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Thermo Dynamic Analysis on MHD Casson

Nano-Fluid Flow in a Vertical Porous 

Space with Stretching Walls

Abstract- This work is concerned with MHD Casson nanofluid 

flow in a vertical porous space with heat and mass transfer in 

the presence of chemical reaction. The governing non-linear 

partial differential equations are reduced to ordinary 

differential equation by employing the similarity 

transformations then it solved by homotopy analysis method 

(HAM). The results are presented with the help of graphs for 

different values of the involved parameters and discussed.  It 

is found that increasing Brownian motion parameter, 

thermophoresis parameter and Prandtl number are lead to 

promote fluid temperature significantly than other 

parameters. Also, it is observed that increasing Lewis 

number lead to enhance the concentration field whereas the 

opposite trend can be noticed with increasing thermal 

parameters. Further, we have compared HAM solution with 

the numerical solution by using ND solver in Mathematica. 

Keywords: homotopy analysis method, MHD, chemical 

reaction, stretching walls.  

I. Introduction

he problem of mixed convective flow in vertical 

channels with different wall temperatures has a 

number of important engineering applications 

such as microelectronic components cooling, in the 

design of compact heat exchangers, industrial 

furnaces, power engineering and so on.  Also, 

convection flows with heat and mass transfer under the 

influence of a magnetic field, chemical reaction occurs 

in many branches of engineering applications and

transport processes in industrial applications such as 

chemical industry, power and cooling industry for 

drying, chemical vapour deposition on surfaces, 

cooling of nuclear reactors and MHD power generators 

(See Refs. [1-10]).  Moreover, MHD channel flows 

gained significant theoretical and practical importance 

owing to their applications in MHD generators, 

accelerators and blood flow measurements. In view of 

these applications, Srinivas et al. [7] have studied the 

effects of thermal-diffusion and diffusion-thermo effects 

in a two-dimensional viscous flow between slowly 

expanding or contracting walls with weak permeability. 

Author α σ : Department of Mathematics, PSNA College of 

Engineering & Technology, Dindigul-624622, India.

The effect of chemical reaction and thermal 

radiation on MHD flow over an inclined permeable 

stretching surface with non-uniform heat source was 

examined by Srinivas et al. [8]. Later, Muthuraj et al. [9] 

discussed the combined effects of thermal-diffusion 

and diffusion-thermo with space porosity on MHD 

mixed convective flow of micropolar fluid in a vertical 

channel. Immaculate et al. [10] have investigated the 

influence of thermophoretic particle deposition on fully 

developed MHD mixed convective flow in a vertical 

channel with thermal-diffusion and diffusion-thermo 

effects. More recently, effects of thermal diffusion and 

diffusion thermo on MHD Couette flow of Powell-Eyring 

fluid in an inclined porous space in the presence of 

chemical reaction was investigated by Muthuraj et al. 

[11].   

In engineering applications, the flows of non-

Newtonian fluid have been attracting researchers 

significantly during the past few decades. In particular, it 

occurs in the extrusion of polymer fluids, cooling of 

metallic plate in the bath, exotic lubricants, artificial gels, 

natural gels, colloidal and suspension solutions.  The 

most important among these fluids is the Casson fluid. 

It can be defined as a shear thinning liquid which is 

assumed to have an infinite viscosity at zero rate of 

shear, a yield stress below which no flow occurs and a 

zero viscosity at an infinite rate of shear.  Human blood 

can also be treated as a Casson fluid due to the blood 

cells’ chain structure and the substances contained 

like protein, fibrinogen, rouleaux etc [16].  Hence the 

Casson fluid has its own importance in scientific as 

well as in engineering areas.  Many researchers have 

used the Casson fluid model for mathematical 

modeling of blood flow in narrow arteries at low shear 

rates (See Refs.[12-18]). Nadeem et al. [15] examined 

MHD flow of a Casson fluid over an exponentially 

shrinking sheet. Sarojamma et al.[16] have 

investigated MHD  Casson fluid flow with heat and 

mass transfer in a vertical channel with stretching 

walls.  Arthur et al.[17] have analyzed of Casson fluid 

flow over a    vertical porous surface with chemical 

reaction in the presence of magnetic field.   More 

recently, the unsteady MHD free flow of a Casson fluid 

past an oscillating vertical plate with constant wall 

temperature was analyzed by Khalid et al.[18].  

