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1 Introduction and motivation

An accurate physical description of real condensed matter systems usually requires to in-

clude mechanisms for momentum relaxation. An important consequence being the finite-

ness of DC transport coefficients. The presence of impurities is a generic instance where

translational invariance is broken resulting in momentum dissipation. Even more generi-

cally, a background lattice implies that, because of Umklapp scattering processes, momen-

tum is conserved only modulo reciprocal lattice vectors.

In general it is impossible to over-estimate the value of improved descriptions of im-

purities effects on the transport phenomena. Indeed these are directly connected to the

effects of disorder which are ubiquitous and important across the whole condensed matter

context. With this in mind, we mean to investigate a gauge/gravity model that describes

a crossover from a weak-disorder quantum-critical regime to a disorder-dominated Fermi-

liquid-like regime. A crossover of this sort actually is expected in graphene [1]. At the
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outset, however, it is important to underline that the applicability of a thermo-electric,

momentum dissipating model in gauge/gravity is significantly wider. In fact, apart from

impurity disorder, the presence of the lattice also breaks translational invariance. As far as

the present analysis is concerned, we focus on the effects of disorder neglecting the presence

of a lattice. This corresponds to interpreting the momentum dissipation as exclusively due

to non-dynamical impurities (elastic scattering). From the physical viewpoint, this possibly

matches the expectations for graphene as long as the effects of phonons can be neglected

(this is actually the physical circumstance we are interested in).1

Describing momentum dissipating effects in the gauge/gravity framework is not an

easy task. Actually all the early works applying the gauge/gravity correspondence to model

condensed matter systems do not include momentum dissipation and therefore feature a

delta function at ω = 0 in the real part of the transport coefficients [3]. At present, several

ways to introduce momentum relaxation in AdS/CFT are known. One possible approach

is to consider spatially modulated backgrounds which directly simulate, for example, a

lattice potential [4–7]. Another viable way consists in analyzing circumstances where a few

light charged excitations scatter and dissipate their momentum on a bath of heavy neutral

degrees of freedom [8–10].

Recently it was proposed to introduce momentum relaxation in holography in an effec-

tive way (i.e. without a precise dynamical mechanism of momentum dissipation in mind) by

using massive gravity [11]. Indeed the bulk graviton mass breaks explicitly the diffeomor-

phism invariance of the gravitational action which in turn implies that the stress-energy ten-

sor of the dual field theory is not conserved and momentum can be dissipated. This effective

mechanism is theoretically extremely interesting since, in contrast to the methods featuring

explicit spatial modulations, allows us to obtain quantitative information about correlators

and physical observables without the need to resort to complicated numerical methods that

typically involve the solution of systems of coupled partial differential equations.2 In [11]

the massive gravity model originally introduced in [13] has been considered within the holo-

graphic framework. In the bulk model the graviton mass is introduced by coupling the dy-

namical metric with a fixed fiducial metric that breaks diffeomorphism invariance. The way

in which diffeomorphisms are broken depends on the particular choice of the fiducial metric.

In this paper (inspired by [11] and subsequent articles) we analyze a massive gravity

model where diffeomorphism invariance is broken in such a way that the dual field theory

at the boundary conserves the energy but dissipates the momentum. In the condensed

matter framework this kind of mechanism occurs, for example, in the presence of elastic

electron scattering due to fixed impurities. The same model has been studied also in [14, 15];

specifically, in [14], by analyzing the poles of the correlation functions in the hydrodynamic

limit (namely at sufficiently low momentum dissipation rate τ−1, where momentum is an

almost conserved quantity), it was discussed that massive gravity is the dual gravitational

1To have a recent gauge/gravity instance where disorder is directly studied see [2].
2An analogous simplification occurs in [6] for bulk dimensions D = 5 and, more in general, in [12] for

arbitrary D.

– 2 –



J
H
E
P
0
9
(
2
0
1
4
)
1
6
0

realization of a system in which the conservation law for the stress-energy tensor is

∂tT
tt = 0, ∂tT

ti = −τ−1T ti , (1.1)

where τ−1 is the momentum dissipation rate determined in terms of the graviton mass and

the equilibrium thermodynamical quantities. A precise specification of the validity range

of the hydrodynamical treatment will be provided later.

In [15] a universal analytical formula for the DC electrical conductivity in holographic

massive gravity models was found. Comparing this expression with the electrical con-

ductivity for a general hydrodynamic theory including the effects of impurity scattering

(obtained in [16]), it was noted that the two expressions agree provided that the scattering

rate τ−1 assumes the specific form

τ−1 = − Sβ
2π(E + P )

, (1.2)

found in [14]. We will be later more precise about the explicit expression of the scattering

rate. For now it is sufficient to say that S, E and P are respectively the entropy density

the energy density and the pressure of the system at equilibrium and that β is a parameter

related to the bulk graviton mass which dually accounts for the “strength” of momentum

dissipation.

Concerning the holographic massive gravity model at hand, some natural and im-

portant questions arise. The hydrodynamic theory considered in [16] for a relativistic

model with scattering due to impurities provides us universal expressions for the full set

of thermo-electric transport coefficients in terms of the momentum dissipation rate τ−1

and of the thermodynamical quantities of the system. Is then the hydrodynamic regime of

massive gravity completely consistent? In other words, given the expression for the scat-

tering rate (1.2) and the thermodynamical quantities of the system, do all the transport

coefficients agree with those obtained in [16] from the hydrodynamical analysis? Moreover,

since massive gravity introduces the dissipation of momentum in an effective way, what

is the physical character of the model when the hydrodynamical approximation ceases to

hold? And, relatedly, is it possible in this non-hydrodynamic regime to understand any-

thing concerning the possible microscopic processes giving rise to the effective mechanism

of momentum relaxation?

As regards the microscopic realization of massive gravity, some progress has been at-

tained in [17–20], where it was investigated how massive gravity can be derived from general

relativity in AdS, and in [21, 22] where it was proven that a perturbative background lattice

and random disorder provide a mass for the graviton. Nevertheless the ultimate answer

about the microscopic origin of these massive gravity models is still hazy. We attempt to

participate to such a debate from a rather phenomenological perspective. This primarily

requires a full characterization of the behavior of the system within the hydrodynamic

regime, to make a consistency check, and outside hydrodynamics, to actually investigate

its proper peculiarities. To this end, it is important to realize what can be understood

about massive gravity and its holographic dual interpretation by analyzing the full set of

thermo-electric transport coefficients.
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In order to compute the whole set of transport coefficients, we here rely completely on

numerical methods. Actually, after the submission of the present paper, we obtained the

DC thermo-electric transport coefficients also analytically [23]. However, the numerical

method illustrated in the following sections is relevant by itself since it presents some

interesting technical peculiarities and it is presently the only known method to compute

the spectral behavior of the transport coefficients in massive gravity.

The proper definition of the thermo-electric transport coefficients within massive grav-

ity has to be considered carefully. We have addressed technical difficulties which arise in

the holographic renormalization procedure concerning the need of finite boundary counter-

terms in order to avoid unphysical features in the transport coefficients. Such a possibility

is a crucial test that massive gravity has to pass in order to be regarded as a sound holo-

graphic model. Note in fact that massive gravity models are obviously considered in a fully

bottom-up and phenomenological spirit, at least as long as a consistent microscopic deriva-

tion of the bulk model is lacking. For this reason a systematic check of the consistency of

the dual phenomenological picture as a whole is always in order. To a similar purpose in [15]

a careful study of the equilibrium thermodynamical consistency of holographic models with

massive gravitons has been considered. We here pursue further the investigation with an

analogous attitude and we study the full thermo-electric linear response. On top of that,

as the system at hand features a coupled thermo-electric dynamics, the extraction of the

pure electrical and pure thermal response requires an attentive analysis of the intertwined

linear response of the system.3

At sufficiently high temperature T where the hydrodynamic limit is satisfied,4 we find

that not only σDC but the full set of transport coefficients agree with those predicted by

the hydrodynamic theory analyzed in [16]. Specifically, they acquire the following form:

σDC =
1

q2
+

ρ2

E + P
τ , sDC = − 1

q2

µ

T
+
Sρ
E + P

τ ,

κ̄DC =
1

q2

µ2

T
+
S2T

E + P
τ ,

(1.3)

where σ, s and κ are respectively the electric conductivity, the Seebeck coefficient and the

thermal conductivity (at zero electric field); in addition, ρ is the charge density, µ is the

chemical potential and q is a free parameter of the gravitational Lagrangian.

