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ABSTRACT 
Maintaining safe chip and device skin temperatures in small 

form-factor mobile devices (such as smartphones and tablets) while 
continuing to add new functionalities and provide higher 
performance has emerged as a key challenge. This paper presents 
Therminator, an early stage, fast, full-device thermal analyzer, 
which generates accurate steady-state temperature maps of the 
entire smartphone starting from the Application Processor and other 
key device components, extending to the skin of the device itself. 
The thermal analysis is sensitive to detailed device specifications 
(including its material composition and 3-D layout) as well as 
different use cases (each case specifying the set of active device 
components and their activity levels). Therminator considers all 
major components within the device, builds a corresponding 
compact thermal model for each component and the whole device, 
and produces their steady-state temperature maps. Temperature 
results obtained by using Therminator have been validated against a 
commercial computational fluid dynamics-based tool, i.e., Autodesk 
Simulation CFD, and thermocouple measurements on a Qualcomm 
Mobile Developer Platform. A case study on a Samsung Galaxy S4 
using Therminator is provided to relate the device performance to 
the skin temperature and investigate the thermal path design. 

Categories and Subject Descriptors 
C. 5. 3 [Computer System Implementation]: Microcomputers – 
Portable devices (e.g., laptops, personal digital assistants) 

Keywords 
Smartphones, embedded systems, thermal management, thermal 
modeling, temperature maps simulator, skin temperature, CFD 

1. INTRODUCTION 
The popularity of mobile devices, such as smartphones and 

tablets, has surpassed that of personal computers, thanks to their 
portability and ease-of-use. (In the remainder of this paper we will 
use smartphones as the popular and archetypical mobile device.)  
Additional enablers for the rapid increase in the number of 
smartphones have been their improving functionality and ever-
increasing performance capabilities. This has in turn happened due 
to introduction of high performance (heterogeneous, multi-core) 
processors inside smartphones. Unfortunately, high performance 
processors cause two adverse effects: 1) They tend to experience 
higher average and peak die temperatures. 2) They tend to result in 
higher device skin (surface) temperatures. High die temperature 
increases the leakage power consumption [1], speeds up aging 
processes [2], and may eventually cause permanent defects. High 
skin temperatures can cause first or even second degree burns on 

device users, with obvious and immediate adverse user reactions. 
Hence, thermal design (i.e., designing the heat flow path and a 
cooling method) and thermal management (i.e., employing thermal 
response mechanisms to avoid hot spots and high die temperatures) 
are crucial for a mobile device to improve its performance and 
energy efficiency while maintaining safe temperatures.  

Proper thermal design effectively removes heat away from a 
VLSI circuit die. In smartphones, application processors (APs) 
incorporate CPU, GPU, digital signal processor (DSP), sometimes 
a baseband radio unit, and so on. The AP is a major heat generator 
in the smartphone [3]. Due to the cost, form factor, noise, and safety 
issues, smartphones rely on passive cooling methods that dissipate 
the heat generated by the AP through thermal conduction to the 
device skin. Thermal pads are usually attached on top of the AP 
chip package to ease the heat removal [3][4]. Thermal management 
techniques, such as frequency throttling and voltage/frequency 
scaling, are also exploited to avoid high die temperatures. For 
example, one can observe that the CPU and GPU performance (and 
consequently their power consumption) are throttled in Samsung 
Exynos 5250 so as to prevent the AP’s junction temperature from 
exceeding an upper threshold [5]. 

As noted above, thermal design and management of 
smartphones are also concerned a skin temperature constraint. This 
constraint refers to the fact that the temperature at the device skin 
must not exceed a certain upper threshold. According to [6][7], 
most people experience a sensation of heat pain when they touch an 
object hotter than 45˚C. Ideally speaking, distributing the heat 
uniformly onto the device skin results in the most effective heat 
dissipation. However, in practice, majority of the heat flows in 
vertical direction from the AP die, and thus hot spots are formed on 
the device skin above the AP location [8]. It is reported that the 
hottest spot on iPad 3 can reach as high as 47˚C while playing 
graphic intensive games [9]. Usually, a skin temperature thermal 
governor is implemented to maintain the skin temperature at a 
desired setpoint by using a control feedback. 

