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a b s t r a c t

A computational method based on the extended finite element method (XFEM) is implemented for

fracture analysis of isotropic and orthotropic functionally graded materials (FGMs) under mechanical

and steady state thermal loadings. The aim is set to include the thermal effects in loading, governing

equations, and the interaction integral for inhomogeneous materials with a complementary study on

available crack propagation criteria in orthotropic FGMs under thermal loading conditions. The

isotropic and orthotropic crack tip enrichments are applied to reproduce the singular stress field near

crack tips. Mixed-mode stress intensity factors are evaluated in isotropic and orthotropic FGMs by

means of the interaction integral. In addition, the mesh dependency and number of elements around

the crack tip are substantially reduced in comparison with the standard finite element method with the

same level of accuracy. Both mode-I and mixed-mode fracture problems with various types of

mechanical and thermo-mechanical functionally graded material properties are simulated and

discussed to assess the accuracy and efficiency of the proposed numerical method. Good agreements

are observed between the predicted results and the reference results available in the literature with far

lower degrees of freedom.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Development of science and technology in modern world has

created new challenges for engineers by employing new materi-

als. The need for approaches to model the complex behavior of

such materials is of a great importance, especially in conditions of

various thermal and mechanical loadings. Materials such as steel

which are suitable for mechanical loadings may lose their

efficiency under thermal loadings whereas some other materials

such as ceramics are more resistant against thermal loadings than

mechanical effects. As a result, the idea of combination of

material properties has led engineers to fabricate composites

and functionally graded materials (FGM). Materials with graded

variation of properties have been efficiently employed in rocket

heat shields, wear resistant linings, electronically insulating

metals and ceramic joints which are expected to experience high

gradient temperature conditions.

FGMmaterials, in general have a continuously variable proper-

ties in one or more directions, preventing generation of stress

singularity discontinuity. Both isotropic [1] and orthotropic [2]

cases of FGMs are available and they may consist of one or more

constituents [3].

Investigation of thermal effects on FGMs remains very impor-

tant for two reasons. First, FGMs are affected by temperature

during the manufacturing process and second, they are frequently

used in structures under high thermal gradients. Hence, the study

of thermal-induced stresses in FGMs is essential. Both types of

steady state and transient thermal loading conditions are impor-

tant [4,5].

The existence of microcracks and other defects can affect the

material behavior. When themicrocracks gather and propagate, form

a macrocrack which can substantially affect the material behavior.

Since FGMs are frequently applied under high thermal gradient

conditions, it may intensify the possibility of unstable cracking.

Cracking in FGM structures has been investigated experimen-

tally under different conditions such as impact loading [6,7], crack

propagation [8,9], dynamic fracture response [10], bimaterial

FGMs [11] and fracture in thermal barrier coatings (TBCs) [12].

Simultaneously, development of FGMs requires more advanced

analytical and numerical methods to analyze them accurately.

Hasselman and Youngblood studied the behavior of inhomoge-

neous material under thermo-mechanical loadings [13], and the

asymptotic analysis of curved crack propagation was discussed by

Abotula et al. [14]. Moreover, different types of analysis including

static [14–23] and dynamic analysis [24–27] have been investi-

gated by several researchers in recent years.

According to the thermal boundary conditions of crack surface,

FGM cracks under thermal loading can be divided into insulated and

non-insulated cracks. Noda and Jin considered FGM cracks in semi-

infinite media as perfectly insulated [28] while Borgi and Erdogan
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studied the same cracks using partial insulation [29,30] and FGM

cracks were considered partially insulated by assuming a temperature

drop across the crack surfaces by Ding and Li [31]. In non-insulated

cracks, the heat conduction equation is solved by neglecting the crack

existence and the results are applied as a force on the structure.

Several research works have been performed using different simpli-

fications to analyze isotropic and orthotropic FGMs [32–35]. A

comprehensive review on FGM thermal analysis can be found in [36].

From the numerical point of view, several studies have been

devoted to crack analysis in the context of partition of unity methods,

the phantom node method [37,38], meshless techniques [39–42], and

the extended finite element. The extended finite element method

(XFEM) is a powerful numerical tool for modeling discontinuity.

XFEM is an extension of the standard finite element method which

employs local enrichment of a region using the concept of partition of

unity. Applying the Heaviside function in XFEM, allows for analysis of

general crack propagation problems without remeshing. In addition,

unlike the standard FEM which employs the ordinary polynomial-

based shape functions, XFEM is capable of reproducing the complex

singular stress field around a crack tip.

XFEM has been successfully used in various two [43–45] and

three dimensional fracture problems [46–50], cracked plates [51]

and fracture in shells [52–55]. Dolbow and Gosz studied the crack

modeling in isotropic FGMs under mechanical loadings by XFEM

for the first time [55]. To reproduce the exact fields at the crack

tip in orthotropic media, orthotropic enrichment functions were

obtained for both static [56–58] and dynamic [59,60] cases.

Automatic enrichment techniques were proposed to find enrich-

ment functions in arbitrary problems [61–64]. Furthermore,

enrichment functions for interlaminar cracks in orthotropic

bimaterials were derived by Esna Ashari and Mohammadi [65].

XFEM has been recently employed for inhomogeneous isotropic

materials under thermal loadings for static [66] and dynamic

cracks by Zamani and Eslami [67]. Moreover, the natural frequen-

cies of a cracked plate in nonhomogeneous media were obtained

by XFEM using the homogenization technique [68].

Although Bayesteh and Mohammadi [69] have recently investi-

gated fracture of orthotropic FGM materials under mechanical

loadings, to the best knowledge of authors, XFEM has not been

employed to crack analysis in orthotropic FGM media under

thermal loadings. The main purpose of this study is to study

isotropic and orthotropic FGMs under combination of mechanical

and thermal loadings using XFEM. The paper begins with describing

the basic formulation of FGM materials, and associated concepts of

fracture mechanics, including evaluation of mixed mode stress

intensity factors. Then, the XFEM model is discussed by considering

the orthotropic enrichment functions, and the thermal effects on

the formulation. In addition, crack propagation in orthotropic FGM

materials under thermal and mechanical loadings is investigated for

the first time. Finally, several numerical examples are employed to

verify and compare XFEM models with the existing reference finite

element models and the efficiency and accuracy of XFEM are

discussed. The results may well illustrate the advantages of FGM

materials compared with the homogeneous alternatives under

thermal and mechanical loading conditions.