In the hydrodynamical regime the dissipation rate τ−1 decreases with the temperature

as T−1. However, in the low-T region the dissipation rate increases and eventually the

hydrodynamic picture and expressions (1.3) cease to be valid. Remarkably, in this non-

hydrodynamical regime, the transport coefficients that we obtained are in agreement with

those computed in [1] using a Boltzmann approach for Dirac fermions with fermion-fermion

3A similar dynamical circumstance has been addressed for instance in [25].
4We specify the precise definition of the range of validity of the hydrodynamic description providing

later explicit formulæ (see equation (4.9)) involving the physical variables of the system.
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interactions and a dilute density of charged impurities, namely:

σDC =
1

q2
+

ρ2

E + P
τ , sDC =

Sρ
E + P

τ ,

κ̄DC =
S2T

E + P
τ .

(1.4)

The calculations of [1] are performed in the large-doping regime where µ� T ; we refer in

particular to formulæ (6.4) and (6.5) in [1].

Furthermore, by analyzing the transport coefficients (1.4) and considering the specific

expressions of the thermodynamical quantities of the holographic massive gravity model, we

find that in this µ � T limit the system has some features in common with the disorder-

dominated Fermi-liquid regime. In fact the Wiedemann-Franz ratio is approximatively

constant in temperature even though its numerical value depends on τ and in general it is

not that predicted by the Fermi-liquid. More specifically, we have that the electric conduc-

tivity is temperature independent while the thermal conductivity κ̄DC goes linearly to 0 as

T → 0 and is proportional to the heat capacity.5 This remarkable behavior and the agree-

ment of our formulæ with those for Dirac fermions obtained in [1] are hints of the fact that,

at least in the large-doping regime, massive gravity could possibly admit a quasi-particle

description, even though a proof of this statement requires further detailed studies [41].

The paper is organized as follows. In section 2 we review the standard analysis of

the thermo-electric response of a holographic model without momentum dissipation and

admitting asymptotically AdS4 Reissner-Nordström solution. We systematically consider

its holographic renormalization; the expert reader can however jump directly to section 3

where the momentum dissipating system is addressed. There the massive gravity model

of interest is defined and studied in depth. Again, particular attention is paid to the

precise renormalization procedure and definition of the transport coefficients. In section 4

we present a detailed account of the numerical results and describe the phenomenological

picture which arises from them. We comment on the presence and the physical significance

of different regimes where the system admits either a hydrodynamic or a ballistic-like

description. Particular attention is paid to the relation of our model to the physics of the

crossover between a quantum-critical and a Fermi-liquid regime expected in dirty graphene.

Eventually section 5 contains concluding remarks and an outline of many interesting future

prospects.

2 Thermo-electric transport without momentum dissipation

In the present section we review the thermo-electric transport in a simple system with-

out momentum dissipation, namely we discuss the holographic dual of the well-known

4-dimensional Einstein-Hilbert-Maxwell model on a Reissner-Nordström AdS black hole.

5For related studies on the behavior of the thermo-electric transport coefficients in strongly correlated

systems see [26]. As regards the gauge/gravity framework, a detailed discussion of the thermo-electric

properties can be found in the study of coherent and incoherent metals in [27, 28]. Interestingly, in [28], an

expression for the DC conductivity at finite temperature was obtained.
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This review is meant to recapitulate tidily the details of the holographic renormalization

and the definition of transport coefficients in the standard momentum-conserving systems.

We will then be able to highlight in later sections the differences one encounters in treating

massive gravity.

2.1 Bulk solution

Consider the simplest 4-dimensional gravitational model admitting asymptotically AdS

charged black hole solutions, namely an Einstein-Hilbert-Maxwell theory. This corresponds

to the action

SRN =

∫
d4x
√
−g
[

1

2κ2
4

(
R− Λ

L2

)
− 1

4q2
FµνF

µν

]
+

1

2κ2
4

∫
z=zUV

d3x
√
−gb 2K , (2.1)

where we have already included the Gibbons-Hawking boundary term, which is expressed

in terms of the induced metric (gb)µν and the extrinsic curvature K on the surface at

z = zUV. Actually zUV represents a UV cutoff that will be sent to zero in the final step

of the holographic renormalization procedure. As it is well known (see for example [39])

the Gibbons-Hawking term is necessary in order to have a well-defined bulk variational

problem. In the action (2.1) Λ = −6 is the dimensionless cosmological constant measured

in units of the AdS4 radius L; κ4 and q are respectively the gravitational and Maxwell

coupling constants and their dimension is [κ4] = 1 and [q] = 0.

From the action (2.1) we get the Einstein and Maxwell equations

Rµν −
gµν
2

(
R− Λ

L2

)
= γ2

(
FµρF

ρ
ν −

gµν
4
FρσF

ρσ
)
,

∂µ
(√
−gFµν

)
= 0 ,

(2.2)

where we have introduced the ratio of the gravitational and Maxwell couplings, namely

γ ≡ κ4
q . Being the equations of motion (2.2) insensitive to an overall rescaling of the

action (2.1), they depend only on γ and not on the individual couplings. It is worth noticing

that for the simple model at hand γ could be rescaled away by means of a field redefinition.6

The model admits the following black-brane solution (see for example [24]):

ds2 =
L2

z2

[
−f(z)dt2 + dx2 + dy2 +

1

f(z)
dz2

]
, A = φ(z)dt , (2.3)

f(z) = 1−
(

1 +
z2
hγ

2µ2

2L2

)(
z

zh

)3

+
z2
hγ

2µ2

2L2

(
z

zh

)4

, (2.4)

φ(z) = µ− q2ρz = µ

(
1− z

zh

)
. (2.5)

where z is the radial coordinate running from zUV at the UV radial shell to zh at the black

hole horizon. Of course, in the limit of vanishing cut-off, the radial UV shell is identified

with the conformal boundary of the asymptotic AdS geometry.

6Nevertheless this is not a general feature (e.g. it is not true for the holographic superconductor) and

we prefer to keep γ explicit.
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We recall that the coefficients of the leading and subleading near-boundary terms

of the bulk gauge vector are respectively mapped to the dual chemical potential µ and

charge density ρ ≡ µ/(q2zh) of the corresponding global current in the boundary theory.

Eventually, the black hole temperature (which coincides with that of the boundary theory)

and the other thermodynamical quantities, such as the energy density E and the pressure

P , can be derived in the standard holographic way (see for instance [3, 31]). One obtains

T = − 1

4π
f ′(z)

∣∣∣∣
z=zh

= −γ
2µ2zh
8πL2

+
3

4πzh
,

E = 2P =
L2

z3
hκ

2
4

(
1 +

z2
hµ

2γ2

2L2

)
.

(2.6)

2.2 Fluctuations

We consider vector fluctuations on the homogeneous and isotropic background specified

by (2.3), (2.4) and (2.5). Without spoiling the generality of the treatment, the fluctuating

fields that we study are the gauge field fluctuations along the x spatial direction, namely

ax, and the vector mode of the metric, htx; these are the relevant fluctuations in order to

analyze the thermo-electric transport (see below). We further assume harmonic temporal

dependence and isotropic spatial dependence (null momentum) for the fluctuations.

The fluctuation dynamics is governed by the Einstein and Maxwell equations (2.2)

which assume the following explicit form

a′′x +
f ′

f
a′x +

ω2

f2
ax = −z

2φ′

fL2

(
h′tx +

2

z
htx

)
, (2.7)

h′tx +
2

z
htx + 2γ2φ′ax = 0 , (2.8)

where all the fields are functions of the z variable alone and the primes denote derivatives

with respect to z. Despite the dynamics for the fluctuations ax and htx is coupled, com-

bining (2.7) and (2.8) we obtain an equation where only ax and derivatives thereof appear,

a′′x(z) +
f ′(z)

f(z)
a′x(z) +

[
ω2

f(z)2
− 2γ2 z2φ′(z)2

f(z)L2

]
ax(z) = 0 . (2.9)

To actually solve the differential problem governing the fluctuation dynamics, we need to

specify appropriate boundary conditions at the horizon; we consider in-falling boundary

conditions which are those needed to compute retarded correlators of the dual theory [29].

