. instability., For the mathematical model,
those roﬁts correspond to the infinite amplification of the osecillation,
but for the.real'physical system, the nonlinearity ultimately becomes
important and prevents the unlimited excursion from the equilibrium state.
'iﬁ the unstable regions, it is expected that the undamped roots interact
‘with each other and'produce the combined mode of osciliatibns with finite
amplitude. Furthermore, it is alsé expected that the components of the
nonlinear wave have gsimilar frequencies as those of the undamped roots
from the linear theory. Thus, in the regions of the higher degree of
instabilities, where the system may have the component waves with similar

frequenciés, the resonance type instability (53) may occur. In such a

 case, a destructive result is almost certain and it should be avoided

even in the transitional operatiom,
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‘The simplest stability criterion given by inequality (IX4.32) is
coﬁpared to the computer solution ds well as to the experimental results,

i,e., Figs. 23 to 28. The solid eurve indicates the computer solution,

whereas the dotted line indicates the simple criterion.

In view of the considerable simplicity of the criterion, the agree-

ments are rather satisfactory for the range of Nsub

N .zm (X4.1)

sub
.ﬁg ﬁote:here that the significance of the relation (X4,.1) is'already'dis-
cussed in S.ection X-3.A. In the raﬁge of Nsub < 1, the criteripn tends
to predict ﬁ more unstable gysiem than the exact numerical solution,
. Thﬁé the criterion (IX4.32) can be use& for the first hand design purpose
in the entire range for Nsub'
The more complicated criteriom given by the inequality (IX4.23) is
expectgd to predict more precise parametric dependences of the éystem,
since_the former criterion has been obtained by further simplifications
on this criterion. By néglecting the stabilizing effect at the extremely
lower subeooling, which has been predicted by the e#actﬂnumerical solution

and by recalling the discrepancy between the experimental data and the cdﬁf

puter solution in this region, the eriterion (IX4.23) is a very good rule

in design to avoid the unstable system,
We note here that some details on the method of comparison

with experimental data are given in Appendix F.
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CHAPTER XI

DISCUSSION

In;this analysis; we first derived the.fieid eqﬁations for the
mixtﬁre'by'statisticﬁl an& area averaging, Based on this one-dimensional
model;.the genéral similarity groups governing the system as well as the
relative importanée of each term in the field equations have been dis-

cussed. USing thé above mathematiéal model, the thermally induced flow
instability ha# been investigéted for the case of the mixture in thermal'
equilibrium, Furthermore, the time lag effect and fhe density wave propa-
gation have been taken as the main causes of the instability and thus the
. other instability mechanisms such as the one due to the compressible
pfessure wave.prdpagation havé been elimiﬁated.

~ Under the above consideration, the density‘becomes a function oqu
of the enthalpy and not of both the enthalpy and preséure. Therefore,
the decdupling of the momentum equation from the energy and continﬁity
equatiﬁns was possible, Hence the kinematics of the systeﬁ ﬁas been
solved first and then the dynamie re3ponse.of the sy#tem hag been obtained
from tﬁe momentum equation, |

The perturbation method has been used and the system has been

.linéarized in order to.solve the set of partial differential equations
analytically, In the'present analysis,lthe'relﬁtive velocity between the

phases, the_noﬁﬁniform heat flux, the static and dynamic effects of dif-

ferent friction factor models, and the effects of both upstream and
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dovmstream un-heaﬁed regions have been 1nc1ﬁded1

Part 2 of this thesis has been devotéd.fo the application of the
theory divided in Part 1 to the stability analysis of the system. The
dhéracteristic equétion which describes the onset of the instability has
been obtained:from the dynamic response of the pressure to the inlet flow
pertu;bation. For.simplicity, the uniformly heated sysﬁem has been con-
sidered without a loss of generality, then the dimensionless groups which
" govern the stability of the system have been obtained from the charac-
tefistic equatiqn. | _

The D-Pgrtition method and the Hikhailov staﬁility eriterion have

been used for mapping of the stability boundary. The usefulness of the

 Stabi1ify Plane}'i.e., Nsub - Npch plane, for amalyzing two-phase flow
stdbility has been démonstrated.. |

| 'An extensive parametric study of the stability limits has been
carried out both analytidally and numerically,

Based on the complete analytical solution, the.éjmple criteria
have been obtainéd under particular conditions; however, the applicability
of the criteria for the design purpose is mot strictly limited to these
opefational conditioﬁs. This has been demonstrated in coﬁparison with
the exact numerical solution. Thus, we have preseﬁted not only the exact
solution using a high speed computer, IBM 360, but'also simple algebraic
'_critéria which require only slide rule caiculations. It is important to
note hefe th;t the input data for the above solutions do not require any '

additional information than those required for steady state calculations.

ﬁFinally, both the exact numerical solution and the simple stability
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criteria have been compared to the existing experimental data. The
theoretically prediected results show a satisfactory agreement at various

operatioﬁal conditions, which confirms the accuracy of the analysis not

only on the qualitative aspects, but also on quantitative bases,

By knowing the effect of unpertutrbed time lag 7., in the unifbrmly

12
heate& sttem on the stability boundar&, now we can return to the dis-
cussion on the nonuniformly heated system, i.e,, Sectioﬁ VI-8. It has
been found there that bqth'the steady state value for the residence time
;iZ and its fluctuation should be considered in the stability analysis.
Fufthermore, it has been shown that increasing the heat flux at the boil-
ing boundary in compariébn with the non-boiling region heat flux reduces
the fluctuation of §\; thus, it has a stabilizing effect. However, if
the above two heat fluxes have fhe same order, then the Weigﬁting func-
tion in the integral of Eq. (VI8.3) has a coupling effect with the expo-
nential term, and the influence of the nonuniform heat flux on §\ camnot
be seen directly.

The case of the chopped sine heat flux distribution with a suffi-
ciently high base heat flux, Fig. S, falls into the above category.
Hence, it is necessary to examine the exact characteristié equation in
order to establish the dynamic effect of the fluctuatingtboiling.bound-
ary Sh. Apart from this difficulty, it may be said that, for this par-
ticular system, the changes in the steady state values of the residence
time ;12 and the reaction frequency are more important than the effect
of 8\, due to the existence of the high base heat flux. By taking into

account only the former effects, the characteristic equation basically
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teduces to a similar form (see Section VII=1) with the following differ-

ences between the uniformly and nonuniformly heated systems.

¥ i .= = . -
If _ A K =z 7 ‘/2!1'1) > Tracu) ., ﬂq_-.(ﬂ) >0 (u)
and ' I)\* > :Z_L 3 E: (o) < EZ (w) —QW(I"'LJ (ﬂ"(“)

where the subscripts (n) and (u) stand for the nonuniformly and the uni-

formly heated systems, As can be seen from Figs. 15 to 28, the values of

N 2t the intersection of the line A* = 1/2 and the dynamic stability

boundary are usually higher than (Ns If this is the case, the sta-

ub)c'
bility boundary for the nonuniformly heated 'system in the stability plane
exhibits a more unstable system than the uniformly heated system as A% .

increases over the value of '1/2.

ub > (Nsub)c’ the nonuniform heat

In the range of A* < 1/2 and N_
flux has a weak stabilizing effect. On the other hand, in the range of

< 1 X 3 o= q -
N (Nsub)c’ it has an increasingly destabilizing effect as Nsu de

b

creases. This result is also in agreement with the experimental observa-

sub

tion by Biancone et al. (10).
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 CHAPTER XII .

SUMMARY AND CONCLUSIONS

-XII—I; Field Equations
The mixture field equ#iions have been derived by statiétical
averaging similar to that of the turbulent flow. The results turned out
to be quite similar to the field equations for the heterogeneoﬁs chemi-
cally reaéting single phase system, for example, the mixture balance equa-

tions of momentum and energy have diffusion terms due to the relative

motion of the fluid. However, in contrast to the field equations for
chemically reacting single phase mixtures, the field equations for dis-
persed two-phase flow systems derived in this analysis_include also terms
which account for the effects of turbulent fluxes and for the exiétence
of intexrfaces between the twé phases, We note that this is the first
derivation where these interface termé appear eﬁplicitly.

In order to simplify the mathematical ﬁodel for the dynaﬁic analy-
sis .of the channel, the above time.averaged field equations were inte-
grated in the radial direction assuming aﬁ axially symmetric flow. The
resulting one-dimensional model is analogous to the standard single phase

flow model in terms of the mixture properties defined in our analysis.

The similarity g?oups governing the two~phase mixture have been obtained
from the above model. Basically, eight dimensionless groups scale the two-

phase mixture undergoing the phase change, excluding the ones from the

T
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covariant terms which are usually neglected even in the single phase flow,
The significanée aﬁd the order of magnitude of each group have been dis-
cussed in'Appéndix C and Section ITI-2,

Briefly, four similarity groups, i.e., the phase change, drift,

density, and surface numbers, characterize the two-phase mixture. The

first and second groups take account of the rate of phase change and tﬁe
drift due to the relative motion of phases, respectively. The density
number {or ratio) scales the pressure level of the_system and thus the
fluid properties. The last group, the surface number, stands for the
capiliary (body) force due to the surface tension at the interfaﬁqs.

The equality of phase change number N§Ch in two different systems ensures

that the phasé change has progressed equally in both as has been noted by

- Zuber (33).

XII-2, Formulgtion of the Problem

The system of interest was subdivided into four regions, i.e,, the
upstream un-heated, heated liquid, heated mixture, and downstrea@ un-~ -
heated regions, following.the differences in the thermodynamic processes,
For each region the aystem was defiﬁed'by the'appropriate.equatibns of
state and the field equations describing the conservation ?f mass, energy,
and momentum, : 8

By introducing two equations of continuity in the mixture regionm,

the effect of the relative motion of the phases has been taken into ac-

count, In the mixture region the thermal equilibrium was assumed between

two phases and the analysis was concentrated on the mechanism of the

kinematic wave propagation (low frequency oscillatioms).
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Theldynamic problem was analyzed by pérturbing the inlet flow and |
linearizing the differential equations, First, the kinematic problem was
solved by decoupling the momentum equation from the rest qf thé equations,
vhich was a consequence of the assumption that Py = pm(im). Then the dy-
namic response was obtained by using the solution for the kinematics and

integrating the momentum equation along the channel,

XII-3. Characteristic Equation

The singularity of the dynamic response of the system gives the
characteristic equation which describes the onset of the instabilities,

The problem was solved first for the most general case with arbitrary

heat flux distribution and two-phase frietion factor model, It can be

seen from the general characteristic equatioﬁ that, depending on the heat
flux distribution, the form of the characteristic function may not reduce
to the elementary function such as the exponential polynomials. However,
it has been suggested that this difficulty may be overcome by approximat-.

ing the kinematic wave velocity with a linear functiom in z, since the

change of Gy is pfoportional to the Integral of heat flux in z direction.

This point is discussed in more detail in Section VI-8. Nevertheless, the
effect of chopped sine heat flux distribution was concluded to be de-
stabilizing for a higher subcooling number and for a very small subcooling

number. However, it should be noted here that, in the range of A* < 1/2

> (Nsub

) *
and Nsu )c’ there also exists a stabilizing effect,

b
By taking a uniform heat flux, the effects of variodé friction

* .
. This is a substantially impoytant conclusion for nuclear reactor
application. .
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factor models.have been examined both ffamfthe static and dynamic points
of view. It can be said that fhe perturbation of a complicaﬁed Ewo-
phase friction factor model such as the one given by Martinelli and Nel-
son (43) may lead to a numerical instability, due to the fact that such
models will generate lafge numbers of terms in the exponential poly-
nomial. |

In view of the characteristic_eQuation, the important factors of
the instabilities are fhe time delay in the liquid subcooled region, thus
the space lag, and the time delay in the mixture region. These two ex-
ponential termg introduce a phase shiff bétween the system response and

the inlet perturbation. The characteristic equation can ptedict not only

the onset of the flow oscillation, but also 'the excursion instability.

Hence it can be used to obtain stability maps and stability criteria by

using the standard mathematical theory on the stability.