2. FGM stress–strain relationship

The total strain can be decomposed into the mechanical and

thermal components,

et ¼ emþeth ð1Þ

where et , em and eth are the total, mechanical and thermal strains,

respectively. em can be defined in the Lekhnitskii form of the

Hook’s law [70]:

ema ¼ aabsb a,b¼ 1,2,6ð Þ ð2Þ

where

e1 ¼ e11, e2 ¼ e22, e6 ¼ 2e12 ð3Þ

s1 ¼ s11, s2 ¼ s22, s6 ¼ s12 ð4Þ

and aab can be defined from the components of material com-

pliance tensor sijkl

a11 a12 a16
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and

emij ¼ sijklskl i,j,k,l¼ 1,2,3ð Þ ð6Þ
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where lij is defined in terms of the thermal expansion coefficient

aij for plane stress states

l11 ¼ a11, l22 ¼ a22, l33 ¼ a33, l12 ¼ 0 ð9Þ

and for plane strain problems,

l11 ¼ n31a33þ a11, l22 ¼ n32a33þ a22, l33 ¼ a33, l12 ¼ 0 ð10Þ

3. Stress intensity factors

3.1. J-integral

The first step in obtaining the stress intensity factors (SIFs) is

to calculate the J-integral. Various expressions have been pro-

posed in recent years, including the non-equilibrium, the incom-

patibility, and the constant–constitutive–tensor formulations, as

proposed by Kim and Paulino [71]. In the present study, the

incompatibility formulation is employed to approximate the

J-integral because it requires less complicated derivatives with

more or less the same level of accuracy as the non-equilibrium

formulation, while the constant–constitutive–tensor method

leads to unacceptable inaccuracy with the C0 finite element

formulation[71]. The incompatibility procedure is based on the

following relations:

sij ¼ cijkl xð Þemkl , etija
1

2
ui,jþuj,i

� �

, sij,j ¼ 0 ð11Þ

which includes the constitutive and equilibrium equations and

cijkl is the material modulus. The material compliance tensor sijkl
can be obtained from the first relation of Eq. (11)

emij ¼ sijklðxÞskl ð12Þ

In terms of the equivalent domain formulation (Fig. 1), the

J-integral can be expressed as

J¼
Z

A

sijui,1�wd1j
� �

q,jdAþ
Z

A

sijui,1�wd1j
� �

,jqdA ð13Þ

where q is a smooth function varying from q¼ 1 on the interior

boundary of surface A to q¼ 0 on the outer one, as depicted in
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Fig. 1. nj is the jth component of the outward unit normal to G, dij
is the Kronecker delta, the local Cartesian coordinate system x is

set parallel to the crack surface and w is the strain energy density,

w¼ 1

2
s11e

m
11þs22e

m
22þ2s12e

m
12

� �

ð14Þ

which can be defined for plane stress problems as

w¼ 1

2
s11e

m
11þs22e

m
22þs33e

m
33þ2s12e

m
12

� �

ð15Þ

and for plane strain conditions,

et33 ¼ 0-em33 ¼�eth33 ¼�a33DT ð16Þ

3.2. Interaction integral method

The interaction integral method is applied to calculate the

mode I and II stress intensity factors. The J integral Js for a

combination of two real and auxiliary fields can be divided into

three components of real J, auxiliary Jaux and the interaction Ml

Js ¼ Jþ JauxþMl ð17Þ

Considering

saux
ij ui,1j ¼

1

2
saux
ij ui,1jþuj,1i

� �

¼ saux
ij etij,1 ¼ saux

ij emij,1þethij,1

� �

ð18Þ

the interaction integral Ml can be defined as

Ml ¼MmþMth ð19Þ

By some manipulation, Mm can be expressed as [66]

Mm ¼
R

A siju
aux
i,1 þsaux

ij ui,1� 1
2 sike

aux
ik þsaux

ik emik
� �

d1j

n o

q
,jdA

þ
Z

A

sij stip
ijkl

�sijklðxÞ
� �

saux
kl,1

n o

qdA ð20Þ

It should be mentioned that the thermal effect can be

neglected in the auxiliary field and so eaux is reduced to the

mechanical strain. Also for plane stress states,

s33e
aux
33 ¼ saux

33 e
m
33 ¼ 0 ð21Þ

and

s33e
aux
33 ¼ 0 and saux

33 e
m
33a0 ð22Þ

s33 ¼ n31s11þn32s22�E33a33DT ð23Þ

for plane stress condition.

Moreover, the thermal interaction integral is defined as

Mth ¼
Z

A

saux
ij ethij,1qdA¼

Z

A

saux
ii ½lii,1ðDTÞþliiT ,1�qdA ð24Þ

In an elastic medium, the energy release rate can be expressed

as [71]:

G¼ J¼ c11K
2
I þc12K IK IIþc22K

2
II ð25Þ

with

c11 ¼� a22
2

Im
m1þm2

m1m2

� �

ð26Þ

c12 ¼� a22
2

Im
1

m1m2

� �

þ a11
2

Im m1m2

� �

ð27Þ

c22 ¼
a11
2

Im m1þm2

� �

ð28Þ

where mi are the roots of characteristic Eq. (31). The effect of two

superimposed fields can be considered as [72]

Ml ¼ 2c11K
aux
I K Iþc12 Kaux

I K IIþKaux
II K I

� �

þ2c22K
aux
II K II ð29Þ

Substituting Kaux
I ¼ 1, Kaux

II ¼ 0 andKaux
I ¼ 0, Kaux

II ¼ 1 into Eq. (29),

results in the following simplified simultaneous equations:

Ml
1 ¼ 2c11K Iþc12K II Kaux

I ¼ 1 and Kaux
II ¼ 0

� �

Ml
2 ¼ c12K Iþ2c22K II Kaux

I ¼ 0 and Kaux
II ¼ 1

� �

8

<

:

ð30Þ

to be solved for evaluation of actual modes I and II stress intensity

factors.

3.3. Auxiliary fields

The displacement and stress fields for an orthotropic problem

have already been developed by Sih et al. [73]. Since there is no

explicit analytical solution for FGM problems, the homogeneous

asymptotic orthotropic solution is used in the FGM condition by

using the material properties at the crack tip. Applying the

general methodology of the stress function f¼f x1þmx2
� �

for

the anisotropic problem, the following characteristic equation is

obtained at the crack tip [70],

atip11m
tip4�2atip16m

tip3þ 2atip12þatip66

� �

mtip2�2atip26m
tipþatip22 ¼ 0 ð31Þ

It is known that the roots mtip
i of Eq. (31) are complex and can

be defined in the form of conjugate pairs, mtip
1 , mtip

1 and

mtip
2 ,mtip

2 [70],

mtip
1 ¼ z1þ ib1

mtip
2 ¼ z2þ ib2

ð32Þ

or sometimes in repetitive roots

mtip
1 ¼ mtip

2 ¼ zþ ib ð33Þ

The components of displacement in x1 and x2 directions can be

defined as,

uaux
1 ¼ K I

ffiffiffiffiffi

2r

p

r

Re
1

mtip
1 �mtip

2

mtip
1 ptip2 gtip2 ðyÞ�mtip

2 ptip1 gtip1 ðyÞ
h i

( )

þK II

ffiffiffiffiffi

2r

p

r

Re
1

mtip
1 �mtip

2

ptip2 gtip2 ðyÞ�ptip1 gtip1 ðyÞ
h i

( )