From (2.9) we have that the gauge field fluctuations can be analyzed and solved without

considering the metric fluctuations which are later determined by means of (2.8) upon

substituting the solution for ax. Therefore we have to impose the in-falling boundary

conditions at the horizon on the gauge field alone,

a(IR)
x = (zh − z)−

iω
4πT (b0 +O(zh − z)) . (2.10)

Since the equation (2.9) is homogeneous, we can rescale the parameter b0 to 1, as a con-

sequence ax and htx are completely determined in terms of the frequency ω and the back-

ground quantities. As we will see, this is not the case for massive gravity. There we face

– 7 –
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a system of two coupled equations where the ratio of the two leading IR coefficient of the

fluctuation fields is physically relevant. We will later discuss more in detail this important

point.

2.3 Renormalization of the fluctuation action

In order to compute the correlators to be plugged into the Kubo formulæ for the transport

coefficients, we need to consider the on-shell bulk action expanded at the second order in

the fluctuations. The gauge/gravity prescription identifies the boundary value of the bulk

fluctuation fields with the dual sources. The correlators of interest are then obtained taking

appropriate functional derivatives of the on-shell action with respect to these sources. This

entire procedure represents the gauge/gravity version of the standard field theory paradigm

to derive correlation functions.

In general the bulk on-shell action for the fluctuating field is divergent and needs to be

properly renormalized. The holographic renormalization procedure consists in considering

a regularized action to be integrated up to a near-boundary radial cut-off; then, appropriate

boundary counter-terms are considered and eventually the limit of zero cut-off defines the

renormalized action. The boundary counter-terms make the on-shell action finite once the

UV cut-off goes to zero. They must respect the symmetries of the boundary theory and

provide a well-defined bulk variational problem. As mentioned before, in (2.1) we have

already added the Gibbons-Hawking boundary terms to the bulk action; this provides a

well-defined bulk variational problem for the fields. Then (see for instance [3]) the only

well-behaved boundary term needed in order to render the on-shell action finite is

Sc.t. =
1

2κ2
4

∫
z=zUV

d3x
√
−gb

4

L
. (2.11)

Eventually, the limit of vanishing cut-off is considered and (as we are interested in the

linear response or, said otherwise, to two-point correlators) only the quadratic part of the

action in the fluctuating field is retained. The renormalized quadratic action is defined as

S(2)
ren = lim

zUV→0
SRN + Sc.t.

∣∣∣∣
O(ax,htx)2

. (2.12)

Once we have obtained a finite on-shell action, it is perfectly legitimate to ask ourselves

whether finite counter-terms could also be added. Such finite counterterms would lead to

ambiguities in the definition of the renormalized action.7 We state once more that the

counter-terms have to respect all the symmetries of the boundary theory,8 the power count-

ing and the definition of the bulk variational problem. This latter characteristic amounts

to avoid introducing boundary terms containing radial derivatives. The former symmetry

7To have an example where finite counter-terms can be added to the bulk action of a holographic model

and have an impact on the resulting physics, see [37].
8As a general feature, the correlators satisfy Ward identities related to the symmetries of the model. In a

generating functional framework, such identities (as the correlators themselves) are obtained by appropriate

functional derivatives of the generating functional itself and of the expectation values of the various quan-

tities in the theory. Counterterms (either finite or not) in the QFT action which respect the symmetries of

the original theory affect both the Ward identities and the correlators in a consistent way [35].

– 8 –
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requirements impede us to consider terms as aia
i which would brake the boundary gauge

symmetry. The power-counting criterion instead forbids us to consider FijF
ij which is al-

lowed by the symmetries but would force us to introduce new dimensionful parameters. We

further notice that a Chern-Simons term is always trivial on our background solutions as a

consequence of spatial rotational invariance. Such arguments exhaust all the possibilities

as far as the gauge field is concerned. Turning our attention to the metric, we are allowed

to consider two kinds of terms: a boundary cosmological constant and a term proportional

to the boundary Ricci scalar. The first actually appeared in (2.11); the latter is null as the

manifold transverse to the radial coordinate z is flat Minkowski space-time upon which we

are considering homogeneous configurations in the space coordinates (i.e. null momentum).

From an asymptotic study of the equations of motion we have that the boundary

expansions of the fields ax and htx are

ax(z) = a(0)
x + a(1)

x

z

L
+ . . . , htx(z) =

L2

z2
h

(0)
tx + h

(1)
tx

z

L
+ . . . , (2.13)

and consequently the renormalized quadratic on-shell action for the model at hand is given

by

S(2)
ren =

∫
d3x

[
1

2q2L
a(0)
x (−ω)a(1)

x (ω)

− 1

2κ2
4

3

L
h

(0)
tx (−ω)h

(1)
tx (ω)− E

4
h

(0)
tx (−ω)h

(0)
tx (ω)

]
+ (ω ↔ −ω) , (2.14)

where we have Fourier transformed with respect to the time coordinate.

We anticipate that, as opposed to the model just analyzed in which there are no finite

boundary counter-terms which can be added to the regularized action, in the massive

gravity case, as we will see, the explicit breaking of diffeomorphism invariance allows us to

add to the action non-trivial finite counter-terms. These may (and actually do) affect the

physical quantities and, in particular, the transport coefficients.

2.4 Review and definition of the transport matrix

The generic transport coefficient CXY is defined through the Kubo formula

CXY = i ω
δ2S(2)

δXδY
= − i

ω
GXY , (2.15)

where X,Y indicate the (here unspecified) physical sources (e.g. E or ∇T ) while the corre-

lator G is the Green function obtained through functional differentiation of the quadratic

on-shell action S(2) with respect to the sources a(0) and h(0). We are interested in comput-

ing the thermo-electric transport coefficients which relate at linear order the heat flow 〈Qx〉
and the electric current 〈Jx〉 to the electric field Ex and the gradient of the temperature

∇xT in the following way: (
〈Jx〉
〈Qx〉

)
=

(
σ sT

sT κ̄T

)(
Ex

−∇xT/T

)
, (2.16)

– 9 –
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where σ is the electric conductivity, s is the Seebeck coefficient and κ̄ is the thermal

conductivity at vanishing electric field.9

The connection between the bulk field fluctuations and the fluctuations of the physical

quantities (i.e. between A, h and E, ∇T ) is the following [3, 30]:

a(0)
x = − i

ω

(
Ex + µ

∇xT
T

)
, h

(0)
tx =

i

ω

∇xT
T

. (2.17)

In particular, as explained in [3], in order for this identification to be valid the theory must

be invariant at least under temporal diffeomorphisms. Indeed to relate the fluctuation

h
(0)
tx to a thermal gradient one relies on a temporal diffeomorphism “gauge” transforma-

tion. This is related to the fact that in the framework of thermal quantum field theory,

the imaginary period of the complexified time coordinate corresponds to the inverse tem-

perature. The temporal diffeomorphism invariance is naturally satisfied in the standard

formulation of general relativity but might be not true for massive gravity where diffeo-

morphism invariance is explicitly broken. However, as we will see in section 3, the massive

gravity model which we consider is invariant under diffeomorphism in the t− z directions

and therefore the relations (2.17) still hold.

From (2.17) we have the following relations among the corresponding functional deriva-

tives

δ

δEx
= − i

ω

δ

δa
(0)
x

, (2.18)

−T δ

δ∇xT
= − i

ω

[
δ

δh
(0)
tx

− µ δ

δa
(0)
x

]
, (2.19)

where the partial derivatives with respect to the sources a
(0)
x and h

(0)
tx are to be taken

keeping to zero the source upon which one does not differentiate. We underline that the

sources a
(0)
x and h

(0)
tx are independent quantities. Stated this, in order to compute the

explicit expressions of the transport coefficients in terms of the background quantities and

the near-boundary fluctuations, we start taking double functional derivatives of the on-shell

renormalized and quadratic action (2.14). Namely,

δ2S

(δEx)2
=

(
− i
ω

)2
[

1

q2L

δa
(1)
x

δa
(0)
x

]
, (2.20)

−T δ2S

δ(∇xT )δEx
= −T δ2S

δExδ(∇xT )
=

(
− i
ω

)2
[
− 3

2Lκ2
4

δh
(1)
tx

δa
(0)
x

− µ 1

q2L

δa
(1)
x

δa
(0)
x

]
, (2.21)

and

(−T )2 δ2S

(δ∇xT )2
=

(
− i
ω

)2
[
− 3

κ2
4L

δh
(1)
tx

δh
(0)
tx

−E− µ

q2L

δa
(1)
x

δh
(0)
tx

+
3µ

κ2
4L

δh
(1)
tx

δa
(0)
x

+
µ2

q2L

δa
(1)
x

δa
(0)
x

]
. (2.22)

9From (2.16) we have that the thermal conductivity at vanishing electric current κ is related to κ̄ as

follows: κ = κ̄− sσ−1sT .
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Figure 1. The static limit of the electric conductivity σDC as a function of the scale invariant

temperature T̃ . The values of the parameter of the model are: µ = 1, L = 1 and γ = 1.