X1i-4. Stability Map

The characteristic equation was non-dimensionalized and the govern-
ing set of similarity groups for the stability of the system was obtained.
Excluding the geometrical similarity groups from the structural configura-

p

NRes’ NFr’ ki,-and.ke. The £irst fogr groups characterize the two-phase

flow system with a subcooled region and are given by the following defi-

tion of the system, the governing parasmeters are N_, Nsub’ Npch’ N&,

nitions,

Ny = ‘P?/_Pf |

_ zl‘iaz AP
Nsub Aiﬁ | Fa
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The remaining dimensionless groups N ki’ and ke have their

Res? NFr’

standard significance and need no further comment. It was found that the

most appropriate domain of stability maps is the Nsub andLgpch plane, i.e.,

the stability plane.

The characteristic equation has been solvéd for the stability bound-

_ary with N_ 4 and Npch as parameters. First, all other parameters have

been fixed, then the effect of each parameter has been examined by éhangf
gin the value for one at once. It was nécessary to use # high speed com-
puter in order to salve the characteristic equation in its exact form,
Nevertheléss, the computing time for the stability test at a particular
operational conditioh is almost negligible compared with the finite dif-
ference method previcusly used in the stability analysis based on the
numerical integrafion of a set of partial differential field eﬁuatioqs.
Thus, in our analysis, the extensive paramefric study could be carried

out with relatively short computing time, In solving the characteristic

equation for the stability boundary, the D-Partition method and the Mik~
hailov criterion have been utilized. First, the auxiliary parameter S*
was set equal to jw*, then the real and imaginary part of the characteris~
tic function was equated to zero, Then the above two equations have been
solved for the neutral frequency curves. It was found that more than one

harmonic frequency curve exists; furthermore, w* appears quasi-periodically,
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Each subdivision is checked by the Mikhailov criterion, which shows that
the first neutral frequency curve correéponds to the dynamic stability

boundary and other harmonic frequency curves indicate the increase in the

degree of instabilities, These higher order instability regions are also

observed in the experiment (37, 62), 1In éddition to tﬁe dynamié stability
boundaries, there are two singularities corresponding to w¥ *.6 aﬁd
w¥ =+ o, Only the first condition is important, sincé it gives the bound-
ary of an excursive instabiiity. The summary on the effecf of various
parameters on the stability of the system hés been giéen in Section X-3.
Briefly, the conclusions afe as follows..

-There is a characterized Nsub such that increasing Naub_i; stabil-
> (N

izing when Nsu and destabilizing when Nsu < (N )c' For the

b sub)c b sub
range of Nsub > (Nsub)c’ the stability boundary curve is almost a straight
line nearly parallel to the constant quality line. Furthermore, the

value for (Nsub)c is given by
<
(Nsub)c ~T

Increasing Npch is always destabilizing whereas the increasing of

system pressure gtabilizes the system. Furthermore, the important part

of the syétem pressure influences on the stability boundaries in the

N - N plane is taken into account by the coordinate itself, {.e.,
sub pech .

by Ns ch*

Similarily increasing the inlet veloeity stabilizes the system.

ub and Np

However, the most significant influence of the inlet velocity is accounted

for by the phase change number Npch'

L Ak tml 4 aenon el oo
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Increasing the drift number Nd

of the relative velocity is to stabilize the flow. This result can be

is stabilizing. Thus the'effgét

explained by the fact that an increase of the relative velocity decreases
the void fraction and thereby increases the mixture-&ensity which has a
stabilizing effect.

Increasing the inlet flow restriction k. is a strong stabilizing

effect, whereas increasing the exit flow restriction ke-draatically de-

stabilizes the system.
Both the static and dynamic effects of the frictional pressure drop

were investigated.' The results show that increasing the two-phase pres-

sure drop destabilizes the flow. Similarly, the dynamic.effects are very
important, since by using a different two-phase friction factor model,
the order of the exponential polynomial may increase, Furthermore, a
complicated parametric dependence of a f?ictinﬁal pressure drqp model

can generate large numbers of terms in the cﬁafaqtéristic eﬁﬁatidn}illt
can be said that bqth effects are direc;ly'relétéd td the-caﬁplication

in tﬁe numefical calculation and in extreme cases can lead to numerical

instabilities.

XII-S. Simpie Stability Criteria
The exact application of the characteristic equation to the sta-
bility analysis reduires the ﬁse of a computer, though once the computer
program has been established, the stability test can be carried out in a
matter of seconds. 1In Sectiom IX-4, we have dévelopedlsimpie algebréic
criteria which can be appliedlfor the first hand design purposes. The

simplest criterion (XI4.B) was derived by the lumped parametef_methpd.
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Thus, its applications are limited fo ﬁhe case with strong inlet and
outlet_pressuré drop restrictions. More sophisticated criteria were ob-
tained by simplifying the original characteristic equation. In our aﬁaly-
sis, we considered the asymptotic casze of g% << 1,'which_corresponded to
the high subcooling number. By neglecting the higher'order oé w¥, we
were able to obtain a criterion (IX4.23) or (IX4.25). The theoretical
limitation on this model is given by the inequality (X4.1). However, the
comparison -of this criterion with an exact ﬁumerical soluﬁion and the
experimental data suggests the extrapolation into furthef low subcodling
regions. This point has been discussed in more detail in Section X-4.

Hence we may conclude that for the design purpose the ipequality (IX4.23)

is an excellent criterion which can be used to aveid the unstable opera-

tion., This criterion gives not only the qualitativF parametric depend-
encies of the stability boundary, but also quantitative aspects such as
the stability margin of the system. .

A further simplified ﬁodel (IX4.32) of thé above criterion was ob-
tained for a homogeneous flow with no grévity effect, From the in-
equality (IXAfBZ), it can be seen that the stability boﬁndary is given

by the straight line parallel to the constant exit quaiity line. .

XI1.6, Comparison with Experimental Data

The exact numerical solution as wéll as the simplified eriterion
have been compared to the experimental data of Levy (5), Solberg (%), and
Carver (7). The geometry of these ihdependent experiments includes both
circular and annular tubes at different diameters. The working £luid in

all three cases is water, and the experimental data are taken at rela-

]
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tively high reduced pressures., The campariéons‘of the theory to the ex-

perimental data are shown in Figs. 23 to 28. The quantitative agreements

of the stability boundary as well as of the frequency of the oscillation

are satisfactory. However, it can be seen that, at very small subcooling

regions, the experimental data exhibit more ﬁnstable systems than the
ones predicted by theory. Twé reasons for this discrepancy have been
considered. First, at the extremely low subcaoling; the stability
boundary curve itself has a larger change in Npch compared to a change in
. Nsub' Thus, both'experimentAI and numerical.pdints of the starting of
the oscillation are difficult to obtain accurately. Second, the effect
of the subcooled boiling, which gives increased phase change, shifts the
coordinate itself. This corresponds to the higher N ch’ the phase change
number. The effeqts of the change in le.are compensated for by the |
changes in Q, the reaction frequenéy. Thus, the effect on-NSub is con-

sidered to be small.

Lo B i o e
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APPENDIX A
TIME AVERAGE

A-1, Time Domain and Definition oﬁfrunction

In the following, we shall apply statisticél avéfaging to the two-
phase flow field éssuming that the occupant of any particular point is

alternating randomly between the liquid and the vapor and that the time

averaged functions are sufficiently smo&th'such'that-they are éontinuously

differentiable,

First we recall that the singular éhéraéteristic of two-phaée or
of two immisecible mixture is the ﬁresence of one or several interfaces,
between the phases or cOmponents 57). Furthermore, whereas single phase
flows can be classified ~according to the geometry of the flow in.laminar,
transitional and turbulent flow, the flow of_two phases or of a mixture
of immiscible liquids can be classified according to the geometry of the
interface into three classes, i.e,, in sepa;atéd flows, transitional or
mizxed flows, and dispersed flows, bThese classes of structured flows are
shown in Table 1,

In our analysis of thermally 1nduc§d flow instaﬁilities, the above
three classes of two-phase flows are usually coexiéting under turbulent
flow coﬁditions, thus it is appropfiate to use a statistical aﬁeraée-
rather than formulating the problem based on the separéted.flow moﬁel.

The discontinuity of properties dué to the existence of inférfaces

is illustrated in Figures Al, A2, and A3 by taking a mass concentration

———



Table 1.

Claseification of Structured Flow

Phase Single Phase Two Fhasc
Componant Two or Multicom. ! Single Covpanent [Two or Multicom. Geometry
Class| Type | Regime | Configuration Configuration Configuration
a) ‘1"‘1““ Blm  f4) Liguid film
. n vapor :
Film | rsquia as B b) Vapor £il in gas —Z e
flow por £aim b) Gas £ilm B
kcacccrrorsrd
3 A=), B=2 in liquid in liquid |
- { bolling }
e
E Strati-
n B fied 3
el
rg‘ flou Ltquizcn.s.c - Liguid &,C & 2
™ . ; I ;
gag B, etc.
b {layexed] a.. |, B=2.C=3
-
"
o & a) Core: liquid |a) Core: liguid —
:.:;' o Annular Core: liquid A annulus:vapor annulua: gag -
E flow Annulug: b) Core: vaper b) Core: gas Iz
o liquid B annulue:liquid annulus: 1iquid) |
E A=2, B=|
L) a} Liguid jet a} Liguid jet
Fi Jat Liguid A jet in vapor in gas l I
-é flow in liguid B h) Vapor jet ) Gas jet 2
- in 1i 4
3 A=2 ,Be| n liqui in liguid )
Slug Slug: liquid A Slug: vapor Slug: gas @@
flow Coztiléumah?uii H continum: liquid [Continum: liguid !
=2 Bm . Adadsasasd
i FEETTETITTIT Ty
Bubbhly Core: vapor Core: gas —
,_a‘ annulay Annulua: liguid |Anoulus: liguid —
E o flow with vapor bubblegeith gas bubibles| —cTort i i
— 53 —
L ';: [TCETETTTTCENTY
o o proplet| Core: liquid A Corqs vapor with [Cora: gas with | .. .
g ! annular| Annulus:liguid liquid droplets |iiquid droplets | . * .'.:.;_&.:
] 4 flew |Dropletsrliguid B Annolus: ligquid  [Anoulus: liguid o
Ty
i 3
[+
g 4 | Bubbly Cores vapor with Kore: gas with | sSasa
3] Lt
W g Aroplet liguid droplets liguid droplets 4 -,-.__ £
o annular Annulus: liguid  pnnulus: ligquid M
'E ' flow with vapor bubbles "";::b‘;:go‘ B N
2
8 Film Liguid A £film Liquid film Ligquid £ilm
o flow in liquid B with|] in vapor with in gas with . el .
with droplaeta A, ete. droplets, etc. droplets, ete. —~m
. WIPFITTITYYY .
g jantrain-
-
] ment
e *
g pubbly Bubblas: vapor Bubbles: gas 4.5
- flow Continum: liguid [Continum: viquial '+
E g 4000
§ B _§' broplet|Dropleta:liguid & Droplets: -liquid [Droplets: liquid é,'-'-".
b é a flow |Centinum:liguid B Continum: vapor [Continum: gas 5'.-'-'
0 - *
3 18
. 2" | partie- alParticles:solid la)Particles:
2 o~ aolid
L o=t E ulate oontinum: liquid [|eontinum:liguid
a % ri flow byParticles:eclid |b)particlan:
| t R ’ solid
bl g gontinum: vapar Continum: gas
{ice formation)
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Figure Al, Vapor Concehtration in Space at t=+1tg

Eigure 42, Vapor Concentration in Time at 'x=x._.,
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of vapor phase cg. Figufe Al shows thé inStanﬁanéoﬁs'discontinuities of
Eg in space, whereas Figures A2 and A3 exhibit the discontinuities in time
at some fixed point. From the purpose of statistical averaging, the view
from the time coordinate gives a more accuféte picture of the problem,

It can easily be seen that four distinct processes may occur at that

peint, which we can classify as follows..

i) ¢, = 0 for all t ; always liquid at Xo
ii) cé = i for all t ; always vapor_at Xo
iii) cg changes stepwise liquid and vapor alternéte
between 0 and 1 ; at Xo
iv) cg iz undefined ; o interface stays at Xo for

some finite time

bl

It is easy to understand that, following a changé of cg, all properties
' may change drastically, because the fluid which occupies the point will

be different.

i

Sincé for the case of (1) and.(ii) the gtatistical averag-
ing at that point is trivial, we shall eliminate such cases. Furthermore,
as case (iv) is a rather singular configuration of case (iii) unless the
interface i; stationary, it will be considered later, Hence we shall
examine the case (1ii) where the vgporlconcentration alternates stepwise
between 0 and 1. |

Our purpose here is to time average the fluid properties and field
equations in order to treat thém as a mixture. First we take a fixed
time interval At of statistical averaging and assume that it be large
enough to smooth out the local variations of properties yet small com-

pared to the mécfoscopic time constant of the unsteadyness of the bulk
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fluid, This assumption is identical to that made in analyzing turbulent
single phase flow, After choosing any particular reference point and

time (Xo, to), we have definite times, t1s Eoy eowy 4, ... referring to

the interfaces which pass the point Xo from time (to - At/2) to (t0 + At/

By choosing an arbitrarily small time e we can define the time
intervals associated with interfaces, where the characteristics of the
interface dominate, The symbol [&t]s gives the set of such time inter-

vals, i.e.

