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A computational method based on the extended finite element method (XFEM) is implemented for
fracture analysis of isotropic and orthotropic functionally graded materials (FGMs) under mechanical
and steady state thermal loadings. The aim is set to include the thermal effects in loading, governing
equations, and the interaction integral for inhomogeneous materials with a complementary study on
available crack propagation criteria in orthotropic FGMs under thermal loading conditions. The
isotropic and orthotropic crack tip enrichments are applied to reproduce the singular stress field near
crack tips. Mixed-mode stress intensity factors are evaluated in isotropic and orthotropic FGMs by
means of the interaction integral. In addition, the mesh dependency and number of elements around
the crack tip are substantially reduced in comparison with the standard finite element method with the
same level of accuracy. Both mode-I and mixed-mode fracture problems with various types of
mechanical and thermo-mechanical functionally graded material properties are simulated and
discussed to assess the accuracy and efficiency of the proposed numerical method. Good agreements
are observed between the predicted results and the reference results available in the literature with far
lower degrees of freedom.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Development of science and technology in modern world has
created new challenges for engineers by employing new materi-
als. The need for approaches to model the complex behavior of
such materials is of a great importance, especially in conditions of
various thermal and mechanical loadings. Materials such as steel
which are suitable for mechanical loadings may lose their
efficiency under thermal loadings whereas some other materials
such as ceramics are more resistant against thermal loadings than
mechanical effects. As a result, the idea of combination of
material properties has led engineers to fabricate composites
and functionally graded materials (FGM). Materials with graded
variation of properties have been efficiently employed in rocket
heat shields, wear resistant linings, electronically insulating
metals and ceramic joints which are expected to experience high
gradient temperature conditions.

FGM materials, in general have a continuously variable proper-
ties in one or more directions, preventing generation of stress
singularity discontinuity. Both isotropic [1] and orthotropic [2]
cases of FGMs are available and they may consist of one or more
constituents [3].
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Investigation of thermal effects on FGMs remains very impor-
tant for two reasons. First, FGMs are affected by temperature
during the manufacturing process and second, they are frequently
used in structures under high thermal gradients. Hence, the study
of thermal-induced stresses in FGMs is essential. Both types of
steady state and transient thermal loading conditions are impor-
tant [4,5].

The existence of microcracks and other defects can affect the
material behavior. When the microcracks gather and propagate, form
a macrocrack which can substantially affect the material behavior.
Since FGMs are frequently applied under high thermal gradient
conditions, it may intensify the possibility of unstable cracking.

Cracking in FGM structures has been investigated experimen-
tally under different conditions such as impact loading [6,7], crack
propagation [8,9], dynamic fracture response [10], bimaterial
FGMs [11] and fracture in thermal barrier coatings (TBCs) [12].
Simultaneously, development of FGMs requires more advanced
analytical and numerical methods to analyze them accurately.
Hasselman and Youngblood studied the behavior of inhomoge-
neous material under thermo-mechanical loadings [13], and the
asymptotic analysis of curved crack propagation was discussed by
Abotula et al. [14]. Moreover, different types of analysis including
static [14-23] and dynamic analysis [24-27] have been investi-
gated by several researchers in recent years.

According to the thermal boundary conditions of crack surface,
FGM cracks under thermal loading can be divided into insulated and
non-insulated cracks. Noda and Jin considered FGM cracks in semi-
infinite media as perfectly insulated [28] while Borgi and Erdogan


Administrator
Stamp

Administrator
Rectangle


286 S.S. Hosseini et al. / Materials Science & Engineering A 561 (2013) 285-302

studied the same cracks using partial insulation [29,30] and FGM
cracks were considered partially insulated by assuming a temperature
drop across the crack surfaces by Ding and Li [31]. In non-insulated
cracks, the heat conduction equation is solved by neglecting the crack
existence and the results are applied as a force on the structure.
Several research works have been performed using different simpli-
fications to analyze isotropic and orthotropic FGMs [32-35]. A
comprehensive review on FGM thermal analysis can be found in [36].

From the numerical point of view, several studies have been
devoted to crack analysis in the context of partition of unity methods,
the phantom node method [37,38], meshless techniques [39-42], and
the extended finite element. The extended finite element method
(XFEM) is a powerful numerical tool for modeling discontinuity.
XFEM is an extension of the standard finite element method which
employs local enrichment of a region using the concept of partition of
unity. Applying the Heaviside function in XFEM, allows for analysis of
general crack propagation problems without remeshing. In addition,
unlike the standard FEM which employs the ordinary polynomial-
based shape functions, XFEM is capable of reproducing the complex
singular stress field around a crack tip.

XFEM has been successfully used in various two [43-45] and
three dimensional fracture problems [46-50], cracked plates [51]
and fracture in shells [52-55]. Dolbow and Gosz studied the crack
modeling in isotropic FGMs under mechanical loadings by XFEM
for the first time [55]. To reproduce the exact fields at the crack
tip in orthotropic media, orthotropic enrichment functions were
obtained for both static [56-58] and dynamic [59,60] cases.
Automatic enrichment techniques were proposed to find enrich-
ment functions in arbitrary problems [61-64]. