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Abstract: We consider the problem of large-amplitude vibrations of a simply supported circular flat plate subjected to harmonically

varying temperature fields arising from an external heat flux (aeroheating for example). The plate is modeled using the von

Karman equations. We used the method of multiple scales to determine an approximate solution for the case in which the

frequency of the thermal variations is approximately twice the fundamental natural frequency of the plate; that is, the case of

principal parametric resonance. The results show that such thermal loads produce large-amplitude vibrations, with associated

multi-valued responses and subcritical instabilities.

1. Introduction

The static and dynamic behavior of flat and curved

plates, including isotropic and composite plates, sub-

jected to thermal loads is a problem of considerable

relevance in the design and development of super-

sonic/hypersonic vehicles, reusable space transporta-

tion, and launch vehicles [11]. Other applications

could be found in thermally actuated composite di-

aphragms [19], pressure sensors that are used in au-

tomotive engines, compensation of thermally induced

effects in force resonant sensors [6], and brake discs

and rotors. Our interest here is in isotropic plates. The

previous works on this subject could be classified into

two categories. The first category concentrated on solv-

ing the plate equations for given thermal distributions,

and the second category formulated the problem as a

thermo-elasticity problem.

The first category includes the studies of Heldenfels

and Roberts [7] and Gatewood [5] who solved the ther-

mal flat plate problem for small deflections and con-

stant temperature distributions. Buckens [2] examined
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small deflections of rectangular plates under thermal
loads and analyzed their buckling. Sunakawa [21] stud-
ied the influence of temperature changes on the large-
amplitude free vibrations of rectangular plates using
successive approximations. He showed that these ef-
fects are not negligible. In a series of publications,
Pal [16–18] examined the large deformations of thermal
circular plates using Berger’s approximation. Jones et
al. [10] examined the large-amplitudes vibrations and,
buckling of a rectangular plate under elevated tempera-
tures using also Berger’s approximation and including
viscoelastic effects. They showed that the Berger’s ap-
proximation is the first term in a perturbation expansion
of the von Karman equations. Heuer et al. [9] also stud-
ied the nonlinear vibrations and buckling of flat plates
using Berger’s approximation.

The second category includes the study of Mar-
guerre [12] who studied the linear decoupled thermoe-
lastic plate problem. Sokolnikoff and Sokolnikoff [20]
studied the linear thermal stresses in clamped elastic
plates under constant linear temperature distributions
and showed that the solution is similar to the solution of
equivalent transverse loaded elastic plates. This point
was later elaborated by Boley and Weiner [3]. Chang
and Wan [4] solved the thermo-coupled Berger equation
for flat-plate vibrations. Altay and Dokmeci [1] formu-
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Fig. 1. Geometry of a circular plate.

lated the Karman-Mindlin plate equations for thermoe-

lastic vibrations of temperature-dependent materials.

In this paper, we analyze the nonlinear response of a

simply supported circular plate with movable edges to

harmonically varying thermal loads. In particular, we

consider the case of principal parametric resonance.

2. Problem formulation

First, we consider the coupled heat equation and

the dynamic version of von Karman equations for a

thermally excited circular plate. The basic geometric

features of the circular plate are shown in Fig. 1. The

thermal loading is assumed to be axisymmetric, and

hence the plate vibrations are axisymmetric. They are

governed by Chang and Wan [4]

k∇2T + Q = ρcp
∂T
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+
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−
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T (r, z)zdz (5)

and D = Eh3

12(1−ν2) . Here, w(r, t) is the plate trans-

verse displacement, F (r, t) is the stress function, e is

the dilatational strain due to the thermal effect, T is the

temperature distribution, ρ is the material density, h is

the plate thickness, cp is the heat capacity coefficient at

constant pressure, E is the modulus of elasticity, α is

the coefficient of thermal expansion, Q is the heat flux,

and ν is Poisson’s ratio. We consider the case in which

the plate is exposed to a uniformly distributed external

heat flux Q = 4kq cosωt and the temperature is kept

constant at the plate edge at T0. The temperature distri-

bution is governed by the heat conduction Eq. (1). For

boundary conditions, we consider a simply supported

plate with no restrictions on its in-plane displacement;

that is , movable boundary condition. This case is im-

portant in the structural mechanics of planar bodies,

such as beams and plates Vinson [22]. In this case, the

thermal stresses in the plate are self-equilibrating and

the radial force vanishes at the outer edge. Therefore,

the boundary conditions are

F < ∞ and w < ∞ at r = 0 (6)

∂F

∂r
= 0 at r = R (7)

w = 0 and
∂2w

∂r2
+

ν

r

∂w

∂r
= 0 at r = R (8)

where R is the radius of the plate.