[at), 5 t3 ti-estgt+e& i=f-,n (ALD

The remaining part of the At interval is given by [at]T, which can be

separated into a vapor and liquid phase time intervals, Thus

[ A:t I. = [atly + [at]y - AL
and

A . At 4 . 4 A (A1.3)
Then

Lot J=[atlg+ [at 1 = [at], rlatly* [At_]&”(Al.ll-.)

Now we consider =2 function F associated with fluids which has the follow-

ing properties

- —— e )_;-:-" » E.
D F=FXt) 3t g ek ot

exist except at the interface

|




237

II)  for fixed X = X_
FXo,t)=Fg(Xet) | Fe(Xe.t)=0 4§ telat]ly  (a1s)

F(Xo,t)= Fg(Xo.t) |, Fg(Xo.t)=0 4 te [at], (1.6

The fractions of time occupied by vapor and liquid are defined by taking

the limit ¢ = 0, as

E»0C

Aty = La[Z { (ti.-8) - (t;+e)} +5tg] Loam (L)

Aty = U [F (b, -g) = (berd} + 5t ], Leame

¥ 20
and therefore

(If the interfaces are not stationary) (Al1.8)

At = At + At
g f

Instantaneocus Time Scale

For simplicity, let us introduce a new time coordinate with re-
spect to t = t, i.e.,

E=t-t B (41.9)

_%11- < g £ at (A1.10)
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‘The correspondences of sets [At], [ﬂt]T3 [ﬂt]g, [ﬁt]f, and-[ﬂt]s in the

§ domain are defined by [A£], (€], [ag]g, (28], and [ag] .

A-2, Time Averaged and Weighted Mean Values of Functions

In this section we shall define the time averaged and time weighted

mean values of functions introduced in the previous section. First let us

define the time averaged function F at t0 as follows,

Fx to)y= bim L E(x t)dt ,
s20 AT SlatJT' ) (A2.1)
or = Lim F(X',('(ﬁ*tc))dg

1
gro AE —( [ael, |
\ | (A2.2)

If we assign'the integer 1 for vapor aﬁd 0 for liquid, the proba-
bility of the vapor occupying any given point can be calculated by a .

statistical average, Thus we have

|

F(X,t) = M(X,t) _ (A2.3)

1 for vapor phase

and . M(Xst)

M(X,t) = 0 for liquid phase

r

' We note that, as a consequence of thé previous assumption, the interfaces
are not statiohary and do not occupy a location X for finite time inter-
vals, Then by using definition (A2,1), we can find the time averaged

probability of vapor phase ag as .
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-~ . i '
odg = M = — \  M(x.t)dt (42.4)
= ézj !
at
Similarly for the liquid phase we have
dy = T-M = L% (A2,5)
at
From (A2,4) and (A2.5) we have
g + olg = | : . (A2.6)
which are the results based on the assumption that o = 0. Hence, we

shall introduce the statistical concentration associated with the vapor

phase, namely

g = ok = %‘éj - (42.7)

D(-{. = !_,d - Ati
At

Now let us proceed. and consider the average of the function F. From Eq.

(A2.2) we have

oo b (g o, Prcode s F;(x,f)dt}

E->C ]T [at)y

Fri + Pg

—
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Thus we get

-

The functions Fg_and F. are directly related to instantaneous, local

physical or flow variables of each phase; however, ?é and Ff are averaged

over the total time interval At; thus, they can be considered as super=
ficially averaged values, From this point of view we introduce more

reaspnable.mean vaiues of the functions which depend on the characteris-

tic of the variables, If a variable G is an intensive property such as

the pressure or the temperature, the weighfed mean value is defined as

Go - b U

L G}ddt~% é;& . . 2.9
Aty €20 J’[At]ﬁ k <5 (k= G,¥) ( . )

Hence

G = Gq+ Gy = LGg + (%) G  (42.10)

‘which shows that the intensive variables are weighted by the probability

% . On the other hand, the volume, energy, enthalpy, etc. are considered

‘to have an extensive characteristic. If the functions Fg and F_ are

f

taken as the varizbles per unit volume, then they can be expressed also

in terms of the variables per unit mass ¢g and §. as

Fa= fita (4= 9.%) (2.1
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Here ¢g'ahd *f are directly related to the instant local physieal and
flow properties of each phase. The appropriate mean values in this case

should be weighted by the averaged densities, thus

fpary ~

Ve = . Ja Ve - (8= 9,¢) (A2,12)

—

f4

In particular for the densities we have

Thus we get for the mixture demsity

P =R+F- a B+ (- F (A2.14)
bing Eq. (A2.11) and (A2.12) we have

BB = R (a=a,{). (42.15)

where E ,ﬁ-are the weighted mean values of f:i and % . The we,ighted

mean values of the mixture are defined by

= fl‘n”’ - LB r-L) kv (42.16)
P % fa + (1=d) jS;

i
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A-3, Time Average of the Derivatives

In this section the relation between the average of the derivative
and the derivative of the average will be obtained.

By the time derivative of the average, we mean

_..l’ti:_ a"Ec/ L L F(x., t)d!tJ A-"— fu-J F(x,, t)dt (A3.1)

At £+0 [At] atly

_ where

F=F (X, t ) ' ' (A3.2)

In view of Eq. (A3.1), the domain of the integration is discontinuous,

‘hence we subdivide it and apply the Leibniz Rule to Eq. (A3.1). Thus we

have

) af(-’h,’t:)_ { - o - \
3t, . Jt.l At a-»o [AgIrF(X"' ?*to)d'g} . (A3.3)

- ﬂm aF(X.:J‘Ev*t},
At &>¢ Jagl, ote

b T -9 s, £+tJ+3(§‘ D, 3.+

& »0

}dg'l"

Then from the definitions

-a_F; - aF_(Xotc) I + | - Al.4
S = 5% - Zar{Foet-Froetn) @0

On the other-hand, the average of the space derivatives such as %Eﬂ. 3

X
2F

3% at X = Xo can be written genérally as
; .




JR—

SF(X. td Lim _l_f _(__Ql dt
[atd¢ A

3 X; T gs0 AL o X
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(A3.5)

where X and t are fndependent, except at the intérface_where we have a

relation

ti ® ti (xo’ to)

Therefore, by applying the Leibniz Rule to EQ. (A3.5), we get

OF (Yo td . lim 2 {_Lf RO, t)dt -
% latiy ' :

BXJ E*0 3X, AC

DXoj

(A3.6)

(A3.7)

4 Lin z - 28 | iy, by 3B B, tire))
' te 3 XOJ ts ’

The last term of the right hand side of Eq. (A3.7) is not clear and .

should be examined in more detail. In view of Fig. A4, we have

lin . o+
e =~ 0 ti+e"ti
lim - ’
e=-0 fiTETE

and corresﬁondingly_

lim

+ =
e F&, t; £e) =FE&, th)

i i

The unit normal vector of the interface is defined such that
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Figure A4, Neighborhood of Intexrface

Figure A5. Displacement of Interface
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. (A3.8)

Tﬁen

n* v 20 ' . (A3.9)

n v <£90

where "n+ and N~ corresponding to the'.limit outwa_rd'noi:ma_l vector of the

th

fluids at each side of the i™™ interface.

Since ﬂ+ =N " {re have

+ :
+. - n o-‘J'- + . *
_ F(Xo’ ti ) Mg+ Uy F (xo’ ti.) : (43.10)
and
- = o m.-.' U'o -l

For £ = = pius ¥ %o &0
Here we assumed that ‘n;,’U',;# 0 and the 'pért;‘.culér case wﬁen this agsump-
tion does not hold will be discussed later. In view of Eq. (A3.7), our
1;

interest here is to ffnd the gradient of t,; however, we have

E, =8+ L,

hence

I(t; £E) _ gty
@ Xoj -0 to

(A3.11)

* - '
See end of the section for the discussion of the singularity.
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This is a change of interface passing time t, at X by shifting the posi~

i
tion by dXo.with the fixed time scale, i,e,, Fig. A5.

By-taking small displacement dxo we have
[dXo|=" fi-dXo  (A3.12)

which iz a normal distance,

The velocity of the interface in normél direction is given_by

Uiy = Mevp BN REY
Hence we get
dgi = ﬂ;-d.xg o - - (A3_.14) |

Y

The gradient of §i becomes. in the temsor notation

3t | = grad ["é;] = ——l-di{-"-!— e (A3.15)
dXo; dx,‘, N Vi -
However
don -5,
dXoj Lj ,
Thus we get;
2%

(A3,16)
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From Eq. (A3.7), (A3.1l1), and (A3.16) we have .

R _ 3.!_-:()\’;,& i 4, - : :
2X; = Wl %'.—t" [ﬂ F_(xo,t,-_)+n cho‘m} (43.17)

I-rl

also using Eq. (A3.4) .and (A3.10) we obtain .'

i

O L QFEMet_ v 1 IV (etep —TTmn U, (43.18)
t dt. ;At vmipn - F L]

Whereas the interface thickness § corresponding to 2¢ is given by

§ =2¢ U:.n IR : | (A3.19)

In this section we assumed that § ~ O corresponds to ¢ - 0, where & is
taken to be an arbitrarily small number. '_I'his is true under two condi-
tions given below. Since o

98 _ ¢ PRGN (43, 20)

ote af‘, S .
and .

28 _ & Qﬂn(u:..) (a3.21)

BXoj BXOJ .

the acceleration and convective acceleration of the interface should be

finite in addition to the condition that U # 0 .

N :
See end of the section,
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On the other'hand, if the normal wvelocity of the interface is
zero, i.e., n,oe v, = 0, then the interface may stay at xo for some finite

time, Thus

Lim [z&t] ¢ F 0
€70

In this case we have a statistical concentration of the interface aé which
is given by

o =ﬁts

At
and
At = .Atg + Mt + Bt '
Hence we have

o +o_ +a =1
£ f 8

A-4, Time Averaged Overall Balance

IOur time domain of iﬁterest can be subdivided into [bﬁ]s and [&t]T
as shown in Appendix A-1. During [&t]T, the standard balance equations
hold,'whereas in [At]s the interfacial balance equations (jump conditions)
hold. Let us first proceed with the aﬁalys’is in [m:]T. |

For time t e[ﬂt]T = [ﬂt]g + [ﬁt]f , we consider the bélance.of

matter w'per units mass in the following form.

Vo= 2L 4+ v pyu+ VT - ¢ =0 @s.1*

* —
For example, y stands for the mass, momentum, and energy in which
case ¥ is 1, v and e, respectively, '
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Here J and qu represent the generalized tensor efflux and generation of
¢1 respectively. Wﬁen Eq. (A4.1) is applied for each phase, the sub- _
scripts which differentiate two fluids should appear with variables,

For time t e[ﬁt]s, we use the standard jump conditions with the
thin layer assumption for the surface where surface properties are assuméd

to be constant across the layer.