ð34Þ

uaux
2 ¼ K I

ffiffiffiffiffi

2r

p

r

Re
1

mtip
1 �mtip

2

mtip
1 qtip2 gtip2 ðyÞ�mtip

2 qtip1 gtip1 ðyÞ
h i
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þK II

ffiffiffiffiffi

2r
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r

Re
1
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1 �mtip

2
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h i

( )

ð35Þ

Fig. 1. Equivalent domain integral.
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and the components of asymptotic auxiliary stress fields are

defined as

saux
11 ¼ K I

ffiffiffiffiffiffiffiffi

2pr
p Re

mtip
1 mtip

2

mtip
1 �mtip

2
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22 ¼ K I
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1
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saux
12 ¼ K I

ffiffiffiffiffiffiffiffi

2pr
p Re

mtip
1 mtip

2

mtip
1 �mtip

2

1

gtip1 ðyÞ
� 1

gtip2 ðyÞ

" #( )
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ffiffiffiffiffiffiffiffi
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1
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1 �mtip

2

mtip
1
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�

mtip
2

gtip2 ðyÞ

" #( )

ð38Þ

where

gtipi ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðyÞþmtip
i sinðyÞ

q

i¼ 1,2ð Þ ð39Þ

ptip
k

¼ atip11 mtip
k

� �2
þatip12�atip16m

tip
k

k¼ 1,2ð Þ ð40Þ

qtip
k

¼ atip12m
tip
k

þ
atip22

mtip
k

�atip26 k¼ 1,2ð Þ ð41Þ

and atip
ij

and mtip
k

are material properties at the crack tip, computed

by Eqs. (6) and (31), respectively. X1,X2ð Þ are the components of

global coordinate system, x1,x2ð Þ are the components of the local

crack tip system and the local crack tip polar coordinate system

r,yð Þ can be defined by x1þ ix2 ¼ reiy, as illustrated in Fig. 2.

4. Extended finite element method

The extended finite element method (XFEM) has been fre-

quently adopted for fracture analysis of various engineering

problems in the past decade. XFEM is an extension of the standard

finite element method based on the partition of unity property

which is appropriately designed for the problems that involve

with discontinuity and singular fields.

One of the advantages of XFEM is modeling crack propagation

without the need to remeshing, which is computationally more

convenient. Moreover, far more accurate stress field can be

generated at the crack tip by applying known analytical

enrichment functions instead of using finer elements, as it is in

the case in the standard finite element method.

The minimum requirement for a function gk to satisfy the

partition of unity (PU) condition in the domain OPU is

X

m

k ¼ 1

gkðxÞ ¼ 1 xAOPUð Þ ð42Þ

Such a PU function also satisfies the reproducing condition or

completeness for an arbitrary function c:

X

m

k ¼ 1

gkðxÞcðxÞ ¼cðxÞ xAOPUð Þ ð43Þ

As the set of isoparametric finite element shape functions, Ni,

satisfy Eq. (42), these functions can be employed as the local

enrichment functions to reproduce a desired field within the

domain Oenr:

cðxÞ ¼
X

iANenr

NiðxÞcðxÞ xAOenrð Þ ð44Þ

where Nenr expresses the set of enriched nodes and ai are the

additional DOFs. Generalization of a single function c into a set of

M enrichment functions, that represents an analytical field f

M¼ c1,c2,. . .,cm

	 


ð45Þ

results in generalization of PU approximation (44) for reprodu-

cing f

f¼
X

iANenr

NiðxÞ
X

mAM

cmðxÞaim

 !

xAOenrð Þ ð46Þ

The potential incompatibility of standard and enriched ele-

ments in an XFEM simulation should be properly handled. This is

usually performed by definition of a transition zone between the

enriched and non-enriched elements. Accordingly, the whole

domain can be categorized into four different subdomains, as

depicted in Fig. 3. Apart from the standard finite element model

away from the crack, part of the domain is enriched by the crack

tip enrichment functions, while the elements cut by a crack are

enriched by the Heaviside functions.

The displacement field can be obtained from the standard FEM

and enriched XFEM,

u¼ uFEMþuXFEM ð47Þ

where uXFEM can be expressed as

uXFEM ¼ utipþuHe ð48Þ

utip and uHe represent the displacements associated with crack

tip enrichment and Heaviside enrichment domains, respectively.

It should also be mentioned that discretization of the domain

geometry in XFEM is performed in the same way as the

Fig. 2. An orthotropic FGM body with a crack. Fig. 3. Definition of different regions.
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traditional finite element method,

x¼
X

iAO

Ni x,Z
� �

xi ð49Þ

4.1. Heaviside enrichment for discontinuity

XFEM can readily simulate a discontinuity within a finite

element by applying the Heaviside enrichment function,

HðxÞ ¼
1 8 x40

�1 8 xo0

(

ð50Þ

where the sign distance function xðxÞ at a point x can be defined

from its projection xC on the crack, as shown in Fig. 4.

xðxÞ ¼ d:nG
x ð51Þ

where

d¼ x�xC ð52Þ

and nG
x is the unit normal vector of crack line at xC.

The Heaviside enrichment approximation, uHe can then be

expressed as

uHe ¼
X

sANH

NiðxÞHðxÞâs ð53Þ

4.2. Crack tip enrichments

Implementation of the crack tip enrichments leads to accurate

reproduction of the highly non-linear stress and displacement

fields around the crack tip. The displacement field around the

crack tip can be estimated by

uTip ¼
X

iANtip

NiðxÞ
X

kAF

f kðxÞb̂ik

 !

ð54Þ

where F is the set of tip enrichment functions,

F ¼ f 1,f 2,. . .,fm
	 


ð55Þ

Ntip are the enriched nodes using the tip enrichments func-

tions and bik are the extra DOFs associated with the crack tip

enrichments. The crack tip enrichment functions for isotropic

homogeneous materials can be defined in the form of [55]

F ¼
ffiffiffi

r
p

sin
y

2

� �

,

ffiffiffi

r
p

cos
y

2

� �

,

ffiffiffi

r
p

sin
y

2

� �

sinðyÞ,
ffiffiffi

r
p

cos
y

2

� �

sin yð Þ
� �

ð56Þ

Alternatively, several functions for crack tip enrichments have

been proposed by Asadpour et al. [56–58], which can be expressed

in a general form in the local crack-tip polar coordinate system,

F r,yð Þ ¼
ffiffiffi

r
p

cos y1
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

g1ðyÞ
p

,

ffiffiffi

r
p

cos y2
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

g2ðyÞ
p

,

n

ffiffiffi

r
p

sin
y1
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

g1ðyÞ
q

,

ffiffiffi

r
p

sin
y2
2

� �

ffiffiffiffiffiffiffiffiffiffiffi

g2ðyÞ
q

�

ð57Þ

with

gjðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðyÞþzjsinðyÞ
� �2þ bjsinðyÞ

� �2
r

j¼ 1,2ð Þ ð58Þ

ykðyÞ ¼ tan�1 bksinðyÞ
cosðyÞþzksinðy

�

0

@

1

A k¼ 1,2ð Þ ð59Þ

where zi and bi defined in Eq. (32).