We observe that the equation for the fluctuations of the gauge field is independent of htx
and that, because of equation (2.8), h

(1)
tx is completely determined in terms of a

(0)
x and the

parameters of the background,

h
(1)
tx =

2

3
γ2q2ρLa(0)

x ; (2.23)

hence we have10

δa
(1)
x

δh
(0)
tx

=
δh

(1)
tx

δh
(0)
tx

= 0 and
δh

(1)
tx

δa
(0)
x

=
2

3
γ2q2ρL . (2.24)

Eventually, we have that the entries of the transport matrix (2.16) are all expressible in

terms of the background quantities and a unique electric conductivity [3]:

σ = − i
ω

1

q2L

δa
(1)
x

δa
(0)
x

, s =
i

ωT
ρ− µ

T
σ , (2.25)

and

κ̄ = − i

ωT
(−E + 2µρ) +

µ2

T
σ . (2.26)

It is interesting to consider the thermal conductivity κ̄ for a neutral black hole, namely

for µ = 0. The only surviving contribution is the imaginary pole whose residue is propor-

tional to E . Relying on the Kramers-Kronig relations this corresponds to a delta function

at zero frequency in the real part of κ̄ which encodes the lossless heat transport through a

momentum conserving medium induced by a thermal gradient.

To conclude this brief review we plot in figure 1 the static limit of the electric conductiv-

ity σDC = limω→0 σ(ω) as a function of the scale invariant temperature T̃ = T/µ. Usually

in the gauge/gravity literature one mostly discusses the spectral properties of the electric

conductivity without focusing on the temperature dependence. Instead, since we are con-

cerned with the thermo-electric properties, we find it interesting to study the temperature

10We anticipate that these relations are not valid in the massive gravity case where the fluctuations

dynamics cannot be disentangled as in the massless gravity case.
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dependence of the static limits of all the transport coefficients, i.e. also the Seebeck and the

thermal conductivity. In fact, the experimental and real condensed matter investigations

of the thermo-electric and thermal coefficients are usually more focused on temperature

dependence rather than the spectral behavior. We have plotted the static electric conduc-

tivity for γ = 1 and µ = 1, however its behavior for different values of the parameter γ is

the same since, as noted before, γ can be reabsorbed through a field redefinition, namely

the system is invariant under the scaling µ→ aµ and γ → γ/a.

It is important to note that, since there is a δ(ω) in the real part of the conductivity, the

static conductivity is defined as the limit for ω → 0 of the spectral conductivity disregarding

the delta function. From the numerical point of view, this coincides with computing the

spectral conductivity at a value of ω much smaller than all the other scales in the system.

From figure 1 we observe that the behavior of σDC presents two regimes; the “cross-over”

region corresponds roughly with the energy scale set by the chemical potential µ. The

two above-mentioned regimes consist in the following two behaviors: for T̃ � 1 the static

conductivity goes to zero quadratically while for T̃ � 1 it saturates to 1/q2.

3 Thermo-electric transport in massive gravity

In this section, after discussing the basic properties of the massive gravity model which

we consider, we will explain how to compute the thermo-electric transport coefficients for

this system; the detailed analysis of the numerical results that we obtained is postponed to

section 4. Unless specified otherwise, we refer to section 2 for conventions and definitions.

3.1 The massive gravity model

The idea underlying the application of massive gravity in holography consists in breaking

the diffeomorphism invariance in the bulk by introducing a mass term for the graviton in

such a way that one has momentum dissipation in the boundary dual field theory. Actually,

several ways to give a mass to the graviton had been studied, but, following [11], we work

here with the formulation of the massive gravity presented for the first time in [13]. The

action of the model is:

S =

∫
d4x
√
−g
[

1

2κ2
4

(
R+

6

L2
+ β

(
[K]2 − [K2]

))
− 1

4q2
FµνF

µν

]
+

1

2κ2
4

∫
z=zUV

d3x
√
−gb 2K ,

(3.1)

where β is an arbitrary parameter having the dimension of a mass squared and the small

square brackets denote a trace operation. Notice that the action (3.1) contains already

the Gibbons-Hawking term necessary to have a well-defined bulk variational problem. The

matrix (K2)µν is defined in terms of the dynamical metric gµν and a fiducial fixed metric

fµν in the following way11

(K2)µν ≡ gµρfρν , K ≡
(√
K2
) µ

ν
. (3.2)

11Within this formulation of massive gravity, it is possible to consider also a linear term in the trace of K;

namely an α[K] term in the Lagrangian density where α is a numerical coefficient. However in this paper

we always consider the case α = 0. The reason for doing so is twofold: first a rigorous proof of the absence
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Along the lines of [11], we consider the following form for fµν :

fµν = diag(0, 0, 1, 1) . (3.3)

Considering this particular form for the fiducial metric means that the action is still in-

variant under diffeomorphism in the (z, t) plane, but not in the (x, y) plane. At the dual

level this implies that the theory has conserved energy but no conserved momentum.

At this point some comments are in order. In [14] it was proved that, in the limit

of small momentum dissipation, namely when the temperature is greater than the charac-

teristic momentum relaxation rate of the system, some observables computed in massive

gravity are consistent with a hydrodynamical model which respects the modified conser-

vation laws given in (1.1). The τ appearing in the modified conservation relations is the

characteristic momentum relaxation time of the system. Relations (1.1) coincide exactly

with the conservation laws proposed in [16] for a relativistic hydrodynamic model which

includes impurity scattering in the limit of spatially isotropic perturbations.

3.1.1 Background and thermodynamic

The equations of motion descending from the action (3.1) are:

Rµν −
R

2
gµν +

Λ

2L2
gµν +Xµν = γ2Tµν ,

∂µ
(√
−gFµν

)
= 0 ,

(3.4)

where γ ≡ κ4
q and

Tµν = FµρF
ρ
ν −

gµν
4
FρσF

ρσ ,

Xµν = −β
(
K2
µν − 2[K]Kµν +

gµν
2

(
[K]2 − [K2]

))
.

(3.5)

We want to study the system in the presence of a chemical potential, we then consider the

same background ansatz as in (2.3). In the massive case the black-brane solution is:

φ(z) = µ− q2ρz = µ

(
1− z

zh

)
, ρ ≡ µ

q2zh
,

f(z) =
γ2µ2z4

2L2z2
h

− γ2µ2z3

2L2zh
− z3

z3
h

− βz3

zh
+ βz2 + 1 .

(3.6)

In the limit β → 0 the emblackening factor f(z) reduces to that corresponding to the

standard Reissner-Nordström solution. The black hole temperature is computed in the

usual way leading to

T = −f
′(zh)

4π
= −γ

2µ2zh
8πL2

+
βzh
4π

+
3

4πzh
. (3.7)

of ghosts in the model exists only in this α = 0 case [11]; secondly, as noted in [14], with α 6= 0 logarithmic

terms appear in the near-boundary expansion of the bulk fields. The latter fact introduces non-standard

divergences in the on-shell 2 + 1-dimensional action.
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The full set of thermodynamical quantities were derived in [15]. For the sake of later need,

we report here the explicit expressions for the entropy density S, the energy density E and

the pressure P ,

S =
2π

κ2
4

L2

z2
h

, E =
L2

z3
hκ

2
4

+
L2β

zhκ
2
4

+
µ2

2q2zh
, P =

L2

2κ2
4z

3
h

− βL2

2κ2
4zh

+
µ2

4q2zh
. (3.8)

Notice that the dual theory of a massive gravity has in general E 6= 2P . The equation of

state E = 2P is expected for a 2 + 1 dimensional conformal theory but, as it happens with

the conservation laws of the stress-energy tensor, the massive gravity set-up introduces

modifications that are proportional to the mass parameter β.