T

© 2018    Global Journals

                

G
lo
ba

l 
Jo

ur
na

l 
of

R
es
ea

rc
he

s 
in
 E

ng
in
ee

ri
ng

  
   

  
(

)
V
o
lu
m
e
 
 
X
V
II
I 
 
Is
su

e
 
 
I 
 
V
e
r
si
o
n
 
I 
 

 
 
 
 
 

 
 

1

Y
e
a
r
2
0
1
8

J

R.K. Selvi
α
, R. Muthuraj

σ
& S. Srinivas

ρ

Author ρ : Department of Mathematics, VIT – AP University, Inavolu 

Amaravati, Andhra Pradesh-522 237, India.

e-mail:  dr.ramamoorthymuthuraj@gmail.com



 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

   

 

  

 

 

 

  

  

    

 

   

 

 

 

 

 

 

Nanoparticle research is currently an area of 

intense scientific interest due to a wide variety of 

potential applications in biomedical, optical and 

electronic fields. It is a microscopic particle with at 

least one dimension less than 100 nm. Many existing 

studies indicate that an enormous enhancement in the 

emission intensity, quantum yield, and lifetime of the 

molecular rectangles has been observed when the 

solvent medium is changed from organic to aqueous 

and it clearly exhibit enhanced thermal conductivity, 

which goes up with increasing volumetric fraction of 

nanoparticles[19-28]. The model of nanofluid was first 

developed by Choi [19].  Later, fully developed mixed 

convection flow between two paralleled vertical flat 

plates filled by a nanofluid with the Buongiorno 

mathematical model using HAM was analyzed by Xu et 

al. [25].  Nadeem et al. [26] presented the steady 

stagnation point flow of a Casson nanofluid in the 

presence of convective boundary conditions.  Khan et 

al. [27] analyzed the fully-developed two-layer Eyring–

Powell fluid in a vertical channel divided into two equal 

regions. One region is filled with the clear Eyring–

Powell fluid and the other with the Eyring–Powell 

nanofluid. The problem of MHD laminar free convection 

flow of nanofluid past a vertical surface was analyzed 

by Freidoonimehr [28]. More recently, Immaculate et al. 

[29] examined the MHD unsteady flow of Williamson 

nanofluid in a vertical channel filled with a porous 

material and oscillating wall temperature using HAM.  To 

the best of our knowledge MHD Casson nanofluid in a 

vertical channel with stretching walls has not been 

studied before.  In this paper, we therefore propose to 

analyzed the steady fully-developed mixed convection 

flow of MHD Casson nanofluid in a vertical porous 

space with stretching walls in the presence of chemical 

reaction. It is important to note that this type of analysis 

has direct applications to the study of blood flow in the 

cardiovascular system subject to external magnetic 

field. The reduced non-dimensional, highly non-linear,

coupled system of equations is solved by HAM [30-

35]. The influence of significant parameters on heat 

and mass transfer characteristics of the flow is 

presented through graphs and discussed.

II. Formulation of The Problem

We consider MHD Casson nanofluid flow in a 

vertical porous space bounded by two stretching walls

and are maintained at different temperatures, 

concentrations. The channel walls are at the positions y

= -L and y = L, as shown in Fig.1.  A constant 

magnetic field of strength B0 is applied perpendicular 

to the channel walls.  The fluids in the region of the 

parallel walls are incompressible, non-Newtonian and 

their transport properties are assumed to be constant. 

The constitutive equation for the Casson fluid 

can be written as [16]

                  

y

B ij c

ij

y

B ij c

c

2 e ,
2

2 e ,
2

 τ 
µ + π > π  π 

τ =   τ µ + π < π  π  

             (1)
                   

where Bµ is the plastic dynamic viscosity of the non-

Newtonian fluid, 
yτ is the yield stress of the fluid, π is 

the product of the component of deformation rate with 

itself, namely, ij ije eπ = , and ije is the (i, j) th 

component of deformation rate, and cπ is critical value 

of this product based on non-Newtonian model. Under 

the above assumptions and usual Boussinesq 

approximation, the fluid flow is governed by the 

following equations (See Refs. [16, 25, 26])