Then the balance of matter ¥ becomes

SB "=' {_DI_P_V + (ti U- Pw),ﬂ - cpb }(-. - (44.2)

ot

-5 [P U0 P T W00+ T

+ (t:& K),p } =0 (d;p!=‘22 x.jglaz—;)

The averaged balance per volume can be obtained by integ:ating the

proper balance equations in time domain. Leét us express the balance equa-

tion in general by

B=20 (A4.3)
where _
B=V, =0 for t e ["3"]': : (A4.4)
B=53=0 - for t e [At] - (A4.5)
By taking a time average of B we Have
(A4.5)

A Bdt = o
[at] '
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Substituting Eq.. (A4.4) into Eq. (A4.5) we obtain

ey Vpdt + fc Mim{ Sgdt.o . (4O
AT 220 Jaacly At 870 Jtys

The first term can be expressed in terms of the 'ave:aged values defined

in A-3. Hence, from Eq. (A4.1), (A3.17), and (A3.18), we have

Ll vpdt = 9F"’+v fwu+v;r—-¢>+ (84.7)
At EH0 fat]y .

+3 5 o LRy T )

+ [Py +T7]) =0

" Using Eq. -(AA.Z) and (A3.19), the second term. of- .Eq. (A4.6) becomes

L L)mj Spdt = 7 Lin 26 £ +(t"quu), _4%}‘ IR
[atls e ¢

At €= 30 At
-% % W {n TRCETATATS A
..‘.. n-o[P-(U-“" Ul.)l{,-+ J--] + (ti K)’P}i =O

Substituting Eq. (A4.7 and (A4.8) into (A4.4) we obtain a time averaged

general field equation for the matter y,
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2FY £, iopn b)) (k9
S v-Pyv + 7T - qa,, fm---{b-t-—Jf(t,Paffw,‘,qf;,-}£ (44.9)

__%z{ (tiKJ,pL%

On the other hand, using the definitions of (Al,5) and (Al.6) we can get

2.5: ¥ n : - =
StttV RYeG 4V 0k - P F

I T ' - .
% Feles ™[R (VK + T}, 7O

3

We define

Be=-T At[-- fla- [f:g(w UJW.«.*J&]} (8.11)

2

il

‘_Z al__ {U;,, (td ) }i .. ('A.4..12)

Then the interface condition becomes

§ Lm 28 [ OPY ; Y - b C (A4.13)
£0 AL { ot * “"‘Fq/u:;" ¢"_}i+
P, = 0
K14 |

For each phase k = g and f we have

(A4.10) |



CM.il

‘ _ 252

And the mixture field equation is an addition of the above three equa-

tions; thus

*'JF““ +V-PYU + VT ‘H+ZL1"%{3&+ (44.15)

+(t PV~ ) — b=

- If we can neglect the surface capacity of the matter ¥, we get

L:mg[a”"" v (8 sw),ﬁ, P} =0 N

g»0 At

‘Then we have only the source term ¢s’¢sk at the interface, thus

& 5 - (84.17)
z c#%-k - ?ﬁ.’s =0 _
, 4794
‘%E‘% 4V RV +VTa=F= R, (Ae15) 418)
&
SP¥ L p.pyr +V-T~-P=¢ (A4.19)

et
It should be noted that Eq. (A4,.18) and '(A4.19) are quite analogous to

the hetéraggneous chemically reacting system.
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A-5. Interfacial Condition . o

By neglecting the surface capacity term, i.e., Eq. (45.14), the i
interfacial condition takes a conventional form of "Korchin's jump con- lll
' |

|

d_itién." Taking only the effect of the surface tension in the line flux

term K , the interfacial condition can be written as follows.

‘ﬂ"'[P“(‘r‘f"fi)%*Js_]*-ﬂ;"['P,c(tJ;-mw{c+J}']+<1>.ss=o (a5:1) - |

This has been done by Slattery (54), Delhaye (55), and a more general
case was treated by Scriven (56). The results for mass, momentum, and

total energy are as follows.

 Table 2. Jump Condition

s Js ¥ Jt P
Mass i 1o, 'j_ 0. : o)
Momentum - Vg - -Ts Vg -T; | (ti O."m(l'),‘s
Total Uy | 2 e T -
e S A R L

The interface conditions for mechanical and internal energy are

given in Table 3,
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Table 3. Interface Condition

Yy

Js “ Iy &

: S
Mechanical V3

' z
-4 vy’ AR

h o . U.'!-U-
(i Icra p)m (—%—t)

Energy 2— 2. +m1,l_§_(1}5;v}.)
+“€'?+‘(lfj;{_lrl)_
(theatuy),,

e

=R Zy- (0}2-”;)

- 15, - (U5

A-6. Weighted Mean Values, Turbulent Flux, and Diffusion Flux

I) Following' A-2, the density of e_aéh phase is defined by

P =

1I1) The dehsity of i:he mixture

_f= k=g, £) (a6,1)
of &

CPu= B+ BBy 4—(1—4)}3_; (46.2)

III) The velocity of each phase

= k=g, £) (46.3)
7% o Pa |




v)

K2,

VI)

ViI)

The velocity of the mixture

(k= g, £)

Ui =_‘€£f = x Py Us + (I-«) £ Vg
Iz P
The enthalpy of. each phase
Lg = fate _ &;ﬁ-——
A g Fe
The enthalpy of the mixture
[, = Li_ _ A fhg 4 U8y

f B

The convective term

PYV = RV + GH

Let us define instantaneous fluctuation as

fo= Parl VW4V | Ui UsrUk k=g D

Then

Fa¥a Vs = (RS W+ W N O UK

But
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(46.4)

(A6.5)

(Aﬁ;ﬁ)'

(A6.7)

(A6.8)

(46.9)




Henﬁé
vz = ALYt RV

Therefore, from Eq, (A6.7) and (A6.11)

Pov = {a B Uy + -OR B L)+ 5 Fale Ui

. Then

e X
- Let us definé diffusion velocity Vim BY
% ARV Vg = ¥ U +§°‘* fa Y2 Vam
£=9.% ' '

By defining diffusion flux J° and turbulent flux J* as

IP= T oka Bt Vaw (k = g, £)
* - .
= ;‘ o W Ux™ L k=g, D

and using Eq.:(Aﬁ.IZ); (A6.14) we obtain

PUU= PatiUn +T0+T7
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(46.10)

(A6.11)

(A6.12)

(46.13)

(A6.14)

(46.15)

© (46.16)

(46.17)
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The useful relation between me and-‘ng can be obtained directly

from the definition, thus

o{E\/sm + (!_—olJE Vim=© (46.18)

VIII) - The pressure P

A S
and —_—
Pa= 2 k=g, D

IX) The field force 8 '

05&‘!:3 ' '
? = u | N k =g, £) - (46.20)

» Pm
And, if all the field forces are identic#lly constant, theft
- - .2
Inc 2 : a6.21

X) The turbulent flux JT

The turbulent flux is expressed more conveniently through the definition

= L Lo sl Fo Wi Vg - (46,22)
4t Ve Aty €40 Faa Vide = Ky
L [At]i o

Then

JT=§ % P ¥ UK k=g D 4623)
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'A-7; '_Balmbe'of-Mass, Moi;uentm, and Energy
I) Mass Balance

Using Eq. (A%4.14) to (A4.17) with
y=1 , 7320, =0, H=0 (A7.1)

and defining -

(A7.2)

]
Pl

the résults for the mass balance can be expressed by mean values of A-6.

Hence,
%ﬁ + U LU, = o __ _ (A7.3)
_ﬁ_}_ v (« f’z U‘«;)= r.? _ | (A7.4)
no+n o=o o we
ST < I B P - vﬂU-'J - “7.7)
r%‘ ;Z'At {U;n [ ’( ? L)J L~ |

Equation (A? 6) states the éonservation of mass at the interface
'without a source or a sink and Eq. (A? 4) and (A7.5) are continuity equa-

tions of gach phase.
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1I) - Momentum Balance (Mixture)

" By taking
Yeu | Ja-T-= PI%-Z“,"CR,%P& , = (o), @re

and substituting the8e expressions“iﬁto:Eq.:(AA.IY), we obtain the mixture

momentum equation,

c?;Ft“Um+VP”UMUM="VP+Vt“+ P@-ﬂ- (A7.9)
. V- (-.E M;E;"& Vi)
. V("% o m,)
CRaR Gran, ot
Defining_:.
- 5 d;: 2N (;oiéeiistzzngzgzt) (47.10)

2= ~ §-daﬁ r& Ve = — 21 f*sﬁ Vaw Vi

:’CTﬁ ""% fa ¥ L.’i'_ == ot fo YUK

for Bk

0%*) .
_)?P_}z | (k=8 O
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Qur time averaged mixture momentum equation becomes,

ac‘)f?f“ s Fu U Um == VP + V(TR TT) (A7.11)

+ Rde VTP gy

Equét:i‘.on .('Ai-r‘..12') is..-_analogous to. the single fl_uid ‘equation except the last
two terms ;&hich'élre tﬁe diffusion stress and the suffacé force. The mo-
méntu'm. equaft.i.on f'c;r. the heterogeneous 'chéthi.c._ally reacting system proposed
bf various‘aﬁthorS'(see;_for ekamplg, von Karman, Truesdell among others)
has the same form as Eq. (A?.’Il) except that the turbulent shear stress
;and thg .surface forces do not appear th_ere.' ' The momentum eqﬁation for

each phase also Cah.be writteﬁ as

_____JO;I;P&_U'& + V- d&? E 17& = - Vdaﬁ. +V"(%_: + T )+ (A7.12)

+0(§E§1 Z 'Alt{u ﬂl [&(U’i.'l.r)lf* Tk]‘}

III) Internal Euergy and Enthalpy Equation

By taking

y-u , J=8, H=-pPru+hrr @y

and using Eq. (44.17) with the interfacial condition for internal energy .

.(Téble 3), we obtain
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‘Zi o+ V Puu +V Z —A—t-g; g VU+'E Vujdt (47.14)
. o . _[;t T . .

- - % fwf mw- (%_:-—L-"*); "y e (._v%-_;&)_
'(t* m“ﬁ )p (_Vr_t) (tiasn) }

- For enthalpj i=u+ % s ﬁe.use fhe-following approagh.
Averaging.the,tot31 enétgy.équat;on in'terms.of'the'enthalpy and the me-
- chanical emergy equation, then subtracting the second from the first, we

can obtain the averagéd enthdlpyuequatidn. _Thﬁs,

_ ._ B Dp .

L |

gi +V P*U"'V%_At!%[‘{ot T VU} (A7.15)
. latlr

- U hd Y-U5)
"Zm:{“-—}{ ng- 3’-’3 ( J"""f Z}_( )
B S N . T ST Y
. .(z‘.,-( 0 O "gz o+ L (tiwadﬁ),ph
" We define_the energy diséipatibn térﬁs by
At E20 Tatly

5 o fmf (z— Vu-)o[,t— o . (a7.16)

I (:-4;.)” "”’) (-

At g

the combressibility effect on the enthalpy-by o :
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5 _;_ i~ o . _+ 

Dt . ' (A7.17)

; (E"{_n) {-— q?? '.' (&%’E)( ?)'@- U"J_ + |

D'-__‘_ |
I

[1%) A NPEY : ) w3 '
ZIEYEN (44 g pdPY o (4 dp
+ ( ) (tirat), .(tf,.a“.a LE')’I-"};.
the diffusion heat flux by
D = _' - :
F = % Xg Ly Vgﬂ-. L : (k =g, £) (A7.18)

and the turbulent heat flux by

T —'77——-; . N - . . .

Using the definitions (A7.18) to (A?.l_Q) and (A6.18) into (A7.15), we get

| aﬁni-m - . . - . — a '
SE +V Fehg VU=~ (V-z + V- 2T)f @cé“"ﬂ; V-ﬁb (A7,20)

The enthalpy equation (A7.20) is analogous to the singie fluid
equatidn except the last term (enmergy diffusion term) and the expression
‘for the cqmﬁre’ssibility effect ¢g; and the dissipation term ﬁe are modi-

fied to account for the effect of the interface.
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APPENDIX B

AREA AVERAGE : -

B-1, _Definition of the Area Average and the Weighted

 Mean Values of the Functions

After time averaging, the two phases are distributed in the field
and behave like two continua being able to occupy the same point at the
same moment, under the assumption that the interfaces are mot fixed in

the space at any instance. Néw our purpose here is to obtain & one-

. * . "
dimensional model which cen be used to analyze the problem where the

characteristic length in the main flow direction is much larger than the

one in the direction perpendicular to the main flow direction.