We introduce nondimensional variables, denoted by

asterisks, defined as follows:

r = Rr∗, t = R2

(

ρh

D

)1/2

t∗,

T = T0T
∗, w =

h2

R
w∗,

(9)

c =
12(1 − ν2)

R4

(

ρh5D
)1/2

c∗,

F =
Eh5

R2
F ∗, q =

h5q∗

4αR6

Substituting Eq. (9) into Eq. (1) and dropping the

asterisks, we obtain

∇2T +
QR2

kT0
= Γ1

∂T

∂t
+ Γ2

∂e

∂t
(10)

where

Γ1 =
ρcp

k

(

D

ρh

)1/2

and
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Table 1

Thermal and mechanical properties of used materials

Material ρ (Kg/m3) E (GPa) k (W/m.K) cp (J/Kg.K) α Γ1 Γ2

Al 2702 70 237 903 2410−6 15.86106 h 27.3106 h

Steel 7800 207 60 430 1210−6 97.43106 h 161.34106 h

SiNi 2330 100 148 712 2.910−6 22.24106 h 9.72106 h

Γ2 =
Eα

(1 − 2v)

1

k

(

D

ρh

)1/2

The last two terms on the right-hand side of Eq. (10)
represent the diffusion of heat and thermoelastic cou-
pling [8].

Usually, the materials used in plates for mechanical
and MEMS applications are Steel,Aluminium (Al), and
Silicon Nitride (SiNi). Using the available mechani-
cal and thermal properties for these materials listed in
Table 1, we calculate and list the results of the nondi-
mensional coefficients Γ1 and Γ2 in Table 1. For thin
plates, it follows from Eq. (10) and Table 1 that the
thermal diffusion and thermoelastic coupling terms are
negligible because Γ1 and Γ2 are very large. Hence,
Eq. (1) is reduced to

k∇2T + 4kq cosωt = 0 (11)

Solving Eq. (11) subject to the boundary conditions
T = T0 at r = R and T < ∞ at r = 0, we have

T = T0 +
(

R2 − r2
)

q cosωt (12)

Substituting Eq. (12) into Eqs (4) and (5) yields

NT = Eα

∫ 1

2
h

−
1

2
h

T (r)dz = EαhT (r) (13)

MT = Eα

∫ 1

2
h

−
1

2
h

T (r)zdz = 0 (14)

Now, substituting Eqs (9), (13) and (14) into Eqs (2)
and (3) and dropping the asterisks, we obtain

∂2w
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+ ∇4w (15)

= ǫ
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2r

∂

∂r

(

∂w

∂r

)2

+ q cosωt (16)

w < ∞ and F < ∞ at r = 0 (17)

∂F

∂r
= 0 at r = 1 (18)

w = 0 and
∂2w

∂r2
+

ν

r

∂w

∂r
= 0 at r = 1 (19)

where ǫ = 12(1−ν2)h2

R2 .

3. Perturbation solution

We seek a first-order uniform expansion of the solu-

tion of Eqs (15)–(19) in the form [13]

w(r, t; ǫ) = w0(r, t0, t1)
(20)

+ǫw1(r, t0, t1) + · · ·

F (r, t; ǫ) = F0(r, t0, t1) + · · · (21)

where t0 = t and t1 = ǫt. Hence, the time derivative

is transformed into

d

dt
= D0 + ǫD1 + · · · (22)

where Dn = ∂/∂tn. Substituting Eqs (20)–(22) into

Eqs (15)–(19) and equating coefficients of like powers

of ǫ, we obtain

Order ǫ0

D2
0w0 + ∇4w0 = 0 (23)

∇4F0 = − 1

2r

∂

∂r

(

∂w0

∂r

)2

+ q cosωT0 (24)

w0 < ∞ and F0 < ∞ at r = 0 (25)

F ′

0 = 0 at r = 1 (26)

w0 = 0 and w′′

0 + νw′

0 = 0 at r = 1 (27)