                                  

u v
0

x y

∂ ∂
+ =

∂ ∂
                           (2)  

                  

          

*
2 2 2f

f f 0 f F f t 0 0*

c p f 0

u u p 1
u v 1 u B u u C u g (1 C )(T T )

x y x k

g ( )(C C )

    µ ϕ∂ ∂ ∂
ρ + = − + µ + ∇ −σ − −ρ +ρ β − −   ∂ ∂ ∂ β  

+ β ρ −ρ −
          (3)                   

                                                    
*

2 f
f f *

v v p 1
u v 1 v v

x y y k

    µ ϕ∂ ∂ ∂
ρ + = − + µ + ∇ −   ∂ ∂ ∂ β  

                                               (4)

                          
22

* 2 * T
B

DT T C T C T T T
u v T D

x y x x y y x yT

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + = α ∇ + τ + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
                    

  
(5)
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                                                   2 2T T
B 1

D kC C
u v D C T k C

x y T

∂ ∂
+ = ∇ + ∇ −

∂ ∂
                            (6)

The boundary conditions of the problem are

                                                   
u bx= , v = 0, 1T T= , 1C C=   at  y L= −                                               

  
(7)

                                                   u bx= , v = 0, 2T T= , 2C C=   at  y L=                                                        (8)

where u and v are the velocity components in x and y 

directions,  1T and 2T are the wall temperatures 

2 1(T T )> , 1C and 2C are the wall concentrations, T

is the mean value of 1T and 2T ,
FC is the inertial 

coefficient, pC is the specific heat, 0B is the

transverse magnetic field, BD is the Brownian

diffusion coefficient, TD is the thermophoresis 

diffusion coefficient, g is the acceleration due to 

gravity, p is the pressure, T is the temperature,  
*k is 

the permeability of the medium, K is the thermal 

conductivity of the fluid, 
( )

*

p f

K

C
α =

ρ
is the thermal 

diffusivity of the fluid, 
( )
( )

p p*

p f

C

C

ρ
τ =

ρ
, b>0  is the stretch 

of the channel walls, respectively, 
B c

y

2µ π
β =

τ
is the 

Casson parameter,  f p,ρ ρ densities of the base fluid

and nanoparticle, respectively, 
p f

C 
 
 
ρ is the heat 

capacity of the fluid,  ( )p p
Cρ gives the effective heat 

capacity of the nanoparticle material, ν is the

kinematic viscosity, 
*ϕ is the porosity of the medium, 

fµ is the dynamic viscosity of the fluid, σ is the

coefficient of electric conductivity, tβ is the  coefficient 

of thermal expansion, cβ is the  coefficient of 

expansion with concentration and 

2 2
2

2 2x y

∂ ∂
∇ = +

∂ ∂
.

We introduce the similarity variables

                                             
'u bxf ( )= η ; v Lbf ( )= − η ; 

y

L
η = ; 1

2 1

T T

T T

−
θ =

−
;  1

2 1

C C

C C

−
φ =

−
                          (9)

Invoking the above similarity variables to equations (3)-(6) and eliminating pressure gradient, we get

                                          ( )iv ' ' ' ' ' ' ' ' ' ' ' ' '1
1 f R f f ff Hf I f f G G 0e r c
 
+ − − − − + θ + φ = β 

                          (10)                    

                                                                
' ' ' ' ' 2 '

r b t eP [N N ( ) R f ] 0θ + φθ + θ + θ =                                                (11)

                                                           
' ' ' ' ' *t

e e 1

b

N
L (R f k ) 0

N
φ + θ + φ − γφ+ =                                                    (12)

The corresponding boundary conditions are:

                                                               'f 1= , f 0= , 0θ = , 0φ = at   1η = −                                             (13)

                                                                 
'f 1= , f 0= , 1θ = , 1φ = at   1η =                                                (14)
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Where

is the Reynolds number,  

the  inertia   coefficient, 

is the Hartmann number, 

,  

2

e
f

L bR 


2
F

f

2C bxLI 


is

2 2
0

f

σB LM 


 

a

1H M
D

 
2

* 1 1
1

f 2 1

k C Lk
(C C )



 



 

  

 

 

 

  

 

  

 

 

 

      

 

 

    