We define the average of the function G by
<G> EAi_(A G dA | ~ (BL.D)
Therefore the average mixture density <f,> is given by
<Pm>-% ;{—_L Fm ‘“’HAL"‘ ﬁ . ("'J)E]d»“ (B1.2)

Also the average of the statistical concentration <) is given by

* : .

There are two different approaches, 1) diffusion model based on

the mixture field equations, and 2) two fluid model based on field equa-
tions for each phase. Here we follow the first approach.




u> = ;\—L * dA

and we call <o) the void fraction.

The weighted mean density of each phase is given by

4?&»3%0%1 k=g, D

Substitute Eq. (Bl.4) into (Bl.2) to obtain

BINER IS LTI

And, of course, from the definition we have

=d> = = <&>

If G is an intensive variable, we have

By defining

We get

Gy = X Eg_ + con;)- |

<o G

<°{&> (k = g, )

KGeds=

CGam>= OGP + < -d>EG>
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(B1.3)

(B1.4)

(B1,5)

(B1.6)

(BL.7)

(B1.8)

. (B1.9)

P




If G is associated with extensive variables, we have

G‘-m‘-; Pm.qu
By defining
<y Selabar (k = g, )

<Kp Fu >

and
< Bn ¥
K dm DM Ing
Fn> < B>

we obtain the following expressions.

Ry = <R ¥

or

CPYL> = <h>KRICUTD+ -dDEBIC Yy

Hence the weighted mean velocity of each phase is given by

«U&»_—' ﬂ“ ’ (k"_"gs £} .

and the weighted mean mixture velocity by

€ Un> LBV <d>KHICUFD + GO IV
" - = . .

265

(B1.10}

(Bl.11)

.(Bl.12)

(B1.13)

(B1.14)

(B1.15)

| (B1.16)

_ ]
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Similarly, the eﬁthalpy of each phase is given by

<otk By e
{olg T >

Clp»= (k =g, )  (BL.1D

and the mixture enthalpy by

< Fudwd | SLOCHICUPHGAICEP LD
<Fw> : < P> (B1.18)

CAm>=

Furthermore, the vapor phase weighted mixture properties are defined by

(Gm), = S2T5 Gu> (B1.19)
< P‘} > - *
and -
o 5 :
(), = <Lt .20
<A Py >
B-2, Convective and i')iffusion Terms
I) Using the local definition of the diffusion velocities ng
and V the real convective term can be wfit:t:en as

'fﬁl,

which can be expressed in terms of the diffusion velocity as
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<l U >+ < T = <CBHnVo> + R Va Vind 32.2)

We define the covariant of the area average as

COU [ Bu W U]

]

P Vin ) — <F2 K W D<€ Ui

(B2.3)

: =  [on Yon n— & n.' |
n < Bn VYo (V5 Un2) > e
or = <k (Y-<uu, > (B2.5)

Also we define

o [ Bt Viaw ] =< R ¥ Vi — (> SO ¥d< Vem>  (52.6) -

or | = <°<'ﬁ‘§$;( v,e,,«—_«.vg,.»» (B2.7)
or ‘ = <o T (V- «Yo>) Viem > (82.8)

(k = g, )
Here we used the definition

{oig Fﬁ Vim D
<ol g ?& Pg

& Vemd = (k=g £) (829

And from Eq. (A6.14), (B1.15), (Bl.16), and (B2.9), we obtain

A>KRPL VgD = — I >LRD<C V> (82.10)
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By substituting Eq. (82.3) and (B2.6) into Eq. (B2.2), we get
<BVMUD + TP =< Fw«p« w.»+§<d;>_<<'fi>«w>« VQ (B2.11)
r o[RBT+ F OVl R Vo]

IT) Using the diffusion velocity with respect to <€ U,>

Let us define the diffusion velogcity with respect to K VD as

Vew = Uz — €< Un® (k=g, £)  (82,12)

and ) = A

e (k = g, £) (82.13)
<o g Fo >

< \?{ﬁm » = «Up »-— & Ui e
Then the convective and diffusion terms become
< fm ¥ Um>¥ ST =BRGPV +,§<d&>€< RY<E>< "?/;,..:» (B2.14)
¢ cov (4 % Vo

and here

o=

Cour [olk fa ¥ Ve | = <N{a=ﬂ (Vem ~ € Vo) (82.15)

= <ola fu ¥ (Th — € Ux») (82.16)

= olg Pl «¥») Viwd (k =g, £)  (82.17)

1
¥
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And we have an identity from the.definitions'(BZ.IZ) and (B2.13)
Lo BPEVgd = - <i-DK F>< V> (B2.18)

The relation between ({0«},,)) and <« V«“,» can be found from Eq. (A6.14),

(B2.19), (B2.12), and (B2.13). Thus,
< Vgu> = «Ug» ~ (U‘..,'.)“- (B2,19)

€ Vimy» = < V3> — <Umd> (B2.20)

By defining the cofactor (.. as

Com € Unp = (Um)y = <LBaVn> - (B2.21)
<K FH>
we finally get
IR ¢ ’\73..1>>-'<< VP = (Com= 1)K VP (B2.22)

B-3. Volumetric Flux and Drift Velocity

. We define the mean volumetric fluxes as

B <l UL '
= AZETRVRZ o cup > V> . ,
< > <> f % (k=g, £f) (B3.1)

If pg and pp are constant in the cross sectional area, «'31}> and
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«i’g» are the same as the VOlmeﬁric-flow rate % and _Q* , respec-

tively, The total volumetric flux «’i» is defined by
iy = K{HP + <> (83.2)

The local drift velocity with respect.to- 4 :J,) is given by

Vij = Ua - <> (83.3)

and the mean value of \;JM is defined by

<op B Vo>
<tg B>

«Vi» = ~gUpp- 4y (k=g £)  (B.4)
Using the definition from (B3.1) to (B3.4), we can obtain a very useful
relation between the mixture mean ﬁelocity € Ux» and the total volu~

metric flux «J)) .
CRadCUnD = <P DS + TGO BRI V> (33.5)

Then
V> = <<;1>>»+<P z<«a>«&»(<v,,d>>

(B3.6)

We define the mean relative velocity <« U‘,,,}) by
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«Ur» = «Uj» — «Ui» (83.7)

Then froﬁ: Eq. - (B3.3) and (B3.7) we get

&Vai> = <i-d> <€ Up» B X0
and o
< Vg» = ~@><U> | (83.9)

Therefore, by combining Eq. (B3.8) and (B3.9), we get

2Ny e K> | B3.10
< Vs> < -a> « VN» ¢ )

The relation between the diffusion velocity & \/*,:P and the drift velo~
city «V&j» can be found through Eq. (B2.13), (B3.4), (B3.6), and

(B3.10). Hence,

v < Fon>
L Vgj» = <8 (B3.11)
B> .
&« V> = <« Vo> <Py (83.12)

If we define the local drift veloeity Vk i with respect to the local wvolu-

metric flux j, the results will be different., First we define j by
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and f
Vo;= Dy — % (83.14)
Thent ..
<<\/q »>= <°‘P2_Vn - K Ug» - (;)ﬂ © (B3.15)
< Pg
here - -
' o Pg 32>
§) = <%
( )-( .<°<. Fﬁ-> (!33.16)
By_defining cofactor coj by
Cj «¥>=(Ha @
we ot;t;in

B-4. Area Average of Various Derivatives

In the folloﬁing, let us assume that the flow and physical proper-

ties obtained by time averaging are axially symmetric and there are no

rotational motions of the fluid along the axis, Thus, by taking the polar

coordinate (r, §, z), we have
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3 = ©° » Yo =0 - |  (B4.1)

. For simplicity, we. also restri.ct our casé for the constant area flow
without any mass transfer from the ;ml'ls. Alti'nouéh' the effect of the
change in flow area and i:he_ w#ll mass transfer can be easily included in
the analysis, these terms usually do not appear in the application for
the thermally induced flow oscillatioms.

Under the above conditions, we can relate the area average of the

various derivatives to the derivatives of the area average through utili-
zation of the Leibniz rule.
By taking a concentric annulus with outer radius v, and inner

radius Y; I, the cross sectional area for flow A becomes

A = R (vof- 1*) ) | (B4.2)

The inmner and outer perimeters 4. and 7, are given by

7= 2% ey

"Eo‘ 2T Yo

(for the pipe flow Y. = 0).

Area Average of the Time Derivatives

Since the boundaries of the area average are constant, we have

L— JP"% d.A = -a—‘k"[a PmedA

Ay a3t ot (B4.4)
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From the definition of the area average, i,e., Eq. (Bl;l), We can express

the area average of the time derivatives as

\ OF W B W
* SA It . 2% < P Wi > (B4.5)

Area Average of the Scalar Qperator in the z Direction

L[ (" 2Sonvdy. 2 N
Lok F e A s

Area Average of the Vector Operator

The tensors appearing in the time averaged field equations are zll

symmetric if we take both phases as originary Newtonian viscous fluids.

Then we can write the area average of the vector.operatof generally as

o

Trs) + -51-3] 20 rdY  (B4.7)

?!TL(V' T)ydA - )Hr (5 ¢

&

By taking the first part of the intergrand, we have

L 9 A vy - 1 )
—A-jn 2R S (Y'frs }ar= A‘{‘ﬂoTw(ﬁ). i Trsfﬁ)_l' (B4.8)

And the second part of the integral is given by
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53 A

L{ oty =....._.5 Ay= 3
A g aé Z’K_YO‘Y T's_sgny r 'é% <,t33,> (B4.9)

Thus, from Eq. (B4.7) and (B4.9) we have

L{wa, AA - §l<’fﬁ>+ (1800 2T} a0y

Particularly for the vector W, we have

(B4,11)

j 7w AA = 25 <Wo >+ { LW 0%)- 1 Wetr}

B-5. Area Average of the Continuity Equation

The time smoothed or time averaged continulty equations are given
in A-7, section (I). Now our purpose here is to area average these equa-
tions in order to one-dimensionalize the problem. By taking the area

average of Eq. (A7.3), we obtain

| | |
j%?:w dn + 7(5 V-(fuVi)dA =0 (B5.1)

l
A
From Eq. (B4.4) and (B4.ll), the above equation can be expressed as

% <PM >+ % (P“'U'M) 3 ;61- {mﬁ.vnr[ Yl fe urr!;’ 3 (BSI.Z)

- —
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The last two terms in Eq. (B5.2) express the mass transfer at the walls

and, under our assumption, these are zero, Thus we obtain a mixture con-

tinuity equation

> o+ 2 . | '
é-t_<ﬁm> + 5_5 <va_|-1}> =0 (85.3)

Using the definition of the weighted mean velocity. €Ny , i.,e., Eq,
(B1.16), we can get the final.form for the averéged wixture continuvity

equation

J 2.. =
5 LPu> + 53 (Pu><« Uy » =0 (B5.4)

Similarly, the continuity equations for each phase can be obtained from

Eq. (A7.4) and (A7.5), thus

Iy 2 ' |
% A B>+ 5—-%—<cffqﬂ"q>= <>

By substituting the definitions of weighted mean values for the density

and velocity, we get

3 _ d . o ‘
= <H>< B>« S« BY<RY = <Ny> (B5.5)

For_fhe liquid phase we have

' 'é%:' I~ > Py + % Qo> HPeUy = <> (B5.6)

“
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And from Eq. (A7.6) and (A7.7) with Eq. (Bl.1), we have the following

constitutive relations

<KTy> = = <> (B5.7)

and

Z Al—t([ )i ms [Pn(vs U )J} dA  (5.8)

ﬂ)ggﬂh

Equation (B3.7) is a requirement for the.conservation of mass and

the addition of Eq. (B53.5) and (8B5.6) leads to Eq. (B5.4), i.e., the mix-

ture continuity equation. Thus, those four equations are not independent.