Order ǫ

D2
0w1 + ∇4w1

= −2D0D1w0 +
1

r

∂2w0

∂r2

∂F0

∂r
(28)

+
1

r

∂w0

∂r

∂2F0

∂r2
− 2cD0w0

w1 < ∞ at r = 0 (29)

w1 = 0 and w′′

1 + νw′

1 = 0 at r = 1 (30)

where the prime indicates the partial derivative with

respect to r.
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The solution of Eqs (23), (25) and (27) can be ex-

pressed as

w0 = (31)

∞
∑

n=1

[

An(t1)e
iωnt0 + Ān(t1)e

−iωnt0
]

φn(r)

where

φn(r) = kn [I0 (
√
ωn)J0 (

√
ωnr)

(32)
−J0 (

√
ωn) I0 (

√
ωnr)]

the ωn are the roots of

J1

(√
ωn

)

J0

(√
ωn

) +
I1

(√
ωn

)

I0
(√

ωn

) =
2
√
ωn

1 − ν
(33)

and the kn are chosen so that
∫ 1

0

rφ2
n(r)dr = 1 (34)

The lowest five nondimensional frequencies for the

case ν = 0.3 are 4.935, 29.720, 74.156, 138.318, and

222.215. Hence, the first mode is not involved in any

internal resonance with any other symmetric mode.

Moreover, this mode is not involved in an internal res-

onance with any asymmetric mode. In this paper, we

consider the case of principal parametric resonance of

the first mode. The analysis is also valid for any mode

that is not involved in an internal resonance with other

modes. For asymmetric thermal loads, one-to-one in-

ternal resonance might be activated. This case is not

considered in this paper.

Substituting Eq. (31) into Eq. (24) yields

∇4F0 = − 1

2r

∑

m,n

[

AmAne
i(ωn+ωm)t0

+AnĀmei(ωn−ωm)t0
]

(35)

(φ′

nφ
′

m)
′

+ cc + q cosωt0

The solution of Eq. (35) subject to the boundary

conditions Eqs (25) and (26) can be expressed as

F0 =
∑

m,n

[

AnAmei(ωn+ωm)t0

+AnĀmei(ωn−ωm)t0
]

ψnm(r) (36)

+cc + b +
1

16

(

r4 − 2r2
)

q cosωt0

where b is a constant and

∇4ψnm = − 1

2r
(φ′

nφ
′

m)
′

(37)

ψnm(0) < ∞ (38)

ψ′

nm = 0 at r = 1 (39)

Multiplying Eq. (37) with rand integrating the result,

we have
(

r
d2

dr2
+

d

dr
− 1

r

)

dψnm

dr
= −1

2
φ′

nφ
′

m (40)

where the constant of integration is incorporated in

Eq. (36). Because
(

r2 d2

dr2
+ r

d

dr
− 1

)

J1 (ξkr)

(41)
= −ξ2

kr
2J1 (ξkr)

we express ψ′

nm as

ψ′

nm(r) =

∞
∑

k=1

bnmkJ1 (ξkr) (42)

Using the boundary condition Eq. (39), we find that

the ξm are the roots of

J1 (ξk) = 0 (43)

The lowest ten roots are 0, 3.832, 7.016, 13.324,

19.616, 22.760, 25.904, 29.047, 32.190, and 35.332.

Substituting Eq. (42) into Eq. (40) and using Eq. (41),

we obtain
∞
∑

k=1

bnmk

[

rJ ′′

1 (ξkr) + J ′

1 (ξkr) −
1

r
J1 (ξkr)

]

(44)

=
∞
∑

k=1

bnmkξ
2
krJ1 (ξkr)

= −1

2
φ′

nφ
′

m

Multiplying Eq. (44) with J1 (ξsr) and integrating

the result with respect to r from r = 0 to 1, we have

bnms =

∫ 1

0

J1 (ξsr)φ
′

n(r)φ′

m(r)dr /

(45)
[

2ξ2
s

∫ 1

0

rJ2
1 (ξsr) dr

]

Substituting Eqs (31) and (36) into Eq. (28) yields

D2
0w1 + ∇4w1

= −2i
∑

n

ωn (A′

n + cAn)φne
iωnt0



A.H. Nayfeh and W. Faris / Thermally induced principal parametric resonance in circular plates 147