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

                                             

  w
f

f

L
C

bx

τ
=
µ

; w

2 1

Lq
Nu

K(T T )
=

−
; w

B 2 1

Lm
Sh

D (C C )
=

−
                                     

  (16)where w f

u11
y

 
 
  
 

 ∂
τ = µ +  β ∂ 

; w

T
q K

y

 ∂
= −  ∂ 

; w B

C
m D

y

 ∂
= −  ∂ 

Its non-dimensional form is given by

                                                   ' '

f 1

1C 1 f ( )
 
 
   η=± 

= + η
β

; 
'

1
Nu ( )

η=±
= −θ η ; 

'

1
Sh ( )

η=±
= −φ η                         (17)

III. SOLUTION BY HOMOTOPY ANALYSIS 

METHOD (HAM)

For HAM solutions, we can choose the initial 

guesses and auxiliary linear operators in the following 

form:

3

0 0 0

1 1
f ( ) ; ( ) ; ( )

2 2 2

+η +ηη −ηη = θ η = φ η =   (18)    

               
iv '

3

' ''

1 2L (f ) f L ( ) L ( )= θ = θ φ = φ
                          

(19)

with
2 3

31 2 41 cL (c c c ) 0η+ η + η+ = 52 6L (c c ) 0η+ =
&  

73 8
L (c c ) 0η+ = , where ic (i 1...8)=   are constants 

and prime denotes the derivative with respect to η .

a) Zero-order deformation equations

Let [0,1]℘∈ be an embedding parameter 

and h be the auxiliary non-zero parameter. We 

construct the following zero-order deformation 

equations.

      1 0 1
ˆ ˆ ˆ ˆ(1 )L [f ( , ) f ( )] h [f ( , ), ( , ), ( , )]−℘ η℘ − η =℘ η℘ θ η℘ φ η℘N                   ˆ ˆf ( 1, ) 0, f (1, ) 0− ℘ = ℘ =        (20)             

            

      2 0 2
ˆˆ ˆ ˆ(1 )L [ ( , ) ( )] h [f ( , ), ( , ), ( , )]−℘ θ η℘ −θ η =℘ η℘ θ η℘ φ η℘N ,     ̂ ˆ( 1, ) 0, (1, ) 1θ − ℘ = θ ℘ =   (21)           

3 30
ˆˆ ˆ ˆ(1 )L [ ( , ) ( )] h [f ( , ), ( , ), ( , )]−℘ φ η℘ −φ η =℘ η℘ θ η℘ φ η℘N ,                       ˆ ˆ( 1, ) 0, (1, ) 1φ − ℘ = φ ℘ =        (22)

where,

  
1

ˆ ˆ ˆ[f ( , ), ( , ), ( , )]η℘ θ η℘ φ η℘ =N        

                  

( )iv ' ' ' ' ' ' ' '

e

' ' ' ' '

1 ˆ ˆ ˆ ˆ ˆ1 f R f f f( , ) ( , ) ( , ) ( , ) ( , ) (f Hf

ˆ ˆ ˆ ˆ

,

I f f G Gr

)

( , ) ( , ) ( , ) ,c ( )

η℘ η℘ η℘ η℘ η℘ η℘

η℘ η℘ η℘

 
+ − − − β

+ θ + φ η



℘−
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The skin friction coefficient, local heat rate transfer and the local mass diffusion rate at the walls are defined as

2

t 0 2 1
r

f

g (1 C )(T T )L
G

bx

β − −
=

ν
local temperature 

Grashof number ,

2

c p f 2 1

c

f

g ( )(C C )L
G

bx

β ρ −ρ −
=

µ
is 

the local nano-particle Grashof number,  f
r *

P
ν

=
α

is 

the Prandtl number, f
e

B

L
D

ν
= is the Lewis number,  

*

B 2 1
b

f

D (C C )
N

τ −
=

ν
is the Brownian motion 

parameter

*

T 2 1
t

f

D (T T )
N

T

τ −
=

ν
is the thermophoresis 

parameter,

2

1

f

k L
γ =

ν
is the chemical reaction 

parameter.