Equation (B5.8) is a constitutive equation for {f%), the vapor genera-

tion term,

B-6. Area Averaged Momentum Equation in the z Direction

The time averaged momentum equation (A7.11) in the z direction is
going to be area averaged under the conditions of uniform gravitational
force and no slip at the walls. Using Eq. (B4.5) and (B1.16), the area

average of the rate change of momentum becomes,

J (ﬁuqu)dﬂ = })_ <Pm>« U_“l}» (B6.1)

All of the flux terms are combined and area averaged by utiliiatioﬁ of

Eq. (B4.10), which vields
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_A—SA (v (Bhvn - 222 ™= o+ PaI) )3 dA (6.2
b % {<P"‘ V3 Uins "’Esa ~Ts3s ~Th +P’“>} *

| (. T M r -
+ R { (& ["'_2';'3 Ty Jl’é - %, ["Z’r;"tg ]rg}

i

By using the diffusion velocity with respect to «Uw>» , i.e., Eq.
{B2,12}), the first two terms in the right hand side of Eq, (B6.2) can be

written in the form of Eq. (B2.13), thus

% )Aﬂfm Uny Vhg = T > {Hﬂ-«?« ,,,3»«7}:..3} + (86.3)

+ 3 GOCRICVRSE Vow> + % cov [4a R, Vam T}

Thus the area average of the momentum equation in the z direction becomes,

-

9... < En >€ JI..;)} + <j?m>« l}m;?«lfmg» - (B6.4)

. %<Pf...> + —-— {< Th >+ < 7>} <R 93+ ey
o » _ ~r . _-59_ o _:F . .
-5 §<d§>« B> Vs »< Vimd az’%cw[ ¢ Vis V&m?]

)

+'F{?”[Z”?+Z;5H]Y - 7. [Tf& +rr;J }

The expression for {'5’,-3) is given by
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<S> xS ZEE A A

We introduce a two-phase Darcy-type frictiom factor £ defined by

! :
i .
‘E"‘(P‘m} «LTMQ

fit”

Som

Dy _4 T, o M
~ & (2 (0 + T ) (B6.6)
: . yr H .
=il + T )r]}
Here D is a hydraulic diameter and is defined by

4A . _4A - (B6.7)

AL

7 _ ?;‘*JY£

i

D

Then the mixture momentum equation becomes

D o 2 =2
& <hoC > + 53 PO Undha» =~ Z<h>- 6.9

- .i% CRS>E V3 d" + (P> 9y + <Fg3> -

ha

{

R

{ Z <>« B>« Vi >< \7;...3,'>>~}+

-+ %3-{_<‘i:;;>'+ <'?7§33>*'£§Vﬂ”rﬁﬂkEilﬁsbﬁmgl}

The three terms in the last bracket of the right hand side may be ne-
glected, Since the first two of the three terms vepresent the momentum

transfer due to the normal stress, they are almost always neglected if




B —

280

the characteristic dimension in the main flow direction is much larger
than the one in the radial direction., The third term which is a co-
variant due to the velocity profile, needs closer examination. From Eq.

(B2,16) we have
cou [oa Fe Vis Vimg 1= <ola B Vay( U < Uiy (86.9)

Thus, for turbuleﬁt flow where the velocity profile is fairly flat, it is
common to neglect this term in comparison with the-average convective
term in the left hand side.

The term <§.;> represents the capillary body force in Eq. (B6.8).
In view of Eq. (B6.5) and under quasi-isothermal condifions, it is pro-
portional to the surface volume ratio, to the average total curvature of
the surface, and to the surface tension,

By neglecting the normal stresses and the covariant term, we obtain

2 B>« Ung» + £ < B> KUy 3L Unz > = (86..10)

~ Fu ,..{'«v...> <fa>33+
:_%.(R‘) 2D<P>{ 3P+ <Pu>33

. < $er > - 33_3 Z <>« > & Uza» € \74@,«3}

As we can see in Appendix A-7.2, two moméntum-equations for each
phase with the correct interface condition provide the necessary and suf-
ficient information on the momentum balance. Instead of using two momen-

tum equations for the liquid and wvapor phases, we added up these two
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equations and obtained the mixture-mameﬁtum equation, which exhibits the

similarity to the single-phase fiow equation (see, for example, Eq.
(B6.10)). Since we started from two momentum balances, we need one addi-
tional piece of information, which can be éither of the phase momentum
equations,

By adding this equation, we can satisfy the mathematical complete-
ness, but on the other hand the complication of the problem is not much
less than the starting point., In contrast to adding up thé momentum
equations for each phase (which gave us the mixture momentum equation),
we also can subtract the one from the.other which deseribes the relative
motion of edch phase. If we carry out this subtraction from Eq. (A7.12)

and area average the resulting relative equation of motion, then it will

express the dynamic chatracter of the relative motion. inétead of doing
so, 1f we can assume that relative motion can be expressed in a statical
way, we may replace this relative equation of motion with a comstitutive
gquation, as it has been showm experimentally that such is the case if
we take a drift velocity of the vapor as a parameter. Thus, we write

another momentum equation as

A\ %83» =¥ ((d->,<ﬁm>3«0h3»36\:g3 ’ Qj"--) (86.11)

Furthermore, information on the mechanical state between two phases is

also required; hence, we have
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A P>z «P2- B> F (<N, ) (86.12)"

B-7. Area Averag_eci Energy (Enthalpy) Equation -

By taking the area average of Eq, (A7.20), the time rate change of

the enthalpy becomes

{ 3&£n = g_.J“ ' | :
KSA 2t 5t SFam> (37.1)

' B? USi'ﬂ.g Eq. (Bl.lS) we have
I ‘ a';«ilﬂ ’ é) P <L >

~ (B7.2)

All of the flux terms are combined and expressed through Eq. (B4.1ll), thus

| . _ |
A_SA v (f?-.. Lt + 7+ 2 + g“") dA = (37.3)

- % {'<‘Pm£».1);5.>+ g;p} 3_"9 -+3;}+
+%- {Qz" lé—"*gVT]n'; }24'-[?;’4'25'1-]1'&}

"And the first two terms of the right hand side of Eq. (B7.3) can be re-

written through Eq. (B2.13) as

*This condition 1is necessary for the uniqueness of the solution
and corresponds to the thermodynamic condition of the phase change at the
interface; for example, in the case of a mechanical equilibrium A4 Pye»
= 0, The exact form of Eq, (B6.12) can be obtained from the area average
of Eq. (A4.17).
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o s | |
53 < Frtm Unyt 2575 551 <P <lud<Uiy> + (87.4)

+ %: (hw D> € fa D€ a DK 7&»-3} + %wad& E; Vlm;].}

Thus, by using Eq. (B7.2), (B7.3), and (B7.4), the area average of Eq,

(A7.20) becomes
%{ﬁo«-im» + 5); < >& LS €3> = (87.5)
~ -5 <8+ <8} - 2 [Zouoeaseiort %9}"
I N A SR A A SR M
- % { % Cou [of; fo Iﬁ%mg]} + < Feer + <Buep> |
We define the average heat flux frou; the.: ﬁa;l q," aé..

3,:’- "'é‘; {"‘ 1o [f;' "'erJ-ra + ’[4' [h?—r*’ 3rrjy£} {B7.6)

where §h is the heated perimeter.

Equation (B7.5) becomes

> ' - W
2 CROCUnD + G BOChudCtig> = BB (B7.7)

+ < P>+ < Byed> - %{<§;>+-<325} o

{Continued)

.
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Qo‘

-3 AL A -2
& ;ydo«&»«:.@«j%.. —%f mw[ugﬁ.bgvﬁma]}

Now, let us consider the right hand side terms in Eq. (B7.7). The
first term is the energy input from the wall, The second and third terms
give the compressibility effect and the viscous dissipation in the mixture
and can be written as

<Eﬁ:e>.,="[_5ﬁ2l~{j :QE‘“ Z( )'r "’M (03051

(B?.é)

A t [At]DT
() (et - (toatt;), ], 4h
(L ot - .

Y

: i o M, H : .
-5 () M T ()], dA

The fourth and fifth terms in Eq. (B7.7) give the heat transfer in
the normal direction and can be neglected in the mixture region due to
the small temperaéurg gradient in the axial direction, The sixth term
takes into account the energy transﬁoft due to the relative motion of
each phase. The last term is a covariant due to the velocity and the
enthalfy profiles, and for turbulenf flow it is.common to neglect it,
since both profiles are fairly flat aﬁd thus it is much smaller than the
average convective term in the left hand side.

By neglecting the axial conduction-due to the ﬁolecular and turbu-

lent diffusion and the covariant term in Eq, (B7.7), we obtain
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a . - 9 ) 1 ' #, :
So Rocin> - SBICLICUD BE o @710

+ (R >+ <Fye> ~ 5‘% {§ (&)«ﬁ»«&»«ﬂ.;»]

In section B-6 we discussed the necéasity of the.ponséitutive
equation for the relative velocity in addition to the mi#fure mbméutﬁm
equation. From a similar consideration here, we also should suéplf a
constitutive equation for the relative energy, i.e., the difference of
the fluid and vapor enthalpy, Under the'assumpt{on that_we may éxpress

this equation statically, we write

Agigy= <iyp—<le3> = F(L(RD,<Purek) @711
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APPENDIX C
SIMILARITY GROUPS FOR THE TWO-PHASE ONE;DIHENSIOHAL FLOW

C-1, Summary of Field Eguatioﬁs
The time-smooéhed and then area averaged field éqﬁqtions aré:given
in Sections B=5 to B-7. Thgy are expreséed thtpugh-averagéd and weighted
mean values of the original single phase variables., For éimplicity, from

now on let us omit all sywbols of averaging and the' subscripts for the
vector component z, Thus we can write Eq. (B5.4) to Eq. (B5. 7), i.e.,

the mass balances, in the following form,l.

et T = 0 -  _ -'-(¢1.1)_
3dPU . .

S+ > s& =l €1.2)

-4) f Q- A FVy

SE Tt 3 =g (C1.3)

and

I _
=N =——j % e (o [s;(u:a SR | EURREWS
Here it should be noted that Eq. (Cl.1) can be obtainéd from Eq. (01.2)
to (Cl.4),
From the mixture momentum balance, i.e., Eq. (B6.10), and using

Eq. {Cl.1l) we have
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A V) o 9P £ p oyt |
fo ](at ¥ ”"ag} e ESP“f "t L

r (30 + 5o ) % BE W)

Here we used Eq. (B3.8), (B3.11), (B3.12), and (B2.17) in the diffusion

stress term of Eq. (B6.10) and trapsforméd it into the drift stress term,

i.e., in terms of ng, The term fo is a capillary (body) force and is

given by Eq. (B6.5). Thus,
\ (N ((43 e qee
Se = K SA % 2t (Tl tira )’P}.;; A @65

The above term has been obtained from a proper application of the momen-
tum jump condition at the interface; On the other hand, ﬁm'stands for the

viscous and the turbulemt frictionm force at the wall and is given by Eq.

(B6.6). 1t should be noted here that this is the first derivation where
this term, i.e., the capillary body force, appears explicitly in the
time averaged mixture momentum equation, From the mixture enthalpy

balance, i.e., Eq. (B7.10), with Eq. (Cl.1), we obtain

o [ Olm | - diml_JuE PR AT AV
P { St + ng’g‘}"%‘f + Cpc_e‘l' ‘Pde 5‘3{9‘3@?‘/‘“&"}%} (cl.6)
" Here we used Eq. (B3,11), (83.12), and (32.1?) in the énergy diffusion
term in Eq. (B7.10) and transformed it in terms of V

_ g]
The terms 4., and 4}e are the compreséibility effect and the dis-

and Aifg.

sipation effect on the enthalpy, respectively. The detailed form of these

two terms is given by Eq. (B7.8) and (B7.9).
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bom £ (fE [, B8-S (BB o

(R (o) - (dowty) JjdA

qbcte“’ Kl'g "‘I“{ j Thyvdt - | @9

[at ]

o () [ms - (T)- (v dA

C-2. Scaling Parameters and Dimeuéionless-Groups o

In the following analysis, the ‘subscript o denotes the reference
parameters chosen to be constant., The axial characteristic length is £,
Below we define dimensionless pa:ameteré-wﬁbse 6rder3of'magnitude is con-

sidered to be 1.