Applying the Heaviside and crack tip enrichment approxima-

tions, the displacement field can now be expressed as,

uðxÞ ¼
X

iA I

NiðxÞûi

" #

þ
X

sANH

Ns

�

xÞH xðxÞð Þâs

2

4

3

5

þ
X

tANtip

NtðxÞ
X

kA F

f kðxÞb̂kt

 !

2

4

3

5 ð60Þ

5. The finite element discretization

For an isotropic homogeneous system, the fully coupled

thermo-mechanical set of equations can be written as,

kr2
T ¼ alT0tr _eð Þþrce _T ð61Þ

mr2uþ lþm
� �rtr eð Þ�alrT ¼ r

@2u

@t2
ð62Þ

where a is the volumetric coefficient of thermal expansion,k is the

heat conductivity coefficient, l and m are the Lame’s coefficients,

ce is the specific heat at constant strain and r is the mass density.

The thermal equation is related to the mechanical field through

the alT0tr _eð Þ term, which vanishes in static and steady state

conditions: _e ¼ 0. As a result, only a one-way coupling remains in

(62): only the mechanical solution is affected by the thermal field.

Generalization of (61) for steady state orthotropic and non-

homogeneous conditions can then be written as,

@

@X1
k11 X1,X2ð Þ @T X1,X2ð Þ

@X1

� �

þ @

@X2
k22 X1,X2ð Þ @T X1,X2ð Þ

@X2

� �

¼ 0 ð63Þ

where kii is the heat conductivity coefficient along the i direction.

Dirichlet and Neumann boundary conditions can be defined as

T ¼ T on GT ð64Þ

qn ¼ q�W T�T0ð Þ on Gq ð65Þ

where W is a transfer or radiation coefficient, T0 is a known

equilibrium value [74], q is a prescribed value of q¼�krT on the

boundary Gq and qn is the normal component of q on Gq.k is

defined as:

k¼
k11 0

0 k22

" #

ð66Þ

Generally, adiabatic cracks, which contain a strong discontinuity

in the temperature field, are mostly assumed in FGMs under

dynamic or unsteady state (transient) conditions, whereas isother-

mal cracks (with a discontinuous flux) are being considered for

quasi-static and steady-state solutions, usually in bimaterial FGMs.

While mode I insulated (adiabatic) crack problems subjected to

Fig. 4. Definition of the sign distance function.
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certain thermal boundary conditions may well lead to a one-

dimensional thermal problem, the effect of strong discontinuity,

cannot be neglected in general mixed mode conditions. Never-

theless, a number of reference FGM problems [32,33] had assumed

boundary conditions in such a way to avoid the direct effect of crack

on thermal equation (such as a gradient parallel to the crack

direction). This is certainly not the case for general thermo-

mechanical crack problems, such as arbitrary inclined cracks, but

as discussed by Kim and Amit [32], in steady state and static

conditions for single FGM materials (and not bimaterials), it is

acceptable to neglect the effect of crack on the thermal results.

Therefore, the solution is performed in a way where the mechanical

quantities are affected by the thermal response, whereas the

thermal solution is assumed to be independent of fracture and

mechanical characteristics.

While approximation (60) is used to discretize the mechanical

field variable u, the following isoparametric finite element

approximation is implemented to discretize Eq. (63):

T ¼
X

iAO

Ni x,Z
� �

T̂ i ð67Þ

where T̂ i is the temperature at node i. The final set of discretized

equations can then be written as,

QT̂þf
th ¼ 0 ð68Þ

Ku¼ f ð69Þ

where the components of Q ¼Q ij, f
th ¼ f

th
i and the vector f ¼ f i are

defined as

Q ij ¼
Z

O
b
T
i kbjdOþ

Z

Gq

NT
i WNjdG ð70Þ

f
th
i ¼

Z

Gq

Ni q�WT0ð ÞdG ð71Þ

where

b
T
i ¼

@Ni

@x1

@Ni

@x2

h i

ð72Þ

and

f ¼
Z

O

BTCethdOþf
m ð73Þ

where B is defined as e¼ Bû, that û is all enriched and non-

enriched nodal displacement vector, eth was defined in Eq. (8) and

f
m is part of load vector due to mechanical loading. For definitions

of f
m
and other conventional terms, refer to [75].

6. Numerical integration

The Gauss quadrature rule is employed for numerical integra-

tion. Four and one gauss point rules are applied for the standard

four-node and three-node elements, respectively. A non-cracked

enriched element uses the seven-order Gauss integration. The

sub-triangulation method is used to improve the accuracy of

integration of cracked elements, in such a way that none of the

sub-triangles include the crack, as depicted in Fig. 5 for three and

four node elements. Then, 7 Gauss points are used for each sub-

triangle. The total number of Gauss points depends on the

number of triangles, but in average, almost 72 Gauss points are

used in a tip element. Other enriched elements that do not

contain any discontinuity or singularity use 7�7 Gauss points.

7. Crack propagation

7.1. Isotropic criteria

Several criteria are available for crack propagation in isotropic

media, including the maximum hoop stress [76], the maximum

strain energy release rate [77], and the minimum strain energy

density [78] criteria.

In this study, the maximum energy release rate criterion is

implemented. According to Hussain et al. [75], the energy release

rate for a propagation angle y0 can be expressed as

G y0ð Þ ¼ 1

4E
0
tip

g2 y0ð Þ 1þ3cos2 y0ð Þ
� �

K2
I þ8sin y0ð Þcos y0ð ÞK IK IIþð9�5cos2 y0ð ÞÞK2

II

n o

ð74Þ

with

g y0ð Þ ¼ 4

3þcos2 y0ð Þ
1�y0=p
1þy0=p

� �y=2p

ð75Þ

where

E0tip ¼
Etip plane stress
Etip

1�ntip plane strain

8

<

:

ð76Þ

The crack propagation angle is then obtain by

@G y0ð Þ
@y0

¼ 0 ,

@2G y0ð Þ
@y0

2
o0 , G y0ð Þ ¼ Gcr y0ð Þ ð77Þ

where the critical energy release rate is represented by Gcr y0ð Þ:

Gcr y0ð Þ ¼ K2
Icr

E0
tip

ð78Þ

7.2. Orthotropic criterion

In this study, two orthotropic criteria are examined. The first

one is the maximum circumferential stress criterion with-

out considering the angular change of material toughness, as

proposed by Aliabadi and Sollero [79] while the second criterion

is based on the maximum circumferential stress to strength

Fig. 5. Integration subtriangles around a crack.
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ration [80], which considers the angular change of material

toughness in orthotropic materials.