The dimensionless volume flow rate Q is given by

                  

1
'Q f d

1
= η∫
−

.                                          (15)

*

a * 2

k
D

L
=
ϕ

is the permeability  parameter, 
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' ' ' ''
r b t e

2

2' ˆˆ ˆ ˆ ˆ ˆP [

ˆ ˆ ˆ[f ( , ), ( , ), ( , )]

( , ) ( , )N N( , ) ( , ) ( ,R ) ( , )f ]
 
  
 

η℘ θ η℘ φ η℘

= η℘ η℘ ηθ + φ θ + θ + θ℘ η℘ η℘ η℘

N

                                                 ' ' ' ' ' *t
3 e e 1

b

N ˆˆˆ ˆ ˆ[f ( , ), ( , ), ( , )] ( , ) ( , ) ( , ) (ˆ ˆ ˆL (R f k )
N

, ) ( , )φ + θ + φ − γφη℘ θ η℘ φ η℘ = η℘ η +℘ η℘ η℘ η℘N

                                 

For 0 and 1℘= ℘= , we have

                  0
ˆ ˆf ( ,0 ) f ( ) f ( ,1) f ( )η = η η = η          (23)

                                            

      

                                    

                          (24)    

  

                         

          

                  (25)

  

                                          

                        

when ℘ increases from 0 to 1, then f̂ ( , ),η℘
ˆ( , ),θ η℘ ˆ( , )φ η℘ vary from initial guess 0f ( ),η 0 ( ),θ η

0 ( )φ η to the approximate analytical solution f ( ),η
( ),θ η ( )φ η .  By Taylor's theorem the series 

ˆ ˆ ˆf ( , ), ( , ), ( , )η℘ θ η℘ φ η℘   can be expressed as a 

power series of ℘ as follows,

                

                                     

    

m
m

0 m m m
m 1

0

ˆ1 f ( , )
f̂ ( , ) f ( ) f ( ) , f ( )

m!

∞

=
℘=

∂ η℘
η℘ = η + η℘ η =∑

∂℘
                                   

(26)                   

             

                

                                          

m
m

0 m m m
m 1

0

ˆ1 ( , )ˆ( , ) ( ) ( ) , ( )
m!

∞

=
℘=

∂ θ η℘
θ η℘ = θ η + θ η℘ θ η =∑

∂℘
                              (27)                   

                

                                          

m
m

0 m m m
m 1

0

ˆ1 ( , )ˆ( , ) ( ) ( ) , ( )
m!

∞

=
℘=

∂ φ η℘
φ η℘ = φ η + φ η℘ φ η =∑

∂℘
.                              (28)

In which ‘h’ is chosen in such a way that these series are convergent at 1℘= , therefore we have

                             0 m
m 1

f ( ) f ( ) f ( ),
∞

=
η = η + η∑ 0 m

m 1

( ) ( ) ( ),
∞

=
θ η = θ η + θ η∑ 0 m

m 1

( ) ( ) ( )
∞

=
φ η = φ η + φ η∑            (29)

b) The m-th order deformation equations

Differentiating the zero-order deformation Eqns. 

(20) - (22) m -times with respect to ℘ and then dividing 

them by m ! and finally setting 0℘= , we obtain the 

following m-th order deformation equations:

                          (30)                       

                (31)

              (32)

together with condition      

                           m mf ( 1) 0 f (1) 0− = =                 (33)

                        m m( 1) 0 (1) 0θ − = θ =                   (34)                          

         
m m( 1) 0 (1) 0φ − = φ =                    (35)   

                                 

where,

( )m 1 m 1
f ' ' ' ' ' ' ' ' ' ' ' ' '

e m k 1 k m k 1 k m 1 m

iv

m m 1 r ck 1 k m 1 m 1
k 0 k 0

R f f f
1

R ( ) 1 f f Hf I f G Gf
− −

− − − − − − − − −
=

−
=

 
η = + + + β 

− − − − θ φ∑ ∑

           

( )m 1
' ' ' ' ' ' '

r b m k 1 k t mm m 1 k 1 k e m k 1 k
k 0

R ( P N N R f)θ
−

−

− − − − − −
=

η  φ θ + θ φ + θ∑  = θ +
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θ( 0)=θ0( )        θ( 1)=θ( )ηˆ η ηˆ η, ,

φ̂( 0)η, =φ
0
( )η φ̂( 1)η, =φ( )η

     

ʟ
1
[fᵐ (  ) – ᵡᵐ 1 (  )] = hRm

f
( )η fᵐ− η ηʟ

22[θᵐ (  ) η – ᵡᵐθ 1ᵐ− (  )]η = hR
θᵐ (  )η



 