ST R ST « D a3
T > Un EF" k. t T }/f%%;].) D - ’ 3*’-——

_.Pmc mo E R ' (Cz.l)
j""=_§‘}_ P*s.ff_ V*=_Y§_l__ l"l*:__l ’P.:-——---—-z
Ve B Ve TR TR

. v . v o AL " » ¢ . o
b s AnT Mo Ay = oL f - 1o y Pe= e L)

h Alrgae ! A {490 v 5’@'-0.. Bue Vit \ Vine
t- /PR o W

The choice of the time scale actually comes from the mixture con-

—— ——ey
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tinuity equations, By taking the arbitrary time scale T, Eq. (Cl.1l)

becomes

m* J"U:n*
%(}_,) of 26

- —————— 3
Ume

PR T

The orders of both dimensionless time and space derivatives should be one,

thus
o~ A . . -

Hence we take a time scale by a residence time of the particle T,

];L Dimensionless Groups from Continuity Equal:inn

4

Subtracting Eq. (Cl.3) from (C1l,2) and using Eq. (B2.13) and (BB 11)

we can write Eq. (Cl.3) in terms of Py Ve F , p > Pgs and ¢. Hence .

gj
we obtain

B . ORVa _ (34 . JuFili 3 CuBE
s Sl kO MPU}""P?*%I“?"“} ©2.3)

Using Eq. (C2.1) in Eq. (C2.3) and diV1d1ng the whole equatlon by pmovmofﬁ

we &btain

['gf,;‘ + oRt .-:‘}_ Pae {a&ﬁ"; amﬂr;}ﬁ_-.

ot* 3" fio L 2t" 2™ (C2.4)

(L ) ) e S (< EE v}

Thus we obtain the following dimensionless groups for the kinematic

similarity
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¢ = Lae L
I Pﬂ& 'U;\“D . . (02.5)

Cr - (2 )
Cuo = %i

By substituting Eq. (C2.5) into Eq. (C2.4) we obtain

c)Pw 3 Bl U + Od B
ot* + P C]I. {[ S3t* as,‘ ]_ (C2.6)

il G 33*[—-1*‘3- Vai1} =0

I1) Dimensionless Groups from Momentum Equations

We use the dimensionless parameters defined by Eq. (62.1) in the

mixture momentum equation (Cl.5) and d:l.vide the whole equation by

P"‘EU'“ We get
*
P{Wu...em_-%l’n' R % .
5 TV 3-2,*} 33 zo) [v‘ }P (c2.7)

ke - (el s )

'Thus we obtain the following dimensionless groups for the dynamic simi-

larity _
My = ‘25.__.3* - (C2.8)
(Continued)
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e S

M - ‘-fd"o l
jU : ﬁno .u—m:.

- P
Hn_rs'_—q'

Substiﬁution of Eq. (C2.8) and (C2.5) into Eq. (C2.7) gives

T U . o -
i ['5;*- +vh*'§_307 = - Sh Mo Rrue e

MRS+ My - M CF S BB )

Scaling of capillary (body) force, fdo’ From Eq, (36.6) we have

L L L/ {44 aA
Yoy = A L 2 af (m-_)[(“* a*a“")_,‘,}idh
Thus, under quasi?isothermal'conditions

$oo ~ ({%) —Gé-l_l—
- Vin
vwhere N can be considered to be an average number of surfaces passing the
poing in At. Consequently, EY&t respresnts the statistical concentration
of the sﬁffaces.'-On the other hand, H is an avéfage total-curvatﬁre of
the interface. Thus, it is related to the dimension of the drﬁplets

and/or bubbles,

Then fhe'average number of surface per length, i.e,, the surface

"



292

concentration, becomes

zl

«T‘n ~ X v“ | (c2.10)
Hence we have

$eo = M G"oﬁ - (C2.11)
Using Eq. {cz.e) and (€2.11), MIHI'becomea_

where HIiI is the ratio of the capillary (body) force to the gravitational

body force.

I1I1) Dimensionless Groups from gnergx Equation

Using the mixture energy equation (Ci.16)'together with the defi-

nition of the dimensionless parameters, Bg. (C2.l), we get

_ e { drm + -U-w*a_"‘ﬁ }r_-[zi;;fhﬂ _ ‘ng’* +

f?uovm Aiﬂo A (€2.13)

Thus we obtain the following dimensionless groups



C2.ll
C2.ll
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zw:‘gh"eﬂ _
A ﬁnn‘u;no Aoﬂf’a .

E;I =

(€2.14)

_ Vime
EIL: A.ﬂf}n

By substituting Eq. (C2.5), (C2.7), and (C2.14) inte Eq. (C2.13), we

obtain

AL L o « | *
fu' %&? + V"T%} = Er gu + Ex (Re +7 M) (02,15

oo 2 o it * 40 %
—Cncmggf{%fl’gjﬂ*ﬂ}

C-3, Discussion of the Dimensionless Groups

The physical interpretation of the dimensionless groups obtained

"in Section C-2 is as follows.

(]; £ ) _ fluid residénce time
Npch = CI "(-g-](-i-]_;] = Teaction time (C3.1)

phase change number '

N =¢ _ = fro Vaio _ _drift transport of mass (3.2)
d II P Une convective trans. of mass )

il

drift number

Since the mixture density is & function of void fraction o and of

fluid densities pg and pg’ the dimensionless groups associated with the
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hl

density ratio, i.e., C and MIV’ cannot be chosen independently once

11X
the boundary condition for the differential equation is specified.

Hence we have

g = Je o g, S

Mo #o

In view of the definition of M the group C can be repreéented by

v’ III

! =
Cr11 =%

which is a boundary condition for the continuity equation for the vapor
phase. Thus, it is not necessary to include it in the similarity group.

As a conclusion we have only one density ratio given by

| = = _Pj_“_ _ density of vapor : -
NP ME ( P;i-c) density of liquid (C3.3)

= density ratio

Thus, Only-Np is sufficient from the two density ratio,

From the momentum equation for the mixture, we obtain

f s ' '
N, =M_ == ~¥all friction force = friction number (C3.4)

f I 2D* inertia force

and

*Of course, it is possible to scale the vapor and liquid void
fractions by oy and l'ab in the balance equations and, thus, obtain
dimensionless groups including ¢, explicitly. Since order of ¢, is
unity, this does not affect our analysis, except when we examine the
order of the drift stress term. This point is discussed in Section III.Z,
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I _ %2 _ gravity force _ 1 (C3.5)
N II 2  inertia force Froude number :

The above two groups are famil:i.ar.in a standard single-phase flow analy-
sis. FPFurthermore, the first similarity group is usually related to the
Reynolds number which is the ratio of the viscous to the inertia forces.
In addition to the above two numbers, we cbtain

N =M = 22 L = capillary body force surface number (C3.6)

s III Pm'lym:; inertia force

Instead of the number defined by Eq. (€3.6), we may use the group

M-’ = M . capillary body force
2 Pmo graviey force

From the energy equation we have

N =E =i~ro Bh f/A ~ heat transfer from wall (€3.7)
St I B Un Aiﬁe ‘heat trans. by convection ‘ '

= Stanton number .

and

. * .
N, =E__= Vme =~ K.E, change by convection (C3.8)
Ec II Ay, enthalpy change by convection *

= Eckert number

Hence, under the 'assumption that the constitutive functional relations

are the same, the necessary and sufficient conditions for the similarity

of the two different systems are Npch' Nd’ Np’ Nf, NFr’ Ns’ NSt’ NEc'
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'The kinematic similarity gives the first three groups, Npch’=Nd’

and NP' If the number N c is much larger than N,, the system is con-

pch
trolled by the change in phase. On the other hand, if Nd > Npch’ then
the system is controlled by the change in distributions of each phase,
i.e., the diffusion of phases, For forced convection boiling with high

pressure, the effect of Npc seems to dominate the diffusion effect Nd’

h
whereas for the.low pfessure or the natural convection boiling, Nd may
be also very important,

From dynamic similarity we obtain Np’ Nd, Nf, NFr’ Ns’ and ab.'
The friction number ﬁf is the most important among them, beéause of the
large frictional ﬁregsure_drop in'two-phase flow., If the analogous
frictional law holds between the single phase and thw two-phase flow, Nf
is related to the same power of the Reynolds number, The Froude number
NFr takes account of the effect of the gravity, whereas the surface

force number Ns measures the importance of the capillary body forces
which are usually neglected in the long pipe flows withﬁa sufficiently
large diameter.* The drift momentum transport gives Np Nd2 in the di-
mensionless momentum equation. Iflthe order of Nd is less than uﬁiEy
and the density ratio Np is very small, then this effect 5150 may be

neglécted.

From the energy similarity we obtain N

ge? NEc’ Nd’ and Np. For

the beiling heat transfer problem, the Stanton number NSt will dominate

the right hand side of the energy equation. Except for high\speéd'flow

. .
In comparison with the equilibrium bubble diameter, for example,

L ims gk




297

the Eckert number NEc is small, thus the compressibility and dissipative
effect can be neglected cbﬁpared with wall heat transfer. Energy drift
(or diffusion) has the same order as the drift (or diffusion) of mass,

thus they should be treated under the same cdndition.
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APPENDIX D
CHARACTERISTIC EQUATION CORRESPONDING TO EQ, (VII1,13)

Under the assumptions introduced in Section VII.1l, the various

pressure drop responses are given by:

For_the upstream un-heated-reg{on:

B4R _ A (5)- &‘(%_:-.)SL +EL o (AT, '*_2&“6;‘} o

For the heated liquid region:

SR Ao §{sTeeRALY e
u

For the heated mixture region:

the acceleration term

BSAE?,& = _A.a(S)"“ E}{(I+ Vﬁé _Qm )Cﬁ(A)‘[M(:,]S A05) o3

= 5T
Py S (1-M 5 (1= Gle )}

the convective term
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é—-———LAPZ _/L}(S) = ?i ” i"éﬁ] (1=A3)+ | (D4)

| S
e S (el ) As(s)+

~sTa oyt .2 Vg _ L S
( -A"'—“‘)(Cf IX Cﬁtl\)+Ca(A)_\£f U S'ﬂw)‘}
the gravitational term

§Aﬁs‘} Mp(S)— 9 %_A_z

S U (D5)
=5 {clm g?ﬂnm (i"r“ﬂ +_
e e
the frictional term
?Ew A (s ); 22 8T Aals) 6
B (S E (S A
+(l+2{;¥js)-s-2.ﬂ¢ ('“A3g'§'a, - *28'57-33)}

- j—é— ?-s‘-:‘};il J\-). (S)

and




300

the drift term

._A_an—i _A_‘.&(SJ- (l‘ 2(r)P{- VzJ {~I_ ._"‘._2._.."1-_{‘_34.
C Sl 07)
+ oty l-'Jl ____ "'3513.}
Co(X) L=

For the downstream un-heated region::

-

the'exit orifice term

SAPwe _ (s)-.ﬁbﬁe{[wm (% +

SU (08)
+2V*za)ﬂ“’ ]J\.3+ Cf (U—h +2Vg;)e S?‘“(! .A.a }
the acceleration term
$4Pua _ A s)= & Le {-4-”3&' Do T AL+
SV ol _) o ( ) L CA) Sl 2 (D9)
-+ Cr [l Aa = ] e" STL) }
GiA) .
the gravitational term
: - ' —ST.
—é—-&-}ﬂ = Mis(8)=3e BV (qué]( S ) o G) P I AR (b10)

vl Ti- Mgy ] e‘s%}
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the frictional term

s 4, ()= g *m R (T')z{zz;[(:+ Y Lo )y

P icisziJ ( l._ s ”“)] *
o ok s c%tl g )™ %eiih)}
and
the drift terﬁ
ESAU-PM (i- 2Cr*)ﬁa Vyi { )—%;‘A'” o | (.D12).
*é—%[‘"ﬂ" _srasj(e—-am ,)

Consequently, the characteristic equation can be obtained from

the above equations by adding the responses of the pressure drop.