+
1

8
qeiωt0

∑

n

[

(r2 − 1)φ′′

n +
3r2 − 1

r
φ′

n

]

[

Ane
iωnt0 + Āne

−iωnt0
]
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1
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∑

n,m,s

(φ′

sψ
′

nm)
′

(46)

[

AsAnAmei(ωn+ωm+ωs)t0

+AsAnĀmei(ωs+ωn−ωm)t0

+AnAmĀse
i(ωn+ωm−ωs)t0

+AnĀmĀse
i(ωn−ωm−ωs)t0

]

+ cc

Next, we consider the case of principal parametric

resonance of the jth mode and assume that it is not

involved in an internal resonance with any other mode.

To describe the nearness of the resonance, we introduce

a detuning parameter σ defined by

ω = 2ωj + ǫσ (47)

Substituting Eq. (47) into Eq. (46) yields

D2w1 + ∇4w1

= −2i
∑

n

ωn (A′

n + cAn)φne
iωnt0

+
1

8
q
∑

n

[

(

r2 − 1
)

φ′′

n +
3r2 − 1

r
φ′

n

]

[

Ane
i(ωn+2ωj)t0+iσt1

+Āne
i(2ωj−ωn)t0+iσt1

]

(48)

+
1

r

∑

n,m,s

(φ′

sψ
′

nm)
′

[

AsAnAmei(ωn+ωm+ωs)t0

+AsAnĀmei(ωs+ωn−ωm)t0

+AnAmĀse
i(ωn+ωm−ωs)t0

+AnĀmĀse
i(ωn−ωm−ωs)t0

]

+ cc

In the presence of damping, all modes that are not

directly excited or indirectly excited by an internal res-

onance decay with time, and hence the long-time re-

sponse consists of the jth mode only. Our choice here

will be for the first mode. Because the homogeneous

problem consisting of Eqs (48), (29) and (30) has non-

trivial solutions, the nonhomogeneous problem has a

solution only if a solvability condition is satisfied. Be-

cause the homogeneous problem is self-adjoint [14,15],

the solvability condition demands that the right-hand

of Eq. (48) be orthogonal to every solution of the ho-

mogeneous problem. Multiplying the right-hand side

of Eq. (48) with rφj(r)e
−iωj t0 , integrating the result

from r = 0 to r = 1, and setting the result equal to

zero, we obtain

2iωj

(

A′

j + µjAj

)

+ αeA
2
j Āj

(49)
+ qeĀje

iσt1 = 0

where

αe =

∫ 1

0

φj

(

φ′

jψ
′

jj

)

′

dr

(50)

= −
∫ 1

0

φ′2
j ψ′

jjdr

qe =
1

8
q

∫ 1

0

((

r3 − r
)

φ′

j

)′

φjdr

(51)

= −1

8
q

∫ 1

0

(

r3 − r
)

φ′2
j dr

4. Numerical results

To investigate the solutions of Eq. (49), we introduce

the polar transformation

Aj =
1

2
aje

i(β+ 1

2
σt1) (52)

separate real and imaginary parts, and obtain

a′j = −µjaj +
qe

2ωj
aj sin 2β (53)

ajβ
′

j = −1

2
σaj +

αe

8ωj
a3

j

(54)
+

qe

2ωj
aj cos 2β

The equilibrium solutions of Eqs (53) and (54) corre-

spond to periodic motions of the plate. The equilibrium

solutions are given by

µjaj =
qe

2ωj
aj sin 2β (55)

1

2
σaj −

αe

8ωj
a3

j =
qe

2ωj
aj cos 2β (56)

There are two possibilities: either aj = 0 or aj �= 0.

In the latter case, eliminating β from Eqs (55) and (56)

yields the frequency-response equation
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Fig. 2. Variation of the steady-state response amplitude with the detuning parameter.