 

 
 

  

     

    

 

 

 

 

 

  

 

  

 

    

 

 

 

    

 

 
  

     

        

       

         

   
      

        

         

        

 

 

  

 

 

  

 

 

  

 

                                                                                                   

( )m 1
' ' ' ' ' *

m m 1 m 1 e e m k 1 k m 1 1 m
k 0

NtR ( ) L R f k (1 )
N

b

−
φ

− − − − −
=

η = φ + θ + φ − γφ + −χ∑

                                                                           
where,                

m

0 for m 1

1 for m 1

=
χ =  ≠

.

IV. Convergence and the Residual Error

The convergence and rate of approximation for 

the HAM solution depends on auxiliary parameter ‘h’ 

(See Refs. [29-34]), for this purpose, we have plotted 

h-curves in Fig.2 with fixing the values of involved 

parameters rG = 5, cG = 5,
e

R 1= , I = 1, tN = 0.45,

bN = 0.45,  eL = 10, M = 2, rP = 2.5, aD 0.5= , 

1K 1= , 0.5γ = , 0.6β = .  As a result, we can choose 

proper value of ‘h’ and also we obtain the optimal 

values of the auxiliary parameter ‘h’ by minimizing the 

average square residual error for the equations (10) to 

(12).  We define the residual error for above mentioned 

equations as:

                                   

  

(36)

           

                              

  

Further, we have tabulated the minimum 

average square residual errors for 10th, 15th, 20th, 25th

order of HAM approximation for different values of  

parameters with optimal ‘h’ in Table 1. It is noted that the 

number of HAM approximation increases the 

corresponding minimum square residual error 

decreases significantly and hence it leads to more 

accurate solutions. Further, it is important to note that 

our present HAM solution is good agreement with 

Numerical solution which is obtained by NDSolve 

scheme of Mathematica (See Fig.9). 

Table 1: The average square residual error for the optimal value of ‘h’ for different order of  
approxi-mations

Optimal h m∆
10th order 15thorder 20thorder 25thorder

-0.50 M = 5 4.48300x10-1 2.17722 x10-2 8.560151 x10-3 6.293116 x10-3

-0.46 β= 0.4 9.61660x10-1 4.76619 x10-2 1.085990 x10-2 7.63834 0x10-3

-0.28 γ= 1.5 2.41549 x10-1 6.41384 x10-2 1.741480 x10-2 7.771010 x10-3

-0.46
rP = 1 3.23985x10-3 8.82479 x10-4 1.155850 x10-6 1.230240 x10-8

-0.51
tN = 0.5 5.53236x10-1 2.67400 x10-2 1.01741 0x10-2 6.737690 x10-3

-0.49
bN = 0.2 7.79008 x10-3 7.15877 x10-3 6.053300 x10-3 6.032410 x10-3

-0.58
eL = 5 1.341560x10-1 1.15096 x10-2 7.017850 x10-3 6.73713 0x10-3

V. Results and Discussions 

To study the behavior of solutions, numerical 

calculations for different values of magnetic parameter

(M), Permeability parameter ( aD ), Casson fluid

parameter (β ), thermophoresis parameter ( tN ),

Brownian motion parameter ( bN ), Lewis number ( eL ), 

Chemical   reaction   parameter ( γ ) and Prandtl number 

( rP ) have been carried out. Throughout the 

computations we employ rG = 5, cG = 5, eR 1= , I =

1, tN = 0.45, bN = 0.45, eL = 10, M = 2, rP = 2.5, 
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' ' ' ' ' 2 '

2 r b t eE P [N N ( ) R f ]= θ + φθ + θ + θ     (37)

    
' ' ' ' ' *t

3 e e 1

b

N
E L (R f k )

N
= φ + θ + φ − γφ+          (38)

where ,1 2E E and
3E are the residual error at m-th 

order of HAM approximation for f , θ and φ
respectively.  The average square residual error is 

given by:

13
2
im

i 1 1

1
E d

3

η=

= η=−
∆ = η∑ ∫ .              (39)

( )iv ' ' ' ' ' ' ' ' ' ' ' ' '