Scales and scalings. As we have just noted observing the thermodynamic quantities,

the massive parameter β introduces a new scale in the model. This new scale affects the

scaling symmetries of the bulk fields. In fact, if we rescale the radial coordinate z as z → az,

we find that the other quantities of the model must scale as

(t, x, y)→ a(t, x, y) , β → β

a2
, µ→ µ

a
, zh → azh (3.9)

in order for this scaling to be a symmetry of the action. In particular, if we consider the

scale invariant temperature T̃ ≡ T/µ we find from (3.7) that this is a function of the scale

invariant quantities β/µ2 and µzh:

T̃ ≡ T

µ
= F

(
β

µ2
, zhµ

)
. (3.10)

Moving the temperature while keeping fixed both the chemical potential µ and the mass

parameter β (which, as we will see, is related to the momentum dissipation rate in the dual

field theory) corresponds to varying the horizon radius zh.

Finally, we note that, as in the massless case, the constant γ can be rescaled away

from the action (3.1) by means of a redefinition of the gauge field. In fact the system is

invariant under the scaling

γ → aγ , µ→ µ/a , (3.11)

namely the same scaling symmetry found in the Reissner-Nordström AdS black hole. This

scaling affects in particular the transport coefficients and consequently to compute the

transport coefficients at different values of γ is equivalent to compute the same quantities

at the corresponding rescaled values of the chemical potential.

3.2 Fluctuations and transport in the massive case

3.2.1 Linearized equations and asymptotic expansions

In order to obtain the transport coefficients, we need to expand the action (3.1) at the

second order in the fluctuation fields. As in the massless bulk gravity case, we work in

the zero momentum limit.12 However, as opposed to the massless case, here the equations

12For non-zero momentum the set of coupled fluctuations involves further components of the dynamical

metric. This has been studied in [14].
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for htx and hzx are independent and then we have to turn on both the fluctuations to be

consistent. Hence we consider the following set of fluctuations

A→ A+ e−iωt ax(z) dt ,

ds2 → ds2 + 2e−iωt hzx(z) dz dx+ 2e−iωt htx(z) dt dx .
(3.12)

Expanding the equations of motion (3.4) to the linear order in the fluctuations (3.12) we

obtain:

h′tx +
2

z
htx + iωhzx + 2γ2φ′ax + 2β

if

ω
hzx = 0 ,

d

dz

[
h′tx + iωhzx +

2

z
htx + 2γ2φ′ax

]
+ 2β

htx
f

= 0 ,

d

dz

(
fa′x

)
+
ω2

f
ax +

φ′z2

L2

(
h′tx +

2

z
htx + iωhzx

)
= 0 .

(3.13)

There are no derivatives of hzx in the first equation of motion which therefore can be

algebraically solved to obtain hzx. We then substitute the solution inside the second

equation. Finally we are left with two coupled equations for ax and htx:

d

dz

[
fa′x

]
+

2φ′z

L2

−γ2φ′ω2zax + βf (zh′tx + 2htx)

2βf + ω2
+
ω2

f
ax = 0 ,

d

dz

[
f

z

2γ2φ′zax + zh′tx + 2htx
2βf + ω2

]
+

1

f
htx = 0 .

(3.14)

In the β → 0 limit the first equation in (3.14) reduces to (2.9) obtained in standard massless

gravity. This, however, cannot be simply interpreted as the fact that the fluctuation

dynamics in the limit β → 0 coincides with that arising in the massless gravity on the

Reissner-Nordström black hole. Indeed, the second equation in (3.14) shows that the limits

β → 0 and ω → 0 do not commute. Since we are interested in computing DC observables

we always consider the ω → 0 first.

IR expansion. As usual, in order to compute the retarded correlators, we have to nu-

merically solve the equations (3.14) imposing the in-going wave boundary conditions at the

horizon z = zh, namely

h
(IR)
tx = (zh − z)−

iω
4πT (a0 +O(zh − z)),

a(IR)
x = (zh − z)−

iω
4πT (b0 +O(zh − z)).

(3.15)

It is important to note that, unlike the case of fluctuations on pure Reissner-Nordström

black hole, it is impossible to combine the two equations (3.14) in a unique equation for ax.

The dynamics of electric and thermal fluctuations is consequently more intimately mixed.

From the bulk standpoint, it is possible to rescale to 1 only one of the two coefficients a0

and b0. Said otherwise, the physics of the model is sensitive to the ratio η = a0/b0. In

the computations aimed at getting the transport coefficients, in order to isolate the purely

electric response of the system, we have to tune the coefficient η so that the thermal source
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vanishes. Symmetrically, to compute the pure thermal contribution, we must fix η so that

the electric field source is zero.13

UV expansion. Near the boundary z = 0 the expansion of the fluctuations in powers of

z is:

hUV
tx (ω, z) =

L2

z2

[
h

(0)
tx (ω) +

1

2
(2β + ω2)

z2

L2
h

(0)
tx (ω) +

z3

L3
h

(1)
tx (ω) +O

(
z4

L4

)]
,

aUV
x (ω, z) = a(0)

x (ω) +
z

L
a(1)
x (ω) +O

(
z2

L2

)
.

(3.16)

The coefficients of the higher orders in the z expansions can be determined in terms of

the background parameters and the integration constants h
(0)
tx , h

(1)
tx , a

(0)
x , a

(1)
x . Since we are

concerned with solutions of a system of second-order differential equations, these integration

constants remain arbitrary in the UV analysis. As usual, once one imposes the above-

mentioned IR boundary conditions at the horizon they are determined and can be read

from the full bulk solution. According to the standard holographic dictionary, we interpret

h
(0)
tx and a

(0)
x as the sources of the dual operators whose vacuum expectation values are

given by h
(1)
tx and a

(1)
x .

3.2.2 On-shell action and renormalization

The action (3.1) diverges if evaluated on-shell at the quadratic order in the fluctuations.

The counter-term which is necessary to make the quadratic action finite is, as in the

massless case,

S
(div)
c.t. =

1

2κ2
4

∫
z=zUV

d3x
√
−gb

4

L
. (3.17)

However, the reduced amount of symmetry in massive gravity allows one to introduce

additional finite counter-terms which are forbidden in the massless case. More specifically,

the larger freedom corresponds to the possibility of having terms that do not respect the

spatial diffeomorphisms which are already broken by the graviton mass. Of course we

still consider finite counter-terms which respect the power-counting (i.e. terms that do

not require the introduction of further dimensionful coefficients), the (reduced) boundary

symmetries and which lead to a well-defined bulk variational problem.

In accordance with the above-mentioned requirements, we are allowed to add only the

following tower of finite counter-terms14

N
∫
z=zUV

d3x z1−2n√−gb tt (gtt)n+1gxx (∂
(n)
t htx)(∂

(n)
t htx) , (3.18)

for all values of n. Here N is a normalization constant that depends on the dimensional

parameters of the bulk theory.15 It is important to notice that for n 6= 0 the counter-

terms (3.18) introduce polynomial contributions to the imaginary part of the 〈TtxTtx〉
13In the context of mixed spin-electric transport a technically analogous situation arises in the unbalanced

holographic superconductor [33].
14We remind the reader that the case under consideration has zero spatial momentum k; hence terms

with spatial derivatives are automatically null. In such circumstances, terms involving the boundary Ricci

scalar R[γ] are vanishing as well.
15Not to be confuse with the N →∞ rank of the boundary theory gauge group.
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correlator and that such contributions diverge at large frequency. We exclude this behavior

on the basis of field theoretical arguments on the high-ω behavior of physical correlators

and therefore we retain only the n = 0 case, namely

S
(fin)
c.t. (a) =

a

2
E
∫
z=zUV

d3x
z

L

√
−gb tt gttgxx htxhtx , (3.19)

where a is a dimensionless parameter on which the finite counter-term depends. The free-

dom associated to the choice of a specific value for a appears as a renormalization ambiguity

of the model or, said otherwise, to a renormalization scheme dependence. However, in order

to eliminate an unphysical delta function at ω = 0 in the thermal conductivity, we must

choose a = −1
2 . We will comment further on this important aspect in the following sections;

here we anticipate the remark to underline that the physical model at hand is eventually

not affected by renormalization ambiguities. Terms similar to (3.18) but containing hzx do

not respect spatial translation invariance.16

The total on-shell action reduces to a purely boundary term. Fourier transforming the

fields and substituting hzx by means of the second equation in (3.13) we obtain

Stot = S + S
(div)
c.t. + S

(fin)
c.t.