To address this design challenge, it is necessary to model the 
temperature map (temperature at different locations) for the 
smartphone in an accurate and efficient manner. Knowing the 
detailed temperature map on the device skin at the design time is 
helpful in the device implementation. For example, using materials 
with high thermal conductivity in the thermal path enhances heat 
removal from the AP and in turn causes high skin temperature, 
whereas using low thermal conductivity materials cannot remove 
the heat from the AP fast enough and hence the die temperature 
goes up. Moreover, knowing how the temperature of a particular 
component depends on use cases helps to derive the optimal thermal 
management policy for that component. For instance, setting CPU 
frequency throttling levels is affected by how skin temperature 
depends on the CPU frequency.  

Analyzing temperature maps at the early stage of the design 
flow can significantly reduce the device time. Even though 
computational fluid dynamics (CFD) tools generate accurate 
temperature maps, they are expensive and not compatible with other 
performance/power simulators. Compact thermal modeling (CTM) 
method has been proposed for thermal analysis with reasonable 
accuracy and low computational complexity [10][11]. This method 



builds an RC thermal network based on the well-known duality 
between the thermal and the electrical phenomena, and solves for 
temperatures in the network in a similar way to finding voltage 
values in an electrical circuit. 

In this work, we present Therminator, a CTM-based 
component-level thermal simulator targeting small form-factor 
mobile devices (such as smartphones and tablets). Major 
contributions of this work are the following: 
1) Therminator is the first thermal simulator targeting at 

smartphones. It produces temperature maps for all components, 
including the AP, battery, display, and other key device 
components, as well as the skin of the device, with high 
accuracy and fast runtime. Therminator results have been 
validated against thermocouple measurements on a Qualcomm 
Mobile Developer Platform (MDP) [12] and simulation results 
generated by Autodesk Simulation CFD [13]. 

2) Therminator is very versatile in handling different device 
specifications and component usage information, which allows a 
user to explore impacts of different thermal designs and thermal 
management policies. New devices can be simply described 
through an input specification file (in XML format).  

3) Therminator supports parallel processing, allowing users to 
employ GPU to reduce the runtime by more than two orders of 
magnitude for high-resolution temperature maps. 

4) A detailed case study has been conducted for Samsung Galaxy 
S4 by using Therminator. The temperature results relate the 
device performance to the device skin temperature, as well as 
the impact of the thermal path design. 
Therminator is available for download at 

http://atrak.usc.edu/downloads. 
The rest of paper is organized as follows. Section 2 reviews 

related work. Section 3 introduces Therminator. The modeling 
methodology and implemented features are elaborated in Sections 4 
and 5. We validate Therminator results in Section 6 and provide a 
case study in Section 7. Section 8 concludes the paper. 

2. RELATED WORK 
HotSpot [11] is a successful early-stage CTM methodology 

targeting thermal analysis of the silicon die and its packaging which 
are cooled with a heat sink and possibly a fan. It generates accurate 
temperature maps quickly. Temptor [14] is a tool based on HotSpot 
which allows the temperature prediction using performance 
counters instead of components’ power trace. Meng et al. [15] 
improved HotSpot by adding the 3-D chip simulation support. 
Teculator [16] instruments HotSpot to support thermoelectric 
coolers. 3D-ICE [17] is another thermal simulator targeting 3-D ICs 
equipped with liquid cooling. However, neither HotSpot nor 3D-
ICE can be modified or extended to analyze small form-factor 
devices as they target a single IC package along with its cooling 
equipment. In fact, modeling smartphone is much more complicated 
due to: 1) multiple heat generators, including battery, display, and a 
number of IC chips; 2) complex 3-D layout where each component 
may be in vertical and horizontal contact with several other 
components; and 3) necessity of considering the internal air in the 
device. Comparing to those tools, Therminator focuses on 
component-level thermal modeling, in which the architecture-level 
details inside a single chip package are ignored. 

Several researches have been conducted in studying the thermal 
design for smartphones and tablets [3][4][18]. Luo et al. established 
a simple thermal resistance network to analyze the whole mobile 
phone system [18]. However, the thermal resistance network built 
in [18] is oversimplified as each component is modeled as one 
block with a single uniform temperature value. Gurrum et al. 
modeled the smartphone in CFD tools and analyzed the thermal 
effect of using materials with different thermal conductivities 
through CFD simulation [3]. Rajmond and Fodor [4] used CFD 
tools to show that attaching thermal pad on top of the AP 

significantly reduces the AP temperature. To the best of our 
knowledge, Therminator is the first tool targeting smartphones that 
automatically builds a compact thermal model from the device 
specifications, and solves for temperature maps of all components 
accurately with a fast runtime. 