The circumferential stress in terms of the Cartesian stress

components can be defined as

sy ¼ sxsin
2yþsycos

2y�2sxysinycosy ð79Þ

Considering Eqs. (36)–(38), this stress can be rewritten as

sy ¼
K I
ffiffiffiffiffiffiffiffi

2pr
p Re A mtip

1 B2�mtip
2 B1

� �n o

þ K II
ffiffiffiffiffiffiffiffi

2pr
p Re A B2�B1ð Þ

	 


ð80Þ

where

A¼ 1

mtip

1
�mtip

2

Bi ¼ mtip
i sinðyÞþcosðyÞ

� �1:5
ð81Þ

In the first approach, Eq. (80) is maximized with respect to y in

order to determine the crack extension angle. This approach does

not take into account the orthotropic nature of material tough-

nesses, but as discussed by Aliabadi and Sollero [79], the ortho-

tropic nature is indirectly included through the computation of

stress intensity factor.

In the second approach, Saouma et al. [80] assumed that the

material toughness at a typical angle y is defined by Ko
Ic ¼

Kx
Iccos

2yþKy
Icsin

2y, where Kx
Ic

� �tip
and Ky

Ic

� �tip
are the toughnesses

of mode I along the x1 and x2 directions at the crack tip,

respectively. They illustrated that the angle of crack propagation

(y0) for a general inclined crack in an anisotropic medium is

evaluated by maximizing (Kyy=Kyyc), which leads to, [80]

sy

smax
y

¼
K IReA mtip

1 B1�mtip
2 B2

� �

þK IIRe A B1�B2ð Þ
	 


Kx
Iccos

2 y0þoð ÞþKy
Ic sin

2 y0þoð Þ
¼ 1 ð82Þ

where o is the initial crack angle with respect to the material x1-

axis, and y0 is the crack propagation angle with respect to the

local crack axis, as defined in Fig. 6.

8. Numerical simulations

8.1. An FGM plate with an inclined center crack for both isotropic

and orthotropic cases

A mixed-mode crack problem in the plane stress condition is

considered to compare the predicted stress intensity factors for

thermal and mechanical loadings with available reference results

to assess the accuracy and performance of the proposed method.

The plate and crack geometry are demonstrated in Fig. 7. The

crack is located at the center of the plate with length of 2a , angle

of 0ryr90 and a=W ¼ 0:1, L=W ¼ 1. The thermal loading as

shown in Fig. 7(a), is applied while the top and bottom edges of

plate are restrained. In Fig. 7(b), the second loading condition is

assumed as the equivalent mechanical load of the thermal loading

(Fig. 7(a)). For the uncracked plate, both loading conditions in the

plane stress state result in a uniform strain.

For an isotropic case, the following material properties are

used:

E0 ¼ 1:0, n¼ 0:3 ð83Þ

The nonhomogenity parameter ba is equal to 0.5 and the

variations of mechanical and thermal parameters are assumed to

be exponential along the horizontal axis X1ð Þ,

E X1ð Þ ¼ E0ebX1
, a X1ð Þ ¼ a0edX1

, n X1ð Þ ¼ n0 ð84Þ

and for an orthotropic case, the reference values are

E011 ¼ 104
, E022 ¼ 103

, n012 ¼ 0:3, G0
12 ¼ 1216 ð85Þ

and their variations are expressed as

E11 X1ð Þ ¼ E011e
bX1

, E22 X1ð Þ ¼ E022e
bX1

, n12 X1ð Þ ¼ n012, G12 X1ð Þ ¼ G0
12e

bX1 ð86Þ

a11 X1ð Þ ¼ a0
11e

d1X1
, a22 X1ð Þ ¼ a0

22e
d2X1 ð87ÞFig. 6. Crack trajectory angle.

Fig. 7. Geometry of square plate under (a) thermal-induced prescribed strain, and (b) mechanical loadings.
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Also, equivalent thermal and mechanical loadings are

e11ð Þth ¼ e22ð Þth ¼�a X1ð ÞDy X1ð Þ ¼ 1:0 ð88Þ

e22ð Þmech ¼ e¼D=2L¼ 1:0 ð89Þ

The fixed mesh configuration for all crack angles has been

shown in Fig. 8. The problem of FGM plate under thermal loading

is modeled using XFEM and the results of the problem is

presented for isotropic and orthotropic cases in Tables 1 and 2,

respectively.

For the isotropic case, the results are compared with the

reference results for thermal loading by Kim and Paulino [32]

and for equivalent mechanical loading by Konda and Erdogan [17]

and Dolbow and Gosz [55]. Good agreements are observed in

all cases.

For the orthotropic case, the results are obtained for both

thermal and equivalent mechanical loadings using XFEM. Again,

the predictions of XFEM are in good agreement with the reference

results by Amit and Kim [33] under thermal and mechanical

loadings for different crack angle.

Variation of normalized 9K9 and phase angle c in terms of the

crack angle are demonstrated for left and right tips in Fig. 9(a) and

(b), respectively

Kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
I þK2

II

q

ð90Þ

c¼ tan�1 K II=K IÞ
�

ð91Þ

Clearly, 9K9 for the right tip is higher than the left one since the

material properties increase along the X1 direction. In addition,

the phase angle is increased by the increase of the crack angle.

An indirect conclusion can also be made for crack propagation

problems. For example, if the inclined crack was allowed to

propagate, it would deviate towards the horizontal X1 direction.

This can be observed in Fig. 10 where the largest energy release

rate is associated with a horizontal crack.

In order to further investigate the effect of numerical para-

meters on the results, the independency of normalized SIFs toFig. 8. Finite element mesh of the square plate.

Table 1

Normalized stress intensity factors at both crack tips for the isotropic case.

y SIF Left tip Right tip

Thermal Thermal Mechanical Thermal Thermal Mechanical

XFEM [33] [17] [49] XFEM [33] [17] [49]

0 K I=K0 0.663 0.665 0.674 0.681 1.419 1.423 1.424 1.445

K II=K0 0 0 0 0 0 0 0 0

18 K I=K0 0.616 0.61 0.617 0.623 1.273 1.283 1.285 1.303

K II=K0 0.213 0.211 0.213 0.213 0.337 0.344 0.344 0.353

36 K I=K0 0.451 0.455 0.46 0.467 0.93 0.923 0.925 0.93

K II=K0 0.354 0.362 0.365 0.364 0.562 0.549 0.548 0.56

54 K I=K0 0.249 0.245 0.247 0.251 0.48 0.488 0.49 0.488

K II=K0 0.391 0.394 0.397 0.396 0.536 0.532 0.532 0.54

72 K I=K0 0.063 0.058 0.059 0.062 0.144 0.145 0.146 0.142

K II=K0 0.245 0.266 0.269 0.268 0.344 0.314 0.314 0.316

Table 2

Normalized stress intensity factors for orthotropic case.