= lim
zUV→0

V

∫
dω

2π

[
µz2

(
βf + ω2

)
L2q2zh (2βf + ω2)

axhtx +
βz2f

2κ2
4L

2 (2βf + ω2)
htxh

′
tx

− f

2q2
axa
′
x+

(
z

2κ2
4L

2
√
f

+
aEz
4L

√
−gb tt gttgxx

)
htxhtx

]
z=zUV

+ (ω↔−ω) ,

(3.20)

where the prime denote the derivative with respect to the radial variable z, the arguments

of the first and second fluctuation in each pair are respectively (−ω, z) and (ω, z) and V

represents the volume of the spatial manifold.

The boundary action (3.20) evaluated on the boundary expansions (3.16) allows us

to compute the transport coefficients, (for details on the computation of the transport

coefficients see appendix A).

3.2.3 Definition of the transport coefficients

The computation of the transport coefficients is analogous to that illustrated for the mass-

less case, but with two important differences. The first one is that, since we are dealing

with two coupled differential equations, relations (2.24) are not valid and we have to keep

into account that:

δa
(1)
x

δh
(0)
tx

6= 0 , and
δh

(1)
tx

δh
(0)
tx

6= 0 . (3.21)

16One can recover spatial translations considering a spatial diffeomorphism where the coordinate variation

ξ is a constant. The component hzx has a non-vanishing variation contributed by the non-trivial Christoffel

symbols involving the coordinate z. Of course, interpreting the massive gravity model as an effective way

to account for spatial inhomogeneities, one would drop the spatial translation invariance requirement. In

such circumstances it is possible that wider classes of counter-terms could be considered. This analysis is

however beyond the purpose of the present treatment.
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The second is that, on the computational level, in the massive case the IR parameter

η = a0/b0 coming from the boundary conditions at the horizon (3.15) has a physical

relevance and cannot be simply rescaled to 1. Indeed we have to tune η depending on

which source we need to set to zero in performing the functional derivatives. We resort to

a numerical shooting method to the purpose of finding the value of η corresponding to the

desired UV source set-up.

Finally, the explicit expressions of the electric conductivity σ, the thermal conductivity

κ̄ and the thermo-electric conductivity s (obtained in appendix A) are

σ = − 1

q2L

i

ω

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

, (3.22)

κ̄ = −2
i

Tω

[
(a− 1)

E
2
− 3β

2κ2
4L(2β + ω2)

δh
(1)
tx

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

− µ

2q2L

δa
(1)
x

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

+
µ2

zhq2

β + ω2

2β + ω2
+

3µβ

2κ2
4L(2β + ω2)

δh
(1)
tx

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

+
µ2

2q2L

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

]
, (3.23)

s = − i

Tω

[
1

2q2L

δa
(1)
x

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

− µ

zhq2

β + ω2

2β + ω2

− 3β

2κ2
4L(2β + ω2)

δh
(1)
tx

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

− µ

q2L

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

]
. (3.24)

As anticipated, the thermal conductivity κ̄ depends explicitly on the parameter a intro-

duced by the finite counter-term (3.18) and, as explained in the next paragraph, we fix the

value of a according to physical requirements.

Fixing the finite counter-term. As it is evident from (3.23), only the imaginary part

of the the thermal conductivity depends on the value of the parameter a. This parameter,

which corresponds to the normalization of the finite counter-term (3.18), has a key role in

allowing us to get a sensible physical picture. For instance let us note that if we just set

a = 0 we find as the result of the numerical computations that the imaginary part of the

thermal conductivity has a pole at ω = 0. The Kramers-Kronig relations map such a pole

to a delta function δ(ω) in the real part of κ̄. A delta function in the thermal conductivity

describes a perfectly efficient (lossless) transport of heat which is unphysical given that we

are concerned with a system that dissipates momentum.

The apparent inconsistency can be completely fixed by setting a = −1/2. Observe

that the divergence in the imaginary part of κ̄ is evidently contributed by the first term

in (3.23) which diverges as i(1−a)E/ωT . Actually also the the second term in (3.23) yields

an analogous contribution which, however, needs to be uncovered and treated numerically.

Indeed an attentive numerical analysis shows that

Im

(
3β

κ2
4L(2β + ω2)Tω

h
(1)
tx

h
(0)
tx

∣∣∣∣∣
a
(0)
x =0

)
∼ −3

2

E
ωT

. (3.25)
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Figure 2. Real (left) and imaginary (right) part of the thermal conductivity κ̄(ω) for β = −0.44,

γ = 0.6 and T/µ = 1.

where the numerical factor in front of E does not depend (according to our numerical

precision) on the particular value of the other parameters of the model.

Notice that the numerical result (3.25) seems to provide an analytical insight. This

noticeable conclusion is not only based on an accurate numerical treatment but on a theo-

retical expectation as well. Recall that in the massless gravity set-up the lossless thermal

transport of a neutral black hole is proportional to the energy density E . This feature can

be regarded as a generic characteristic independent of the details of the particular holo-

graphic model one considers. Also in massive gravity, where the lossless thermal transport

would lead to unphysical consequences, we can reliably expect that it can be reabsorbed

by means of tuning the coefficient with which E appears in the thermal conductivity. This

argument supports us in distilling an analytical conclusion from the numerical data.

Let us rely on the same point looking the details of the formulæ. For small ω the

imaginary part of the thermal conductivity behaves as

Im(κ̄) ∼ −
(
a+

1

2

)
2 E
ωT

. (3.26)

If we set a = 0 we find the same divergence as for massless gravity on the neutral black hole

solution (see (2.26) with ρ = 0). However, in the massive case the symmetries of the model

allow us to consider a 6= 0, and in particular if we set a = −1
2 we find that the imaginary

part of the thermal conductivity goes to zero as ω → 0, as expected for the imaginary part

of a physical transport coefficient in the presence of momentum dissipation and in the DC

limit (see figure 2).

4 Transport coefficients analysis

4.1 The dissipation rate and the hydrodynamic regime

A general hydrodynamic theory in the vicinity of a quantum critical point where Lorentz

invariance is weakly broken by the presence of weak disorder (associated to an impurity

scattering rate τ−1) was developed in [16]. Being the considered impurity scattering an elas-

tic mechanism, [16] supposes that weak disorder affects only the momentum conservation
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while preserving the energy as encoded in (1.1). As a general result of this hydrodynamic

approach, once the scattering rate τ−1 and the thermodynamical quantities17 of the system

are provided, all the transport coefficients take the following form:

σDC = lim
ω→0

σ(ω) = σQ +
ρ2

E + P
τ , (4.1)

sDC = lim
ω→0

s(ω) = −σQ
µ

T
+
Sρ
E + P

τ , (4.2)

κ̄DC = lim
ω→0

κ̄(ω) = σQ
µ2

T
+
S2T

E + P
τ , (4.3)

where σQ has to be determined in terms of a constitutive description of the system.

In [14, 15] it was proven that massive gravity has a hydrodynamic regime when the

scattering rate τ−1 is sufficiently small (holding all the other variables, e.g. the temperature

and the chemical potential, fixed; see (4.9) in the following) and therefore the momentum

conservation violation is small as well. This regime is captured by the general hydrodynamic

treatment described in [16]. In particular in [14], by analyzing the poles of the correlators

in such a hydrodynamic limit and determining the scattering rate as

τ−1 = − Sβ
2π(E + P )

, (4.4)

it was demonstrated that massive gravity is well described by the modified conservation

law (1.1). More precisely, [15] provides an analytical expression for the static electric

conductivity σDC for every value of the temperature T in the massive gravity model at hand,

σDC =
1

q2
− κ2

4ρ
2

L2

z2
h

β
, (4.5)

which agrees with (4.1) when the scattering rate τ−1 is given by (4.4) and σQ = 1/q2.