3. THERMINATOR OVERVIEW 
Figure 1 depicts the overview of Therminator. Therminator 

takes two input files provided by users. The specs.xml file 

describes the smartphone design, including components of interest 
and their geometric dimensions (length, width, and thickness) and 
relative positions. Therminator has a built-in library storing 
properties of common materials (i.e., thermal conductivity, density, 
and specific heat) that are used to manufacture smartphones. In 
addition, users can override these properties or specify new 
materials through the specs.xml file. The power.trace file 

provides the usage information (power consumption) of those 
components that consume power and generate heat, e.g., ICs, 
battery, and display. The power.trace can be obtained through 

real measurements or other power estimation tools/methods such as 
[19][20]. power.trace is a separate file so that one can easily 

interface a performance-power simulator with Therminator. 
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Figure 1. Overview of Therminator. 

Therminator has three main modules. A parser module parses 
input files, updates the material library, and makes a set of 
components specified by the input file. Parser performs multiple 
sanity checks after it finishes parsing to detect inappropriately 
specified components, e.g., the positions of two components are set 
such that they overlap in space. A CTM module takes the valid 
components set from the parser, divides them into fine-grained sub-
components, and stores them into a spatial database. Next, the CTM 
module detects physical contacts among sub-components and builds 
a compact thermal model. Finally, the compact thermal model is 
given to a Solver module. The solver uses the thermal model along 
with the power trace coming from the parser to compute 
temperature maps of all components. The Solver applies a parallel 
method using GPUs to solve for temperature results more quickly 
when GPU hardware is available. 

4. COMPACT THERMAL MODELING 
There is a well-known duality between the thermal and 

electrical phenomena [21]. The compact thermal modeling methods 
build an equivalent RC circuit based on the original thermal system. 
In this paper, we focus on generating the steady-state temperature 
maps for components inside a smartphone because the objective of 
thermal design and management is to ensure that the device can run 
continuously without exceeding a given temperature threshold. 
Therefore, the device is modeled by using a thermal resistance 
network only. 

To build a compact thermal model, Therminator divides 
specified components into sub-components with smaller dimensions 
and checks for physical contacts among sub-components. Finer 
granularity of sub-component division helps to produce more 
accurate temperature maps at the cost of increased runtime and 
memory usage. Each sub-component is modeled as a node in the 
thermal resistance network and has a single temperature value. A 
thermal resistance is calculated for every contacted sub-component 



pairs, based on their material properties, dimensions, and relative 
positions.  

Figure 2 shows a small part of thermal resistance network for 
the Qualcomm MSM8660 Mobile Developer Platform (MDP) [12]. 
The components in Figure 2, from top to bottom, include screen 
protector, display module, PCB and IC chips, battery, and rear case. 
Terminator breaks various components into non-equal number of 
sub-components according to their importance and requirements of 
solution quality. For two adjacent sub-components 𝑖  and   𝑗 , the 
thermal resistance is calculated by serially connecting two thermal 
resistors from their centers to the shared surface,  

𝑟 𝑗, 𝑖 = 𝑟 𝑖, 𝑗 = 𝑟! + 𝑟! =
1

𝐴

𝑡!

𝑘!

+
𝑡!

𝑘!

 (1) 

where 𝐴 is the common area between these two contacted sub-
components, 𝑘!  and 𝑘!  are the thermal conductivity, and 𝑡!  and 𝑡! 

are the perpendicular distances from the center of sub-components 
to the shared surface, respectively. Note that adjacencies between 
sub-components are detected in a 3D space and thereby, we account 
for orthotropism in the material thermal conductivity.  

At the boundary of the device, heat diffuses to the ambient 
environment (air). Thus, the boundary thermal resistance between 
the 𝑖-th sub-component and the ambient air is calculated as,  

𝑟 𝑖, 𝑎𝑚𝑏 = 𝑟! + 𝑟!!" =
1

𝐴

𝑡!

𝑘!

+
1

ℎ!"#

 (2) 

where ℎ!"#  is the air heat transfer coefficient. In the natural 
convection condition, ℎ!"# has the value of 5~25 𝑊/(𝑚!

𝐾) [22].  