y Normalized SIF Left tip Right tip

XFEM [32] XFEM [32]

Thermal Mechanical Thermal Thermal Mechanical Thermal

0 K I=K0 0.659 0.66 0.666 1.429 1.426 1.428

K II=K0 0 0 0 0 0 0

18 K I=K0 0.592 0.592 0.599 1.329 1.329 1.322

K II=K0 0.227 0.227 0.244 0.246 0.246 0.216

36 K I=K0 0.426 0.426 0.416 1.01 1.01 1.019

K II=K0 0.398 0.398 0.415 0.411 0.411 0.409

54 K I=K0 0.194 0.194 0.18 0.587 0.587 0.6

K II=K0 0.435 0.435 0.438 0.443 0.443 0.448

72 K I=K0 0.027 0.027 0.006 0.216 0.216 0.216

K II=K0 0.27 0.27 0.282 0.305 0.305 0.29
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radius of J-integral is examined, as depicted in Fig. 11. Clearly, the

size of the J-integral domain does not notably affect the solution.

In addition, to illustrate the effect of crack tip enrichments in

reproducing the exact stress field, variations of s22 stress along

the crack line in the crack tip element is compared with the exact

homogeneous orthotropic solution in Fig. 12. While XFEM in the

presence of crack tip enrichments has an excellent coincident

with the exact solution, results without the crack tip enrichment

dramatically deviate from the exact solution.

Comparison of the reference FGM model [32] with 5336 nodes

and the present XFEM model with only 1600 nodes (less than a

third) shows the higher efficiency of XFEM in comparison with

the conventional numerical methods.

Several numerical simulations have shown that using large

enriched area has no significant effect on the J-integral, computed

from the far stress field than localized asymptotic solution. It was

also observed that the optimal size of the enrichment domain

may differ in various examples, but enriching a domain of radius

of about 0:2a (where a is initial crack length) usually leads to

quite satisfactory results. To illustrate the effect of size of the

enrichment domain, Table 3 presents some of the results for the

normalized stress intensity factor for various radii of enrichment

domain. Clearly, the results are not sensitive to enrichment radius

for both crack tips, except for Re¼0.25 which slightly deviates

from other solutions.

In addition, Fig. 13 shows the level of influence of mesh

discretization on the results. It is clearly observed that by

increasing the number of DOFs, the solution quickly converges

and the results become mesh independent.

8.2. Edge cracked plate

An edge cracked FGM plate, depicted in Fig. 14, is considered.

The upper and lower edges are constrained in the X2 direction

(u2 ¼ 0).

Variation of different parameters such as the Young’s modulus,

Poisson’s ratio, thermal expansion coefficient and thermal con-

ductivity coefficient can be represented in the forms of

E X1ð Þ ¼ E�þEþ

2
þ E��Eþ

2
tan h bX1ð Þ ð92Þ

n X1ð Þ ¼ n�þnþ

2
þ n��nþ

2
tan h bX1ð Þ ð93Þ

a X1ð Þ ¼ a�þaþ

2
þ a��aþ

2
tan h dX1ð Þ ð94Þ

k X1ð Þ ¼ k
�þk

þ

2
þ k

��k
þ

2
tan h dX1ð Þ ð95Þ

Both plane stress and plane strain conditions are considered

with the following properties

a=W ¼ 0:2�0:8, L=W ¼ 2:0 ð96Þ

b¼ 15:0, d¼ 5:0 ð97Þ
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Fig. 9. (a) Variation of normalized Kj j versus crack angle y and (b) phase angle c

versus crack angle y for left and right tips.
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0

1

1.5

2

2.5

0.35 0.45 0.55 0.65 0.75 0.85 0.95

N
o
rm

a
li

ze
d

 |
K

|

J-integral factor contour (r/a)

θ=0 , left tip θ=0 , right tip

θ=54 , left tip θ=54 , right tip

0.5

Fig. 11. Normalized Kj j versus radius of J-integral.

Fig. 12. Comparison of s22 solution with and without crack tip enrichments (crack

tip at y¼ 0).
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E�,Eþ� �

¼ 1,3ð Þ, n�,nþ� �

¼ 0:1,0:3ð Þ, a�
,aþ� �

¼ 0:01,0:03ð Þ, k
�

,k
þ� �

¼ 1,3ð Þ ð98Þ

The dominant size of the gradient part of the plate is governed

by parameters b and d. This is clearly observed in Fig. 15, where

by increasing b, E22 varies more sharply in a narrower width in

the central part of the plate.

The results of present XFEM are compared with the reference

finite element method for the isotropic case in Table 4. The

numbers of nodes in XFEM and reference models are 681 and

1001, respectively.

According to Fig. 16, a sharp change for variations of KI occurs

for b¼15 when the crack tip is located within the dominant FGM

part of the plate. In contrast, variations of KI remains relatively

smooth for b¼0 for all cracks tip positions.

The same example is now solved for the following orthotropic

material properties,

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E11E22
p

, u¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

u12u21
p

, d
4 ¼ E11

E22
¼ u12

u21
, k0 ¼

E

2G12
�u ð99Þ

a11

a22
¼ k11

k22
¼ E11

E22
ð100Þ

E�11 ¼ 1, Eþ
11 ¼ 3, u� ¼ 0:3, u� ¼ 0:3, Eþ

22 ¼ 3, k0 ¼ 1 ð101Þ

a�
11 ¼ 1, aþ

11 ¼ 3, k
�
11 ¼ 1, k

þ
11 ¼ 3 ð102Þ

Fig. 17 shows the effect of orthotropic conditions on the mode

I stress intensity factor in terms of different E11=E22 ratios.

Accordingly, by reducing E11=E22 the first mode stress intensity

factor reduces and at E11=E22 ¼ 1, the isotropic SIF is recovered.

In addition, the combined effect of orthotropy and tempera-

ture gradient on SIF is investigated in Fig. 18 for three different

values of E11=E22. It is clearly observed that the reduction of

E11=E22 results in increase of K I .

8.3. Thermal barrier coating with an edge crack

Surface cracks perependicular to a coating surface occure in

thermal barrier coating (TBC) problems as a result of thermal

stresses. An orthotropic FGM coating on an isotropic bond coat

and isotropic metal substrate is demonstrated in Fig. 19.

Periodic cracks are considered in FGM coating with the

interval of b¼ 2 and one of these periodic sections is modeled.

The TBC is assumed at an initial temperature (T0) and then a

steady state difusion due to different thermal boundary condi-

tions is applied to the system.