To have a complete picture of the behavior of the system at hand also beyond its

hydrodynamical regime we need to study the whole range of the scale invariant temperature

T̃ = T/µ.18 Keeping into account the expressions for the thermodynamical quantities given

in (3.8) and writing the scattering rate (4.4) as a function of T̃ , we obtain the following

limiting behaviors for T̃ � 1 and T̃ � 1

τ−1 =
T̃�1

−
β
√
L2 (γ2µ2 − 2βL2)√

6γ2µ2
−
β
(
2πβL4 + πγ2µ2L2

)
3γ4µ3

T̃ +O
(
T̃ 2
)

τ−1 =
T̃�1

−
β
(
2βL2 − γ2µ2

)
2πµ (3γ2µ2 + 2βL2q2)

1

T̃
+O

(
T̃−2

) (4.6)

We report them in figure 3. According to (4.4) and figure 3, the scattering time approaches

a constant at T̃ → 0 and decreases as T̃−1 when T̃ →∞. This qualitative behavior is the

17See (3.8) for the explicit thermodynamical expressions of the thermodynamical quantities in the system

at hand.
18As explained already in section 3, we recall that the correct way to vary the temperature corresponds to

move the horizon radius zh keeping fixed the chemical potential µ. This because there are more independent

scales in the system in addition to T and µ, such as, for instance, β. As a consequence, to obtain the

scattering rate as a function of the temperature, we have substituted zh(T̃ ) in (4.4).
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Figure 3. Scattering rate τ−1 as a function of the scale invariant temperature T̃ for β = −0.44 ,

µ = 1, γ = 1.

same for every allowed values of the parameters of the model.19 In the low T̃ region where

τ−1 increases the hydrodynamic approximation is no longer accurate as we will explicitly

see.

As already noted, the conductivity (4.5) obtained in [15] is valid for every value of the

temperature T . The passages performed in [15] leading from the expression of the conduc-

tivity (4.5) to that of the scattering rate (4.4) are performed within the hydrodynamical

regime. Our purpose is at first to cross-check the validity of the hydrodynamical ap-

proximation by comparing our numerical results regarding the other transport coefficients

with (4.2) and (4.3). Then, adopting the same expression for the scattering rate (4.4) also

beyond the hydrodynamical region, we are interested in characterizing the behavior of the

system in the whole temperature range (see subsection 4.2).

For the moment being we stick to the hydrodynamical regime. As regards the electric

conductivity, keeping into account that for the holographic model at hand the charge

density is ρ = µ
q2zh

, it is evident that σDC (see Equation (4.5)) does not depend on the

horizon radius zh and then on the temperature.20 We have verified the correctness of our

numerical computations by comparing the results for σDC against the analytic formula (4.5).

The comparison between the thermal conductivity (3.23) and the Seebeck coeffi-

cient (3.24) computed numerically (blue solid lines) and the corresponding hydrodynamic

formulæ (4.2), (4.3) (red dashed lines) are plotted in figures 4 and 5. All the numerical

computations whose results are shown in the plots are obtained taking µ = 1 and for a

particular choice of the parameters β, L, q and κ4. Nevertheless, it is essential to mention

that the various behaviors plotted are qualitatively the same for all the allowed values one

could choose for this quantities.21

19We remind the reader that, as explained in [11, 14], β must be negative in order for the scattering rate

to be positive.
20This represents a peculiarity of the model at hand. According to [15], the inclusion of a term α[K] in the

gravitational action (3.1) would lead to a conductivity σDC which actually depends on the temperature T .
21In particular, we recall that the scaling symmetry (3.11) allows us to fix γ and to vary the chemical

potential or vice-versa.
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Figure 4. Comparisons between the numerically computed (solid blue lines) thermo-electric con-

ductivity sDC (left) and the numerically computed thermal conductivity κ̄DC (right) with the hy-

drodynamic formulæ (4.2) and (4.3) (red dashed lines) for β = −1.04, µ = 1, L = 1, and γ = 0.6.
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Figure 5. A magnification in the low T̃ region of the comparisons between the numerically com-

puted (solid blue lines) thermo-electric conductivity sDC (left) and the numerically computed ther-

mal conductivity κ̄DC (right) with the hydrodynamic formulæ (4.2) and (4.3) (red dashed lines) for

β = −1.04, µ = 1, L = 1, and γ = 0.6.

From figure 4 emerges that, in the high T̃ region the transport coefficients computed

numerically match exactly the hydrodynamic expectation (4.1)–(4.3). This confirms that,

as proven in [14], the massive gravity model under study has a hydrodynamic regime that

is well described by means of the modified conservation law (1.1). On the other hand,

in the low-T̃ region (magnified in figure 5) the hydrodynamic description deviates from

our numerical results. In particular note that the hydrodynamical plots coming from

both (4.2) and (4.3) diverge as T̃ → 0; this clearly indicates the intrinsic limit of the

hydrodynamic description at low T̃ .22 As we will further comment in subsection 4.2, the

Seebeck coefficient computed numerically approaches instead a constant value and the

numerical thermal conductivity goes linearly to 0.

22Another sign of the hydrodynamic weakness at low T̃ emerges form the fact that the Seebeck coefficient

changes sign, which appears quite an unjustifiable feature within the model considered.
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ductivity sDC (left) and the numerically computed thermal conductivity κ̄DC (right) with the for-

mulæ (4.7) and (4.8) (red dashed lines) for β = −1.04, µ = 1, L = 1, and γ = 0.6.

4.2 Beyond the hydrodynamic regime

In the low-T̃ region the hydrodynamic approximation ceases to be valid. Specifically, the

hydrodynamic formulæ do not agree with the Seebeck coefficient sDC and the thermal

conductivity κ̄DC obtained through our numerical computations. Remarkably, as it is

evident from figure 6, in this region we find that our numerical results match exactly with

the following expressions:23

sDC =
Sρ
E + P

τ , (4.7)

κ̄DC =
S2T

E + P
τ . (4.8)

The previous formulæ allow us to be more quantitative and precise about the range of valid-

ity of the hydrodynamic regime in this model. Specifically, by comparing expressions (4.7)

and (4.8) with the hydrodynamic expressions (4.2) and (4.3) it is easy to see that hydro-

dynamics is a good approximation when the two following constraints are both satisfied:24

|β| � 2πρq2T/µ, |β| � 2πSq2T 2/µ2 . (4.9)

We remark that in this regime the model has many features in common with the behavior

of the Fermi-liquid in the disorder dominated regime. First of all, the Wiedemann-Franz

ratio κDC/(σDCT ) (where κDC = κ̄DC − s2
DCT/σDC) is constant in temperature even

though its numerical value L0,

L0 =
2π2L2q2

(
κ2

4µ
2 − 2βL2q2

)
3κ2

4

(
κ2

4µ
2 − βL2q2

) , (4.10)

depends on β and in general disagrees with the Fermi-liquid prediction L
(Fl)
0 = π2/3.25

Additionally, the thermal conductivity κ̄DC goes linearly to zero with the temperature

23This formulæ has been confirmed by our analytical computation in [23].
24We thank the referee for suggesting us this precise comparison and formulæ.
25For a recent discussion on the Wiedemann-Franz law in strongly correlated systems see [32].
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and is proportional to the heat capacity C = T ∂S
∂T ,

κ̄DC = −

√
3
2γ

2µ2L2 − 3βL4

2βL2 − 2γ2µ2
C +O

(
T 2
)
, (4.11)

while the electric conductivity σDC is independent of the temperature, which constitutes

another feature of the Fermi-liquid disorder-dominated regime.

The comparison of our model at low-T̃ with the disorder-dominated Fermi-liquid ap-

pears however to be not complete. In particular, the Mott law describing the Fermi-liquid

thermo-electric response

sMott = − π2

3q2
T
∂ log σDC

∂µ
(4.12)

is not satisfied even qualitatively. In fact equation (4.12) yields a Seebeck coefficient which

goes linearly to zero as T → 0. On the contrary, as we have already noted, in the system at

hand, sDC approaches a constant at T = 0 and then grows linearly with the temperature:

sDC =

√
2πµ

(
2βL2 − γ2µ2

)
βq2
√

3γ2µ2L2 − 6βL4
− 4π2µ

3βq2
T +O

(
T 2
)

(4.13)

This is due to the fact that the entropy S is non-zero at T = 0 (see (3.8) and (4.7)).

It is important to stress further that the formulæ for the transport coefficients (4.7)

and (4.8) are exactly those computed in [1] for Dirac fermions with fermion-fermion inter-

actions and a dilute density of charged impurities using the Boltzmann approach in the

large-doping regime µ � T , (formulæ (6.4) and (6.5) of [1]). This fact, together with the

many features which massive gravity has in common with the Fermi-liquid in this regime

suggests that, at least in the large-doping region, a quasi-particle descriptions may be ac-

curate. However, to prove the existence of a quasi-particle regime in the present model

requires a systematic and careful analysis of the quasi-normal modes of the gravity solutions

which we postpone to future investigations [41].