 
Figure 2. A cross-section view of the thermal resistance network 

in a simple smartphone model. 
Note that empty spaces, shown as orange areas in Figure 2, are 

left in the design specifications. Ignoring these empty spaces, i.e., 
not calculating the thermal resistance between them and adjacent 
components will completely disable the heat flow through them and 
subsequently result in temperatures over-estimation. Thus, to avoid 
this issue, Therminator does VoidFill – i.e., it automatically 
identifies these empty spaces and fills them with air, as shown in 
Figure 2. Note that it is not practical to model the internal air using 
compact modeling of fluids in our problem, due to the lack of 
specific air circulation channels in smartphones. Therefore, in the 
steady-state, the air flow is ignored and the air is modeled like other 
sub-components. We apply a correction factor to the thermal 
conductivity of the air to account for this simplification. 

Having built the resistance network, we obtain heat flow 
equations for all sub-components in a matrix format as follows, 

𝑮 𝑻=𝑷 (3) 

where 𝑻 is the vector of all sub-component temperatures, 𝑮 is the 
conductance matrix derived from the thermal resistance network, 

and 𝑷  is the heat generation vector, which includes the heat 
generation of sub-components and heat diffusion from the device to 
the ambient environment. Therminator adopts the LUP 

decomposition method to decompose 𝑮  into a lower and upper 

triangular matrices, and then applies forward and backward 

substitution to solve for 𝑻 . Advanced matrix solver libraries 
enabling GPU-acceleration are also included to reduce the runtime 
for fine-grained temperature maps.  

5. THERMINATOR IMPLEMENTATION 
Therminator is implemented using C++ and compiled by GCC 

4.7. The parser adopts PugiXML [23], an open source, light-weight, 
and fast C++ XML processing library. The built-in material library 
is a class called Materials which holds default material properties 
and its data are updated by the parser. All components and sub-
components are instances of Component and Subcomponent 

classes, respectively. A Device class keeps track of sub-

components objects using a spatial database. Another class called 
Model takes the device object and builds the thermal model based 
on Equations (1) and (2). Several geometric utility methods are 
implemented in order to perform basic spatial queries on sub-
components, e.g., checking the physical contact between every two 
sub-components, determining if they have overlap in space, and 
calculating their common area. Moreover, the Model class calls 

another parser to read the power.trace file which contains the 
power consumption of each component. 

 
Figure 3. Comparison of runtime of sequential and parallel 

methods for different sub-component counts. 
Matrix solving techniques, namely, the LUP decomposition 

method followed by the forward and backward substitution method, 
are implemented using the sequential method (which utilizes the 
CPU) and the parallel method (which utilizes the GPU), 
respectively. For the parallel method, Therminator adopts CULA 
Dense [24], which is a set of GPU-accelerated linear algebra 
libraries utilizing the NVIDIA CUDA parallel computing platform. 
One can observe that the parallel method speeds up Therminator by 
more than two orders of magnitude against the sequential method, 
as shown in Figure 3. Runtime results of both methods are 
measured on a server with 4×Intel Xeon E7-8837 CPUs, 64GB of 
memory, and an NVIDIA Quadro K5000 GPU. 

6. THERMINATOR EVALUATION 

6.1 Validation of the Therminator Results 
We use a Qualcomm MSM8660 MDP [12] as the target system 

to validate Therminator results. The MSM8660 MDP has a dual-
core 1.5GHz CPU, Adreno 220 GPU, 1GB LPDDR2 RAM, 3.61-
inch touch screen, and a 1,300mAh Li-ion battery. A smartphone 
consists of a large number of small components with irregular 
geometric shapes and complicated material compositions. In this 
work, we try our best to identify the major components in the 
MSM8660 MDP and obtain the thermal properties of these 
components. Figure 4(a) shows a teardown of the MSM8660 MDP. 
We create a model for MSM8660 MDP device by identifying major 
components that have thermal impact to the entire device and 
measure their dimensions and relative positions. Components 
identified include rear case, chassis, battery, PCB, display, screen 
protector, and some ICs, such as AP, DRAM, eMMC, GPS and 
WiFi. The detailed material properties and dimensions for 
components are not shown due to the limited paper space. We draw 
the MSM8660 MDP model in Autodesk software, as shown in 
Figure 4(b), and perform CFD thermal analysis. We treat CFD 
results as golden results and compare Therminator results with 
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them. Thus, a similar MDP device model, including the aforesaid 
components, their dimensions, relative positions and material 
properties, is specified in the specs.xml file for Therminator. Figure 
4(c) visualizes the 3-D layout model that Therminator creates from 
the input file. Note that Therminator applies different granularity to 
different components.  