The following specifications are employed for XFEM modeling

in the plane strain condition,

a¼ 0:1�0:9, b¼ 2 ð103Þ

W1 ¼ 1, W2 ¼ 0:5, W3 ¼ 5 ð104Þ

T1 ¼ T X1 ¼ 0ð Þ ¼ 0:2T0 and T3 ¼ T X1 ¼ 6:5ð Þ ¼ 0:5T0 ð105Þ

with T0 ¼ 10001

Variations of material parameters for the orthotropic FGM

coating region can be represented in the following forms

E11 X1ð Þ ¼ Ec11þ Ebc�Ec11
� �

X1
2

, E22 X1ð Þ ¼ Ec22þ Ebc�Ec22
� �

X2
1,

ð106Þ

E33 X1ð Þ ¼ Ec33þ Ebc�Ec33
� �

X1
2 ð107Þ

G12 X1ð Þ ¼ Gc
12þ Gbc�Gc

12

� �

X1
2 ð108Þ

nij X1ð Þ ¼ ncijþ nbc�ncij
� �

X1
2 i:e:,n12,n13,n23ð Þ ð109Þ

aii X1ð Þ ¼ ac
iiþ abc�ac

ii

� �

X1
2 i¼ 1,2,3ð Þ ð110Þ

kii X1ð Þ ¼ k
c
iiþ kbc�k

c
ii

� �

X1
2 i¼ 1,2,3ð Þ ð111Þ

with the reference values of

Ec11 ¼ 27:6 Gpa, Ec22 ¼ 120 Gpa, Ec33 ¼ 50 Gpa, Gc
12 ¼ 34 Gpa

ð112Þ

nc12 ¼ 0:25, nc13 ¼ 0:2, nc23 ¼ 0:15 ð113Þ

ac
11 ¼ 10:01� 10�6

, ac
22 ¼ 15� 10�6

, ac
33 ¼ 12� 10�6 ð1C�1Þ ð114Þ

k
c
11 ¼ 1, k

c
22 ¼ 5, k

c
33 ¼ 3 ð115Þ

Ebc ¼ 137:9 Gpa, nbc ¼ 0:27, abc ¼ 15:16� 10�6 ð116Þ

kbc ¼ 25 ð117Þ

For the isotropic FGM region:

E X1ð Þ ¼ EsþEbc
2

þ Es�Ebc
2

tan h bX1ð Þ ð118Þ

n X1ð Þ ¼ nsþnbc
2

þ ns�nbc
2

tan h bX1ð Þ ð119Þ

k X1ð Þ ¼ ksþkbc
2

þ ks�kbc
2

tan h bX1ð Þ ð120Þ

Table 3

Comparison of normalized stress intensity factor for different enrichment radii.

y Normalized SIF Left Right

Re¼0.1 Re¼0.15 Re¼0.2 Re¼0.25 Re¼0.1 Re¼0.15 Re¼0.2 Re¼0.25

0 KI 0.666 0.666 0.666 0.656 1.442 1.442 1.444 1.437

KII 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

36 KI 0.423 0.423 0.423 0.422 1.019 1.019 1.020 1.049

KII 0.386 0.386 0.386 0.466 0.461 0.460 0.460 0.486
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Fig. 13. Convergence of stress intensity factor for the horizontal crack problem.
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with

Es ¼ 175:8 Gpa, ns ¼ 0:25, as ¼ 13:91� 106
, ks ¼ 7 ð121Þ

The solution of heat conduction Eq. (63) matches the reference

results, as shown in Fig. 20. The highly non-linear variation of the

thermal field in the FGM domain is clearly distinguishable from

its linear and smooth variations elsewhere.

Fig. 21 compares the XFEM predictions of stress intensity

factors with the reference results. It is clearly observed that the

same accuracy is obtained using 1333 nodes in XFEM model in

Fig. 15. Variation of E22 for different values of b.

Table 4

Stress intensity factors K I for two different b in plane stress state and isotropic

condition.

a/w b¼15 b¼0

XFEM FEM [33] XFEM

0.200 1.035 1.052 0.443

0.300 1.153 1.151 0.464

0.400 1.124 1.124 0.473

0.500 0.806 0.809 0.392

0.600 0.301 0.300 0.315

0.700 0.205 0.201 0.274

0.800 0.139 0.134 0.213

Fig. 14. Geometry and the FE mesh of the edge cracked plate.
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comparison with 2975 nodes used in the reference singular

FEM model.

8.4. Crack propagation in FGM plate

Here, crack propagation in isotropic and orthotropic media

under mechanical and thermal loadings is investigated. The

geometry of the problem is demonstrated in Fig. 22 for both

mechanical and thermal loadings under the plain stress condition.

The following orthotropic material properties are considered:

E011 ¼ 114:8 Gpa, E022 ¼ 120:84 Gpa, G0
12 ¼ 9:66 Gpa, n012

¼ 0:21, K0
Icr ¼ 2 Mpa

ffiffiffiffiffi

m
p

ð122Þ

k
0
11 ¼ 5, k

0
22 ¼ 1, a0

11 ¼ 15� 10�6
, a0

22 ¼ 10� 10�6 ð123Þ

and for isotropic conditions:

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E011 � E022

q

, n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n012 � n021

q

, G0 ¼ E0

2 1þn0
� � ð124Þ

k
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
0
11 � k

0
22

q

, a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0
11 � a0

22

q

ð125Þ

Variations of material properties are according to Pij ¼ P0
ij �

eðbaXÞ where Pij ¼ Eij,nij,Gij,kij,aij,K Icr and a¼ 20 mm is the initial

crack length. A structural quadrilateral mesh including 1325

elements and 1404 nodes is adopted, as depicted in Fig. 23.

In mechanical loading, a uniform stress is increasingly applied

on the upper edge of the plate until it reaches the critical state

then the crack length is increased by 2 mm increments along the

calculated direction. Afterwards, the amount of uniform stress is

decreased to reach the critical condition again. In the thermal

problem, incremental steps are applied to T lef t .

First, the horizontal crack problem is solved under mechanical

loading for the orthotropic condition. Variation of the critical

stress versus the crack length is depicted in Fig. 24 for two

amounts of ba. It is observed that substantially higher stresses

can be tolerated by the FGM state (ba¼ 0:4) compared to the

homogeneous condition (ba¼ 0).

To consider the thermal effect on crack propagation in ortho-

tropic FGM materials, the same problem with boundary condi-

tions depicted in Fig. 22a is considered. The top and bottom edges

are insulated and the temperature is applied on both left and right

edges, for both homogeneous and inhomogeneous plates. Here, it

is assumed that the right side is subjected to a constant tem-

perature field Tright ¼ 01 and the temperature at the left side

decreases until the crack reaches the critical state. Then, the

crack length is increased by Da¼ 2 mm and the same procedure is

repeated. As depicted in Fig. 25, the FGM material with ba¼ 0:4

can withstand more than the other one. Since both mechanical

and thermal properties increase, the critical applied temperature

gradient increases by the increase in total crack length. It is,

however, important to note that different results are achieved if

the crack is insulated or the problem is solved in an unsteady

state.

In addition, mixed mode crack propagation in the isotropic

condition is investigated under the thermal loading for ba¼ 0:4.