5 Conclusion and future prospect

We have throughly studied and characterized the thermo-electric transport of a simple

holographic model featuring momentum dissipation in the boundary theory. We regard

the results obtained as interesting both from a purely theoretical perspective and from a

phenomenological standpoint. Regarding the former, we demonstrated the possibility of

obtaining a physically consistent picture for the thermo-electric response of a gauge/gravity

model possessing massive gravitons in the bulk. This feature leads to a breaking of some

diffeomorphism in the gravity model which therefore has a lower amount of symmetry.

Therefore, performing the holographic renormalization of a massive gravity model, one

must consider a larger set of possible counter-terms. The additional freedom proves crucial

in obtaining a consistent phenomenological picture because the appropriate choice of finite

counter-terms allows one to prevent the appearance of an unphysical dissipation-less heat

transport mode at null frequency.
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From a more phenomenologically-oriented viewpoint, it is tantalizing to observe the

closeness between the transport properties of the model at hand and the physics of the

crossover between the quantum-critical to Fermi-liquid regimes discussed for the graphene.

The behavior of the model at hand in the limiting high and low temperature regions

respectively is in agreement with the non-holographic expectation of a hydrodynamic and

quasi-particle regimes. On top of that, the holographic model allows one to study also

intermediate regimes and offers the opportunity of having a complete setup interpolating

the asymptotic regions.

A noteworthy fact is the possibility of the emergence, in our model, of a quasi-particle-

like regime in the low-temperature region which is usually based on a standard Boltzmann

description of quasi-particle degrees of freedom. Such description is not immediately con-

nected with a microscopic detail of the model; indeed this quasi-particle regime arises in the

deep IR (actually ω = 0). At any rate, it is interesting to observe that a Fermi-liquid-like

physical picture can arise from a strongly coupled, momentum dissipating gauge/gravity

model. Of course, more investigation is needed in this respect. Both the assessment of this

Fermi-liquid behavior and its detailed dynamics call for further exploration (e.g. the study

of probe fermions on the massive gravity charged black hole).

In the writing of this paper we became aware of related studies about the thermo-

electric transport in holographic systems with momentum dissipation [43]. In [43] the

momentum dissipation is realized by means of additional scalar fields within the Q-lattice

framework. Remarkably, the analytic formulæ for the thermo-electric transport coefficients

found in [43] are compatible with those found by us in the contest of massive gravity. It

would be interesting to further investigate the relation between this two results (see [23]).

One natural extension of the present analysis consists in studying the quasi-normal

modes of the system in the whole temperature range. In other words, the extension of

the study presented in [14] to the ballistic and intermediate regimes as well. Although

possibly technically demanding, such an analysis could shed light on the intimate nature

of the holographic plasma and some statements regarding the quasi-particle nature of the

low-temperature physics could obtain conclusive evidence.

Another very promising direction for further work is represented by the inclusion of

a magnetic field.26 This not only allows one to study the mixed magnetic, electric and

thermal transport, but could offer the possibility of studying other features which are

based on experimental expectations. In particular, the presence of cyclotron modes which

are intrinsically related to a collective nature of the quantum critical response.
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A Transport matrix in the momentum dissipating case. Computational

details

Keeping into account the boundary expansions of the fluctuation fields (3.16), the on-shell

action (3.20) reads

Stot = V

∫
dω

2π

[
1

2q2L
a(0)
x a(1)

x −
ρ

q2

β + ω2

2β + ω2
h

(0)
tx a

(0)
x

− 3β

2κ2
4L(2β + ω2)

h
(0)
tx h

(1)
tx − (1− a)

E
4
h

(0)
tx h

(0)
tx

]
+ (ω ↔ −ω) , (A.1)

where the arguments of the first and second fluctuation field in each term are respectively

−ω and ω. In order to simplify the notation, we introduce gothic letters to indicate the

coefficients in the quadratic action:

Stot = V

∫
dω

2π

[
A a(0)

x a(1)
x + B h

(0)
tx a

(0)
x + C h

(0)
tx h

(1)
tx +

D

2
h

(0)
tx h

(0)
tx

]
+ (ω ↔ −ω) , (A.2)

where the correspondence between gothic letters and coefficients is easily understood by

comparing (A.2) with (A.1).

The relation between the derivatives with respect to the physical quantities and those

with respect to the sources of the bulk fields is given in (2.18). We remind the reader

that the sources h
(0)
tx and a

(0)
x are independent and the derivative with respect to one of

them is taken putting the other to zero (this fact is understood throughout our formulæ).

The off-diagonal term in the transport matrix is due to the mixed second order derivative.

Exploiting linearity we obtain

δS

δE
= −

(
i

ω

)
δS

δa
(0)
x

= −
(
i

ω

)(
A a(1)

x + B h
(0)
tx + C h

(0)
tx

δh
(1)
tx

δa
(0)
x

+ A a(0)
x

δa
(1)
x

δa
(0)
x

)
, (A.3)

−T δ2S

δ∇TδE
= −

(
i

ω

)(
δ

δh
(0)
tx

− µ δ

δa
(0)
x

)
δS

δE

=

(
i

ω

)2
(
A
δa

(1)
x

δh
(0)
tx

+ B + C
δh

(1)
tx

δa
(0)
x

− 2µA
δa

(1)
x

δa
(0)
x

)
. (A.4)

Since we are dealing with a system preserving time-reversal symmetry, due to Onsager’s

argument the transport matrix must be symmetric. To check the symmetrical character of

the transport matrix offers a useful check of the correctness of the computations (which is

slightly delicate due to the non-trivial relation between the physical and the bulk fields).
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On a technical ground, we need to verify that the functional derivatives commute, namely

−T δS

δ∇T
= −

(
i

ω

)(
δ

δh
(0)
tx

− µ δ

δa
(0)
x

)
S

= −
(
i

ω

)(
A a(0)

x

δa
(1)
x

δh
(0)
tx

+ B a(0)
x + 2D h

(0)
tx + C h

(1)
tx (A.5)

+ C h
(0)
tx

δh
(1)
tx

δh
(0)
tx

− µA a(1)
x − µA a(0)

x

δa
(1)
x

δa
(0)
x

− µB h
(0)
tx − µC h

(0)
tx

δh
(1)
tx

δa
(0)
x

)

−T δ2S

δEδ∇T
=

(
i

ω

)2
(
A
δa

(1)
x

δh
(0)
tx

+ B + C
δh

(1)
tx

δa
(0)
x

− 2µA
δa

(1)
x

δa
(0)
x

)
. (A.6)

We have the right commutation between the derivatives and taking stock of the preceding

computations, we have

− T δ2S

δEδ∇T
= −T δ2S

δ∇TδE
=

(
i

ω

)2
(
A
δa

(1)
x

δh
(0)
tx

+ B + C
δh

(1)
tx

δa
(0)
x

− 2µA
δa

(1)
x

δa
(0)
x

)
. (A.7)

Repeating the same steps for the diagonal entries of the transport matrix (2.16), we obtain:

δ2S

δE2
=

δ2S

(δa
(0)
x )2

= 2

(
i

ω

)2

A
δa

(1)
x

δa
(0)
x

, (A.8)

T 2 δ2S

δ∇T 2
= 2

(
i

ω

)2
[
D + C

δh
(1)
tx

δh
(0)
tx

− µA δa
(1)
x

δh
(0)
tx

− µB− µC δh
(1)
tx

δa
(0)
x

+ µ2A
δa

(1)
x

δa
(0)
x

]
. (A.9)

In conclusion, due to the linearity requirement, the transport coefficients are:

σ = − 1

q2L

i

ω

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

, (A.10)

κ̄ = −2
i

Tω

[
(a− 1)

E
2
− 3β

2κ2
4L(2β + ω2)

δh
(1)
tx

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

− µ

2q2L

δa
(1)
x

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

+

+
µ2

zhq2

β + ω2

2β + ω2
+

3µβ

2κ2
4L(2β + ω2)

δh
(1)
tx

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

+
µ2

2q2L

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

]
(A.11)

s = − i

Tω

[
1

2q2L

δa
(1)
x

δh
(0)
tx

∣∣∣∣∣
a
(0)
x =0

− µ

zhq2

β + ω2

2β + ω2

− 3β

2κ2
4L(2β + ω2)

δh
(1)
tx

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

− µ

q2L

δa
(1)
x

δa
(0)
x

∣∣∣∣∣
h
(0)
tx =0

]
. (A.12)
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