We run a few representative use cases that utilize different 
components and consume various amounts of power. Use cases 
tested in this work are StabilityTest (an app that heavily stresses 
CPU and GPU [25]), casual gaming (Candy Crush), YouTube video 
streaming, camcorder (video recording), and a local video playback. 
We adopt Trepn Profiler [26] to record the per component power 
consumption breakdown of this device, and provide as inputs for 
both CFD simulation software and Therminator. Note that we 
assign the total power consumption of some small components 
(interconnects, sensors, etc.) to the PCB uniformly because we have 
no access to the schematic diagram of the MSM8660 MDP to 
precisely locate them.  

We use thermocouples to measure temperatures at three 
locations in MSM8660 MDP, shown as red circles in Figure 4(a). 
We measure 1) hot spot on the screen right above the AP; 2) hot 
spot on the rear case below the battery (because there is a big air 
gap between PCB and rear case, the hot spot on the rear case is 
located below the battery); and 3) the PCB (the opposite side of the 
board shown in Figure 4(a).) The ambient temperature is measured 
as 23.0˚C during the experiments. We access Sysfs of the MDP 
device through the Android Debug Bridge interface and obtain the 
AP junction temperature by reading the temperature register in 
/sys/class/thermal/thermal_zone2 directory. Note that the 

temperature register only has the accuracy of ±1˚C. 

Table 1 compares temperature of aforementioned regions 
obtained through thermocouple measurements, CFD simulations, 
and Therminator. We first compare thermocouple measurement 
results and CFD simulation results. One can see that CFD 
simulation produces accurate results for all tested use cases and all 
regions. The maximum and average temperature error are 2.4˚C and 
0.7˚C (11.0% and 4.7%), respectively. The error mainly comes from 
simplifications in modeling the real device and inaccuracies in 
determining component material properties. Note that the largest 
error (2.4˚C) comes from the AP junction temperature in YouTube 
use case. A potential reason might be the inaccuracy of the 
temperature register (i.e., ±1˚C).  

Next, CFD results are used as golden results and we compare 
Therminator results with them. We divide specified components 
into 7,336 sub-components in total in Therminator. Table 1 shows 
that for all use cases and temperature points, the maximum and 
average errors of Therminator are only 0.7˚C and 0.25˚C (3.65% 
and 1.42%), respectively, compared to CFD results. Figure 5 shows 
more detailed comparisons of temperature maps, produced by CFD 
simulation and Therminator, of front screen, rear case, and PCB. 
One can see that Therminator is able to accurately capture not only 
the temperature of a particular hot spot, but also temperature maps 
of the entire smartphone device. Therefore, Therminator matches 
very well with the commercial CFD tool, given the same input 
models.  

6.2 Convergence of the Therminator Results 
Therminator can generate more detailed temperature maps at 

higher resolution with longer runtime. We study the convergence of 
temperature versus total the number of sub-components created by 

 
Figure 4. (a) Teardown of MSM8660 MDP device and temperature measurement kits (circle marks are temperature measurement 
points. Note for the PCB, thermocouple is attached onto the other side), (b) CFD drawing, and (c) Therminator 3-D visualization. 

Table 1. Temperatures obtained from the thermocouple measurement (TCM), Autodesk Simulation CFD, and Therminator. Note the AP 
junction temperature is read from temperature register (Reg) instead of measurement. The ambient temperature is 23.0˚C. 

Use Case 
Tscreen hot spot (˚C) Trear case hot spot  (˚C) TPCB (near battery)  (˚C) TAP junction (˚C) 

TCM CFD Therminator TCM CFD Therminator TCM CFD Therminator Reg CFD Therminator 

StabilityTest 38.1 38.4 38.5 38.4 39.1 38.7 44.9 44.5 44.4 60 58.6 59.3 

Candy Crush 37.2 37.8 37.7 38.4 39.2 38.9 46.2 44.6 44.8 59 59.0 59.5 

YouTube 35.8 37.0 36.7 34.6 34.4 34.2 39.3 38.4 38.3 43 45.2 45.4 

Camcorder 31.7 32.2 32.1 33.3 32.6 32.4 36.9 36.2 36.2 42 42.7 43.3 

Video playback 30.2 30.8 30.7 30.5 30.8 30.7 33.3 33.4 33.4 39 39.4 40.0 

 
Figure 5. Temperature maps produced by Autodesk Simulation CFD (a1, b1, c1) and by Therminator (a2, b2, c2) for the screen 