There is a tendency for crack to further propagate in the first

mode, as can be clearly seen in Fig. 26; almost negligible K II in

later stages of crack propagation. Furthermore, the results of

critical traction for isotropic mixed mode crack propagation under

mechanical loading for y¼ 151 and ba¼ 0 and 0:4 are shown in

Fig. 27 where the FGM material has clearly shown higher capacity

in comparison with the homogeneous one.
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Fig. 19. Thermal barrier coating with the constituents, and the finite element mesh.
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8.5. Crack propagation in a plate with hole

To investigate the two dimensional thermal effect on mixed

mode crack propagation, a square 20� 20 plate with an inclined

crack (a¼ 2:5 mm) emanated from the internal circular hole is

Fig. 23. The finite element mesh of the FGM plate.
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Fig. 24. Effect of non-homogeneity on maximum applied stress for different crack
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Fig. 22. The initial configuration of crack propagation in an FGM plate.
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considered, as depicted in Fig. 28. The exponential FGM property

variation is along the X1 direction,

Pij ¼ P0
ij � eðbaXÞ ba¼ :05ð Þ ð126Þ

where

Pij ¼ Eij,nij,Gij,kij,aij,K Icr ð127Þ

A fixed finite element mesh with 2764 four-nodded elements

and 2868 nodes is employed for all crack propagation patterns, as

depicted in Fig. 29. The thermal boundary condition is 1000 1C on

all plate edges. The critical state is obtained in each step by

decreasing the tolerable hole temperature. Also, a constant crack

propagation length of Da¼ 1 mm is used for all cases.

First, the orthotropic condition is considered,

E011 ¼ 114:8 Gpa, E022 ¼ 11:7 Gpa, G0
12 ¼ 9:66 Gpa, n012 ¼ 0:21, K0

Icr ¼ 2 Mpa
ffiffiffiffiffi

m
p

ð128Þ

k
0
11 ¼ 5, k

0
22 ¼ 1, a0

11 ¼ 15� 10�6
, a0

22 ¼ 10� 10�6 ð129Þ

and then, an equivalent isotropic problem with two different

boundary conditions are considered (see Eqs. (124) and (125))

E0 ¼ 36:649 GPa, n0 ¼ :0214, G0 ¼ E0

2 1þn0
� � ð130Þ

k
0 ¼ 2:2361, a0 ¼ 1:2247� 10�5 ð131Þ

In the first isotropic case, all edges are restrained in the X2

direction while they are free in the X1 direction (Fig. 28a). In the

second isotropic case, all the nodes on four boundary edges are

restrained in both directions (Fig. 28b). The temperature

distribution contours for isotropic and orthotropic cases are

depicted in Figs. 30 and 31 respectively. It is clearly observed

that while a symmetric distribution is obtained in the isotropic

case, the central symmetry has changed in the orthotropic case.

Variation of the critical hole temperature in terms of the crack

length are depicted in Fig. 32. The existing differences for the two
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Fig. 27. Critical traction load syy versus crack length for isotropic mixed mode

crack propagation y¼ 151ð Þ.

Fig. 28. Definition of geometry and boundary conditions: (a) all edges are restrained in X1 and X2 directions and (b) all edges are restrained in X2 direction.

Fig. 29. The finite element mesh.

Fig. 30. Temperature distribution for the isotropic cases at first step.
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isotropic cases can be attributed to the effects of boundary

conditions. Since the tolerable hole temperature of the orthotro-

pic case is dramatically decreased with respect to the equivalent

isotropic problem, the orthotropic material can withstand sub-

stantially higher temperature gradient compared with the iso-

tropic material properties.

In addition, the predicted crack propagation trajectories for

different cases are depicted in Fig. 33. In the first isotropic case,

the non-symmetric boundary conditions in the two directions leads

to crack rotation, while in the second one, the crack propagates

almost self-similarly in the same initial direction. In the orthotropic

case, the crack tends to propagate along the weakest direction.

In order to study the effect of crack length increment on

predicted crack propagation trajectories, a constant hole tempera-

ture equal to 5001C for all increments is assumed. Fig. 34 depicts

the crack trajectories for two different crack length increments

Da¼ 0:5,1. Clearly, almost identical crack propagation paths are

obtained for two different crack propagation increments. However,

it should be noted that for very coarse discretizations, the results for

various propagation increments may slightly differ.

In addition, the crack trajectory for different meshes under the

same constant temperature conditions is depicted in Fig. 35. Again,

the crack trajectories remain almost similar and coincident for

different finite element meshes. Similar conclusions can be made

from the displacement and stress contours at different stages of the

crack propagation. Here, only sample stress contours for the initial

and final steps of crack propagation are illustrated in Figs. 36 and 37.

Moreover, a comparison has been made between available

crack propagation criteria to predict the propagation pattern for

orthotropic FGMs. They include the orthotropic criterion based on

the maximum hoop stress (ignoring the angular change of

Fig. 31. Temperature distribution for the orthotropic cases at first step.
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material toughness), and the orthotropic maximum hoop strength

criterion (considering the angular change of material toughness).

Fig. 38 shows a dramatic difference between the predictions of

the two approaches for the present material properties. But this not

always the case. In order to further investigate the problem, another

case of nearly isotropic material (E11=E22¼0.95.) is considered:

E011 ¼ 114:8 Gpa, E022 ¼ 120:84 Gpa, G0
12 ¼ 48:67 Gpa, n012 ¼ 0:21

ð132Þ

Other parameters (including thermal properties) remain similar

to the original model. The predicted crack propagation paths for the

nearly isotropic case are compared in Fig. 39. It is clearly observed

that while totally two different crack trajectories are obtained from

the two existing orthotropic crack propagation criteria for the case

of large orthotropic ratios (Fig. 38), the crack trajectories follow a

similar path as the orthotropic ratio approaches 1 (Fig. 39).

9. Conclusion

In the present study, XFEM has been employed to model FGMs

under thermal and mechanical loadings. Orthotropic enrichments

Fig. 36. Stress contours for the initial step: (a) sxx (b) syy (c) sxy . Fig. 37. Stress contours for the final step: (a) sxx (b) syy (c) sxy .
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have been adopted for accurate solution of orthotropic media and

their effects to reproduce the asymptotic crack tip stress field

have been investigated. As a result, the exact singular stress field

near the crack tip can be reproduced. Furthermore, implementing

crack tip enrichments leads to substantial decrease of required

number of DOFs compared with the standard finite element

models with the same accuracy and convergence rate.

In addition, the two crack propagation formulations in ortho-

tropic FGM media have been discussed and the effect of thermal

stress on mixed mode crack propagation is investigated. The

substantial differences are observed between the two criteria

when the orthotropic ratio becomes larger than 1.

Moreover, comparisons have been accomplished between

homogeneous and FGM materials under mechanical and thermal

loadings and in all cases, FGM materials showed substantially

more efficient behavior.
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