Hence

il

LIOR &{W’L [Astoon oo s S

+ i 44.3 (3) + _A..tf (SJ + —A—;‘o CS) -+'-A-H(S) "'—A-IZ (S)}

+ { -/]-H(‘S) + Ny (s)+ Ass(s) *‘.A/s fSJ + _A.,z{S)(éSEL !)}5 o
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APPENDIX E -

COEFFICIENTS OF THE CHARACTERISTIC EQUATION CORRESPONDING TO

B; IN EQ. (IX4.9)

‘BE~1. The Case with £ =C_ f
. m m s

The characteristic equation for the uniformiy heated system with

a constant two-phase friction factor model is given by Eq. (VIII1.18)

with Eq. (VIIIl.19'to VIIIl.ZBj. In many practical cases, the effects
of the upstream and downstream unjheatéd regions can be neglected ex-
cept thqsé of throttlings, i,e., of the orifice coefficients ki and ke’
as it has been explained in Chapter IV. Thus we éhgll consider the
dynamics of the heated fegion with dnly inlet and exit orifices, Under

these conditions, the characteristic equation becomes

Q"'(._:-,fr) = (E1)

I . *5 <4 *‘; .2 ) N B
3"(5*——])2(85‘_2) [Bls + B.!S‘ + 835 t B+S + B;S -+ ¢ + |
+ E*_"S (N (Br sht B; $X3, Bq Si: Bmsi+3“) |

EE‘ 8’2:; 3 ' iz M
+ (B“,S.l + BBS -+ Bi4S ~+ BIE)

-0

We define the following parameters Ai as
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11

12
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= Nsub = 't!; . - (E2)

='(| +_V%;J L Cf

= V%r.ﬂm ¥
= Va
= e

1+Vyf
= L&+ 25‘523: (-37) + 2 ke
I P — $5Cm -
Fr Npch < ) ’ 2p* (-2 )( V:)
- 2
* EW:! 4 |
- 2¢)~]| 2 -
f I+ Vg ( )"“ﬁe( l-r\/n’)
= 1.0
VT
|+ Vo'
1
=

Fr . Npch




| £ C | {2 Vaf '
A = n - + 1
13 2D*  Npeh (2741

14~ Cr

A %c* (_\/ﬁj_)
-15 r I+V3f

I T I ' & C*z
le | 2D'l- NPC"L ( |

PQ*M (2 C - |) Cr

17 I+ wu{

>
il

-
It

18 '&C (_%_V_‘j;_"‘_l_-) C:
Vg, +

Then the coefficients of the characteristic equation (El)} become as

follows.
By =A +4,
B, =_-4A1 - 5A2 + A3 + 45 +'A8
B3 = 5A1 + 9A2 - 4A3 - 4A6 - A7 - SAB + Ag
Bll = -2A1 - ?Az + 5A3 + 5A6 + &A7 + 9A8' - 4A9.
35 = 2A.2 - 2A3 - ZAB - SA7 - 7A8 + 5A9
B6 % ZA? + 2A8 ---2A9
B? = Az

38=-4A2+A3fA4+A?+A8+A-11
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(E3)
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g = Ohg - 3hy ¥ I, - BAy - bAg + Ag - Ay - 38y - Ay - Ay
:I B10 = -ZA2 + 2A3 + 5A7 + SAB - 3A9 + 2A10 + 2A11' + 3A12 + A13
,i .
| — o . _
| By, = -2A, - 24, + 24 - 24,
Big =45 - A5+ Ay - Ag
Big = =285+ Ajy o+ A+ BAyg + Ajg = 3A), 4 34,
B., = -3 -2 - A
16 = "M 15 16 247 . 2A18
Bis = 24y,
_ p n’
E-2. The Case with £ = (F*] or f (—l{"-'-]
" Fmn ) &\ U

The characteristic equation with the dynamic friction factor can

be easily obtained by sﬁbstituting Eq. (V1113.37) or (VIII3.40) for the

transfer function j&”(s).

By taking the density type friction factor, we have

=, ()"

o

The coefficients Ag, 'Ag,

o< n < i (E4)

A13, and A16 should be modified in Eq. (E2) as

Ay = EaCf

A9 L ¢S+

NFr NP‘J‘

2§ (A7) (C*nm" 1)
ZD"‘ (-_n;_‘_') (Cr‘* — |) .

(- &)+ £ &X e }(2_

.ZD“(?IH][ ]

(E5)

i+n’ ) (E6)
1+Vy}

(Continued)
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. _P*__JJ_(.ZC.«-I)-? ﬂe (2—,*’/1 )

+vyy
s ) -
2137 757 Noen Npch (2 v} + \-n) . (E7)
A = S5 (2 Var & 1=’ )[C ](2*"' (E8)
16 2p* Npch 93 Y

On the other hand, by taking the velocity type friction fadtor,

we have

s ."O'.m ,ﬂ( . ) . )
I = §s (T-}?) , o<mi<l C@9)
The coefficients A8,_A9, A13, and A16 become
I_ (n¥i1) |
o B 2 s ) - 0T
Ay = Jnle BTICTIR { 1 + 2k (E10)
l . Wi ’ i
A = bnGi+ =23 )+ {‘(';U.FL::.L PV L (E11)
9_ ”perch( C") 2B (%) Cr -1 ( HVg;)
-P‘x._a‘_. 2Cy"‘"' 2-
e ( )+%e( )
413 = gs. 1, [ (2+ n')Vsj*-Fl] | - © (E12)
20" Npch : |
: | (2¢+77)
Ay = _55‘. NM [(z+’n )V;, + l][C‘,‘] (E13)

In both cases the functional form of Eq. (El) and (E3) is preserved.

SRt |
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'APPENDIX F
METHOD OF COMPARISON WITH EXPERIMENTAL DATA
The chafacteristic_equation for the uniformly heated sjstem with a
constant two-phase friction factor model has beeﬁ compared to the exist-

ing experimental data (5, 9, 7). For simplicity, both the downstream

and upstream un-heated region effects have been neglected, except the

‘inlet and exit orificing effects. Hence, in this case, the character-

istic equation is given by Eq. (El). The necessary input data to the
computer programé (PNS) and (TSP) are given in Section X-1l.
The fluid used in the experiments and the System pressure level

fix the d?main qf operations in the stabllity plane, i.e., Nsub - Npch

plane. From this information, all the saturation properties can also:

be obtained from a propérty teble. The geometric parameters such as
P, 4, |g|cose, Ab, and € are sPecifiéd in the experimental data. The
data are then grouped such that each set of data is taken at the same
system préSSufe, geométry, and iniet velocity.

The experimental data of (5, 9, 7) do not specify the inlét.and

_outlet orifice coefficients explicitly; however, they do give the total

pressure drops at the upstream and downstream un-heated regions. On the
other hand, the theoretical'steady'state pressure drops in the above
regions are given by Eq. (VIl.4) ;nd'(VIA.QS). At the specified inlet
subcoolings aqd heat flux, these can be calculated according to the

presently obtained steady state solutions. Then; by subtracting the

e |




gravity and.frictional pressure dropé from the.experimenta1 tota1 pres=-
sure drop, the orifice coefficients ki' and.ké' coﬁld be obtained. The
upstream and downstream uh-heatgd'regions have beén lumped in this char-
acteristic equation as mentioned before; thérefore,_the frictional pres-

_sure drops should also be included.in the virtual orifice coefficients,

which can be obtained by adding the friction number effects to ki and to

'ke. This gives the corresponding exact value for ki in the liquid region,

since there is no time delay in this region. On the other hand, the cor-

responding ke becomes an approx}mate value due to the time'delay in the
density response.'-Huwever, the'velocity in fegidn.(n) is relatively
high and the length of the duct ié sméll; therefore, this approximation
is valid,

The values o£ ki and ke_obtained by the abo;e'method are again
compared among the experimental dafa. Eventually, we could c;assify

- all of the experimental data into subgroups which have the same'Ps geom-

etry, N ki’ and ke within each set. Due to the small scattering in

Res?

experimental values of N ‘k,, and ké,_we have permitted about 5 per-

i’

cent ranges for each of the above parameters within a set of data.

Res?

Otherwise, we can piot only one data point in the stability plane.

By knowing Ps’.; D#, |g|c039, ki’ and ke, the stabilitﬁ bound-

fi’

aries can be found from the computer programs (PNS) and (TSP). However,

we should supply two consfgtutive relations fof'Vg

3

ent analysis, we have used the following expreésions.

£,=Cf (F1)

‘with

and Cm. In the pres-

e e T T

opmagein, ey

Li




' The order of magnitude of V
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‘¢ =2 and = § =-0:18¢
m 8 N 0.2
Res

and

V., = L4l [ﬂ—ﬁ%5]1/4 (F3)
| e | :

The above expression for ng hes been obtained for bubbly and

churn turbulent bubbly flow regimes in (32). According to their experi-

" ments and apnalysis, this form of a constitutive equation for ng can be

applied to a wide range of g. The value 2 for Cm gives a slightly higher
pressure drop than the Martinelli and Nelson correlation; however, the
present model agrees quite well with the experimental data of (5, 9, 7).

gj*'calculate& from Eq. (G3) for Figs. 23 to

28 is in the range of 0.1 to 0.4.

F2)
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APPENDIX G
THE CONSTANT PROPERTY ASSUMPTIONS IN THE MIXTURE REGION

In the present analysis, the fluid properties of each phase ﬁave
been assumed to be constant thrbughoutlthe mixture region, though the
changes in mixture properties due to the phase change have been taken
into account, |

In this appendix we shall eXamine'this assumption.in some detail.
By considering the mixture in thermodynamic equilibrium, we have, for the

thermal equation of state

| | / . |
= (G1)
He.P) PRIy

and for the caloric equation of gstate
Ly(c,P)= CLy + (1-0) 4, (62)

where the £fluid properties of each phase, pg, Pes ig’ and if, change along
the saturation line., In the differential form, the above two equations

become

TRt 7T ot T Pt Dt “

and




3

Dl _ Adi.e DC JAVs | DP G4
ﬁ“-ot'ﬁ"“g'or‘tﬁ“[c"‘ Bieg | Dt )

where the saturated mixture sound velocity a and the heat capacity Cm

are given by

oP Je T 0 oT i _

We note here that a and Cm can be related to the sound velocity, the

isothermal compressibility, and the specific heat of each phase.

Now let us consider the effects of two different wave propagations

on the mixture density and the mixture enthalpy. The kinematic waves of
frequency W, propagating with velocity Ck dre given by
#43- wet)

. LW

Co R

whereas the acoustic waves of frequency wa.propagating with velocity Ca

are given by

o Wa :
P _ set(Erd7 Wat)

(G7)

By assuming the perturbations due to these waves are small, we only con-

sider the first order effect in &,

Effect on the Densgity

By substituting Eq. (G6) and (G7) intc Eq. (G3), we obtain the

1
following expressions for the zeroth order of §

aﬁn)= . ’ aLﬂ)ECm' | - .(Gs).
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;._L DB _ _ de | U, dP
& Dt o AUig Vo gy * Toar A5 @

and for the first order of §

fu DT

_S(_l_b_ﬁ..)a_FMAUH{[..S.")*(I-§—:*)]C°+S-U’m.g_g_] (@)

1 :

b { [+ 5 wa TE57) R scu..,c?!l%}
P'Iu Qm-

Making the orde; of wmagnitude analysis on Eq. (G8), the condition that the

pressure drop effect can be neglected with respect to the effect of the

phase change yields

2

e AV, Co >>I—EW )

where M is the mixture Mach number given by %%1 . On the other hand,
: L4}

from Eq. (G9), we obtain the condition under which, if

2o 4 Viao Co |
fo Mfg ¢ (ltHJ> —-—3: _ (G10)

then the acoustic wave effect can be neglected with respect to the effect
of the kinematic waves.

Effect on the Enthalpy

Similarly, from the caloric equation of state, Eq. (G4), the con-

dition that the pressure drop effect can be neglected with respect to the

phase change-yields
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‘ / [ Co.'d 1-")‘1‘0 _ J '
. 1 _ :
. NEL . Eko C“ho To A L;,a » : (Gll)

On the other hand, the acoustic wave effect on the enthalpy can be ne-

glected, if

(612)

: l [ Cad"lff"io ] »Q]G.
. ME(, R CnoTo AU{,,O . ﬁ)ﬁ

Low Frequency Analysis with Constant.Ptoperties-

The preceding analysis s.hows the conditions when the low frequency
"analysis with constant ﬁrOperty assumption for each phase can be applied.
Such conditions can be attained under low Mach numbers.. However, if the
period of the oscillatiqnﬁ considerably exceeds ;he residence time of the

T

particle, this assﬁmption bf@aks down, o :
Furthermore, it is known that therfiodyatic second derivatives such
as the sound velocity and the specific heat become singular at the criti-

cal points. Hence, as system operational conditions approach very near

to the critical point, the assumption cammot be used.

4
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