protector (a), rear case (b), and PCB (c) for the StabilityTest use case. 
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Therminator for MSM8660 MDP in Figure 6. We calculate 
convergence errors at different resolutions by comparing 
temperature results obtained at a particular resolution to those 
obtained at the highest resolution that we have tested (18,109 sub-
components in total). One can see that the convergence errors of all 
four temperature points drop below 1% when the total sub-
components number is above 7,000. According to results reported 
in Section 6.1, the difference of Therminator results compared to 
CFD results is only 1.42% for 7,500 sub-components. The runtime 
of Therminator at that resolution is less than seven seconds. 

7. CASE STUDY 
Therminator is versatile in handling different form-factor 

devices as long as input files are provided properly. In this section, 
we provide a case study targeted at Samsung Galaxy S4. Samsung 
Galaxy S4 is a flagship commercial smartphone released in 2013. 
Unlike the MSM8660 MDP device, Samsung Galaxy S4 does not 
provide power consumption due to some commercial reasons. Thus, 
the power consumption for major components, i.e., AP (CPU and 
GPU) and display, are estimated by measuring the total power 
consumption of Galaxy S4 at the battery output terminals and 
scaling them to the power breakdown ratio as reported in [27]. A 
simplified model of Galaxy S4 is also created, as shown in Figure 7. 
An AP floorplan describing locations of CPU and GPU is specified 
in the specs.xml file for better estimation accuracy.  

We notice that in Galaxy S4, the thermal governor throttles the 
CPU, GPU, and memory operating frequency such that the skin 
temperature will not exceed 45˚C, i.e., the skin thermal governor 
has the temperature setpoint of 45˚C. The critical temperature of AP 
junction is usually quite high, say 85˚C, and thereby the frequency 
throttling we have observed is triggered by the skin thermal 
governor. We validate Therminator results for the maximum skin 
temperature located on the front screen (denoted as 𝑇!"#$) and the 
AP junction temperature ( 𝑇!",!"#$ ) against the thermocouple 

measurement results. The measurements results and Therminator 
results in the same condition of power consumption are underlined 
in Table 2. One can see that the temperature error produced by 
Therminator is within 0.5˚C (2%).  

To simulate the effect of frequency throttling utilized by the 
thermal governor, we scale the total power consumption to produce 
different steady-state skin temperatures. Table 2 reports the 
corresponding 𝑇!"#$  and 𝑇!",!"#$  values for different AP power 

consumption values. To better study the effect of skin temperature 

on the device performance, we obtain the dynamic power 
consumption by subtracting the leakage power consumption, 
estimated by using McPAT [28], from the total AP power 
consumption values. Note that we use average AP temperature to 
estimate leakage power consumption values. Each row in Table 2 
indicates a dynamic power consumption level when that specific 
skin temperature is met. In other words, when the skin thermal 
governor sets the target 𝑇!"#$ as the values listed in the third column 
of Table 2, the approximated AP’s dynamic power consumption 
allotment are shown in the fifth column. 

 
Figure 8. AP power consumption and junction temperature 

versus various skin temperature setpoints. 

 
Figure 9. Skin and AP junction temperature versus rear case 

material (a) and thermal pad material (b) for 𝑷𝑨𝑷 = 𝟐.𝟐W. 
Figure 8 plots the AP’s dynamic power consumption allotment, 

denoted by 𝑃!",!"#, versus the skin temperature setpoint, denoted by 

𝑇!"#$,!"# , as the latter is a typical variable in various thermal 

management policies. The blue dots indicates that 𝑃!",!"# (which is 

proportional to the device operating frequency and therefore, the 
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Figure 6. Therminator results convergence and runtime versus 
sub-component counts for the StabilityTest use case. 

Table 2. Skin temperature and AP junction temperature obtained by 
thermocouple measurement (TCM) and Therminator at different AP 
power consumption levels. 