1 e

1
E 1 f R f f ff Hf I f f G Gr c

 
= + − − − − + θ + φ β 
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aD 0.5= , 1K 1= , 0.5γ = , 0.6β = unless otherwise 

stated.  Fig. 3a is prepared to see the influence of the 

Casson fluid parameter with two different values of 

magnetic parameter ‘M’ with fixed values of all other 

parameters. It is observe that magnitude of velocity is a 

decreasing function with increasing Casson fluid 

parameter and also we noted that increasing ‘M’ is lead 

to decelerate the velocity.  Physically it means that the 

application of transverse magnetic field produces a 

resistive type force (Lorentz force) similar to drag force 

which tends to resist the fluid flow and thus reducing its 

velocity (as noted in [18]).  The effect of permeability 

parameter aD on the velocity is displayed in Fig. 3b. It 

depicts that the effect of increasing the value of 
aD is to 

increase the velocity, which means that the drag force is 

reduced by increasing the value of the permeability 

parameter.  Fig. 3c illustrates the influence of 

thermophoresis parameter tN on velocity.  It shows 

that increasing tN is not shown much influence on 

velocity distribution.   The quite similar effect can be 

noticed by varying Brownian motion parameter bN on

the velocity (See Fig.3d). 

Fig. 4a is graphed to see the effect of Lewis 

number on temperature distribution.  It is seen that 

temperature field is an increasing function in the left half 

of the channel whereas the behavior is reversed in the 

other region.  Fig. 4b describes that, increasing 

chemical reaction parameter gives opposite behavior 

that of Fig.4a.  Fig. 4c is plotted to see the influence of 

Brownian motion parameter on temperature distribution.  

It is evident that increasing bN is to increase the fluid 

temperature significantly.  The similar effect can be 

noticed with increasing tN and rP , which are shown in 

Figs.4d  and 4e. Physically speaking, increasing 

thermal parameters is to increase momentum diffusivity, 

which leads to enhance the fluid temperature. Further, it 

is noted that tN , rP shows the significant influence on 

temperature field than other parameters.  Fig. 5a shows 

the variation in concentration field with different values of 

Lewis number eL .  It depicts that increasing eL lead to 

enhance species concentration significantly.  Also, it is 

observed that when increasing eL from 0 to 5 there is 

nearly 45% increase in concentration whereas 

increasing eL from 5 to 10 there is only 20% (approx) 

decrease in the same, which means that low values of 

eL dominates on concentration field. The opposite 

trend can be seen if 
eL is replaced by chemical 

reaction parameter. (See Fig. 5b).  Fig. 5c is prepared to 

see the effect of bN on concentration. It is observed 

that concentration enhances with an increase of bN

whereas increasing thermal parameters tN and rP

leads to suppress the concentration gradually (See Figs. 

5d and 5e).

The variation of pressure gradient 
dp

dx
with M

and 
r

G is plotted in Fig.6a.  It is observed that 

increasing both the parameters lead to enhance the 

pressure gradient whereas in the absence of magnetic 

field pressure gradient is negative with increasing
r

G , it 

means that high pressure gradient is need to promote 

the flow in the presence of magnetic field. The influence 

of inertia coefficient and material parameter on 
dp

dx
is 

graphed in Fig. 6b. It illustrates that pressure gradient is 

decreasing function with increasing I and β whereas

very high pressure gradient exist for lower value of 

material parameter ( 0.5β < ). It indicates that more 

driving force is required for non-Newtonian fluid than 

Newtonian fluid.  The variations on wall heat transfer rate 

(Nu) and wall mass transfer rate (Sh) with different 

values of  b t eN , N , L and γ are presented in Figs. 7 

and 8 respectively.  Influence of bN and tN on ‘Nu’ at 

both the walls is displayed in Fig 7. At the wall η=-1, 

‘Nu’ is a decreasing function with increasing b tN , N

whereas at the other wall there is no much influence with 

increasing bN .  Also, a sharp increment occurs in ‘Nu’

with increasing tN . Variation on ‘Sh’ with different values 

of eL and γ at both the walls is displayed in Fig 8.  It 

depicts that, ‘Sh’ is a decreasing function with 

increasing eL while increasing γ is not shown much 

influence at the wall η=-1.  At the other wall, the 

opposite trend is noticed with increasing
eL .