µ2
j +

(

1

2
σ − αe

8ωj
a2

j

)2

=
q2
e

4ω2
j

(57)

or

a2
j =

8ωj

αe

[

1

2
σ ±

√

q2
e

4ω2
j

− µ2
j

]

(58)

Equation (58) represents the relation between the re-

sponse amplitude and the forcing amplitude and de-

tuning parameter, the latter are considered the con-

trol parameters. Next, we present results for the

first mode. The b values in Eq. (45) are: 1.24252,

−0.144995, −0.0272522, −0.0102221, 0.00702803,

−0.00507591, 0.00380701, −0.00294182, and

0.00232898. This leads to αe = −3.77941. Also, we

assume that µ = 0.01 and consider nondimensional

values of q ranging from 1 to 30. In Fig. 2, the fre-

quency -response curve is shown for q = 10. The curve

is bent to the left, indicating a softening-type nonlin-

earity. The bending of the frequency-response curves

leads to multivalued amplitudes and hence to jumps.

To illustrate the jump phenomenon, let us suppose that

an experiment is conducted where the excitation am-

plitude is kept constant while the excitation frequency

is varied very slowly. We start from a frequency far

below the natural frequency (i.e., is negatively large)

and increase it. We chose the initial conditions so that

the response amplitude is trivial. As σ is increased,

the response amplitude remains trivial till point B is
reached, where the response amplitude experiences a
sudden jump up to point C. Point B is a subcritical
or reverse pitchfork bifurcation. The response ampli-
tude decreases as the frequency is further increased
till point D is reached, where it becomes trivial again.
Point D is a supercritical pitchfork bifurcation.

Starting at point C and sweeping in the reverse di-
rection, we note that, to the first-order approximation,
the response amplitude increases without bound as the
frequency decreases. In reality, the stable and unstable
branches merge to produce a saddle-node bifurcation.
Decreasing below this point results in a jump down of
the response amplitude to the trivial solution. Between
point B and the saddle-node bifurcation, there are three
possible solutions: the trivial solution, which is sta-
ble, and two nontrivial solutions, the larger of which is
stable and the smaller is unstable. In this interval, the
response may be trivial or nontrivial, depending on the
initial conditions.

In Fig. 3, a force-response curve is generated when
the system is positively detuned by 0.5. Starting from
a forcing amplitude corresponding to point E and in-
creasing it results in a monotonic increase in the re-
sponse amplitude. Point E is a supercritical pitch-
fork bifurcation. For any excitation amplitude above
point E, the response amplitude settles on the branch
EB, irrespective of the initial conditions. Sweeping q
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down, one finds that the response amplitude follows

the branch BE. Decreasing q below point E results in a

smooth transition of the response from a nontrivial to

a trivial response. Increasing the value of the detuning

parameter results in a shift of the critical point E to the

right.

We show in Fig. 4 the force-response curve for the

case of a negative detuning of −0.8. In contrast with

the preceding case, there are multivalued responses.

Point F is a subcritical pitchfork bifurcation and point G



150 A.H. Nayfeh and W. Faris / Thermally induced principal parametric resonance in circular plates

is a saddle-node bifurcation. Between these bifurca-

tions, the response may be trivial or nontrivial depend-

ing on the initial conditions. Whereas the linear theory

predicts stable trivial responses for forcing amplitudes

below point F and unbounded responses above it, the

nonlinear analysis predicts instabilities of the trivial re-

sponse between points F and G, a subcritical instability.

Moreover, the nonlinearity puts a cap on the response

amplitude.

Sweeping q in the forward direction, one finds that

the response amplitude jumps up beyond point F. On the

other hand, sweeping q in the reverse direction results

in a jump to the trivial response beyond point G.

5. Summary

Thermally induced vibrations are of concern in the

design of many structural elements. Most of the pre-

vious research on thermally induced vibrations in cir-

cular plates has been limited to solving for small de-

flections. Moreover, the works that deal with large

deflections were based on the Berger’s approximation.

In this paper, we investigate the nonlinear response of

a circular plate to a thermal loading consisting of a

steady component and a sinusoidal component. We

base the analysis on the dynamic analogue of the von

Karman equations. We first formulate the heat con-

duction problem and solve it for the temperature dis-

tribution. Then, we substitute the resulting distribu-

tion into the equations describing the displacement.

We use the method of multiple scales to determine a

first-order approximation of the plate response in the

case of principal parametric resonance of an axisym-

metric mode, which is not involved in an internal reso-

nance with any other mode, and obtain two first-order

nonlinear ordinary-differential equations governing the

amplitude and phase of the response. We use these

modulation equations to generate frequency-and force-

response curves. The numerical results show that the

heat variation can lead to large-amplitude responses,

including multivalued responses and jumps.
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