Method 
Temperature (˚C) Power (W) 

𝑻𝑨𝑷,𝒋𝒖𝒏𝒄 𝑻𝒔𝒌𝒊𝒏 𝑷𝑨𝑷* 𝑷𝑨𝑷,𝒍𝒆𝒂𝒌 𝑷𝑨𝑷,𝒅𝒚𝒏 

TCM 62.5 44.8 2.20 0.15 2.05 

Therminator 

68.0 47.7 2.64 0.18 2.46 

66.5 47.1 2.53 0.17 2.36 

65.1 46.5 2.42 0.16 2.26 

63.7 45.9 2.31 0.15 2.16 

62.3 45.3 2.20 0.15 2.05 

60.9 44.7 2.09 0.15 1.94 

59.4 44.1 1.98 0.13 1.85 

58.0 43.5 1.87 0.13 1.74 

56.1 42.9 1.76 0.12 1.64 

55.2 42.4 1.65 0.12 1.53 
53.8 41.8 1.54 0.11 1.43 

52.3 41.2 1.43 0.11 1.32 

50.9 40.6 1.32 0.11 1.21 

49.5 40.0 1.21 0.10 1.11 

48.1 39.4 1.10 0.10 1.00 

* 𝑃!" includes power consumption of both CPU and GPU. 

 
Figure 7. 3-D layout for Samsung Galaxy S4. Sub-components 

are not shown. 
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device performance) has a linear relationship with the setpoint value 
of skin temperature. From the data presented in Figure 8, we 
capture this relationship as, 

𝑃!",!"# = 𝛼 ⋅ 𝑇!"#$,!"# − 𝛽 (4) 

where 𝛼 = 0.18 W/K and 𝛽 = 5.92 W. Since the device 
performance highly depends on 𝑇!"#$,!"# , allowing high skin 

temperature results in significant performance improvement. For 
instance, increasing 𝑇!"#$,!"# from 45˚C to 48˚C results in 15.5% 

increase of 𝑃!",!"#, i.e., an increase from 1.93W to 2.23W. On the 

other hand, decreasing 𝑇!"#$,!"#  from 45˚C to 42˚C results a 

decrease from 1.93W to 1.63W. In addition, one can also observe 
from Figure 8 that the AP’s junction temperature also linearly 
depends on the skin temperature setpoint (red crosses). 

Clearly, modifying the thermal path design for a device affects 
its peak performance level. We study the thermal impact of thermal 
properties of the device exterior case by exploring its thermal 
conductivity from very low value (insulation material) to a high 
value (conductive material). Figure 9 (a) shows that both of 𝑇!"#$ 
and 𝑇!",!"#$  decrease when using higher thermal conductivity 

materials for the exterior case of the device. More precisely, 
adopting aluminum as the device case results in 2~3˚C lower 𝑇!"#$ 
and 𝑇!",!"#$, comparing with using pure plastic as the device case. 

This temperature reduction is helpful in improving the device 
performance. In practice, device manufacturers may also account 
for other factors such as the manufacturing cost. 

We also investigate the impact of the material composition of 
the thermal pad, which is attached on top of the AP, and report the 
results in Figure 9 (b). A clear trade-off can be observed between 
𝑇!"#$ and 𝑇!",!"#$ at various types of materials. This observation 

complies with results reported by a group of researchers at Texas 
Instrument [3]. The optimal thermal path design should touch the 
AP junction temperature constraint and skin temperature constraint 
at the same time. According to our study, from the thermal path 
design perspective, adopting a thermal pad with lower thermal 
conductivity on top of the AP achieves better performance. This is 
because 𝑇!"#$ is usually more critical in smartphones and a low 
thermal conductivity material hinders the heat flow to the device 
skin. However, in practice, some other factors (such as accelerated 
aging of AP and high leakage power at high temperatures) may 
prevent the usage of low thermal conductivity material.   

8. CONCLUSION 
We presented Therminator, a component-level compact-

thermal-modeling-based thermal simulator targeting small form-
factor devices in this work. Therminator is an early-stage, full-
device thermal analyzer that produces accurate steady-state 
temperature maps of all components (ICs, boards, screens, cases, 
etc.) in a smartphone, from the application processor to the skin of 
device, with a fast runtime. Therminator provides great flexibility in 
handling different user-specified design specifications and use 
cases. We validated temperature results produced by Therminator 
against real temperature measurements using thermocouples and 
simulations using a commercial computational-fluid-dynamics tool 
on the Qualcomm MSM8660 MDP device. We also provided a case 
study on Samsung Galaxy S4 by using Therminator, showing that 
the device performance is linearly related to the device skin 
temperature. In addition, the impact of the thermal path design on 
the skin and AP junction temperature was also studied. 
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