VI. CONCLUSIONS

This article looks at flow, heat and mass 

transfer characteristics of a MHD Casson nanofluid in a 

vertical porous space with stretching walls in the 

presence of chemical reaction.  HAM is adopted to 

obtain analytical solutions of the reduced set of 

ordinary differential equations.  The results are 

presented through graphs for various values of the 

pertinent parameters and the salient features of the 

solutions are discussed graphically. This type of 

investigations is very important for mathematical 
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modeling of blood flow in narrow arteries at low shear 



 

   

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Hartmann number whereas increasing 

permeability parameter aD . Increasing bN , tN and 

rP   are tends to promote the fluid temperature 

significantly. Concentration field significantly enhances 

with    increasing eL   while   increasing   tN   and rP

suppresses the fluid concentration.  Nusselt number 

distribution is a decreasing function with increasing bN ,

tN at the wall η= -1 while the parameter tN tends to 

enhance at the other wall η=1.

Fig. 1: Schematic diagram of the problem

Fig. 2: h-curves for velocity, temperature and concentration distribution
(___ 10th, …. 15th, - - - 25th orders of approximation)
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rates.   It is found that magnitude of velocity is a 
decreasing function with the Casson fluid parameter 
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Fig. 3: Effects of M, β , aD , tN and bN on Velocity distribution

   

Fig. 4: Effects of eL , γ , bN , tN and rP on Temperature distribution
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Fig. 6: Effects of M and I on Pressure gradient distribution
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Fig. 5: Effects of eL , γ , bN , tN and rP on Concentration distribution
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Fig. 7: Effect of tN on Nusselt number distribution Fig. 8: Effect of γ on Sherwood number distribution

Fig. 9: Comparison between ____HAM Solution and -----Numerical Solution
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rP = 2, aD 0.5= , 1K 1= , 0.5γ = , 0.6β = )

( rG = 5, cG = 5, eR 1= , I = 1, tN = 0.45, bN = 0.45,  M = 2,
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NOMENCLATURE

0B     Transverse magnetic field

  

b>0     Stretch of the channel walls(m)

C       Dimensional concentration(
3Kg / m )

1C , 2C Wall concentrations (
3Kg / m )

0C     Initial concentration (
3Kg / m )

FC     

  

Inertial coefficient

pC     Specific heat

aD     Permeability parameter

BD     Brownian diffusion coefficient (
2m / s )

TD     Thermophoresis diffusion 

      

  

coefficient    (
2

m s/ )

ije     (i, j) th component of deformation rate

f       Dimensionless stream function
'f     Dimensionless velocity

g      Acceleration due to gravity(
2m / sec )

rG    Local temperature Grashof number

cG     Local nano-particle Grashof number

I       Inertia coefficient

*k     Permeability of the medium(
2m )

K     Thermal conductivity of the

        fluid ( W / m K )

eL     Lewis number

M     Hartmann number

bN     Brownian motion parameter

tN     Thermophoresis parameter

p     Pressure(
2N / m )

rP     Prandtl number

eR     Reynolds number

T       Dimensional temperature

1T , 2T Wall temperatures (K)

T     Mean value of 1T and 2T (K)

0T       Inlet temperature (K)

u , v    Dimensional velocity components in

         x and y directions (m/s)

Greek Symbols
*α     Thermal diffusivity of the fluid (

2m / s )

β      Casson parameter

θ     Dimensionless temperature

tβ     Coefficient of thermal expansion(
1K−
)

cβ      Coefficient of expansion with

        concentration(
1K−
)

Bµ     Plastic dynamic viscosity of the 

        non-Newtonian fluid (
2N s / m )

fµ     Dynamic viscosity of the 

        fluid (
2N sec/ m )

γ       Chemical reaction parameter

ν     Kinematic viscosity(
2m / sec )

f p,ρ ρ   Densities of the base fluid and nano-            

         particle (
3Kg / m )

( )p f
Cρ Heat capacity of the fluid(J/K)

( )p p
Cρ Effective heat capacity of the

        nanoparticle

  

Material (J/K)
*ϕ    Porosity of the medium

φ     Dimensionless fluid concentration

σ     Coefficient of electric conductivity(S/m)

yτ     Yield stress of the fluid (
2N / m )

π     Product of the component of 

        deformation rate 
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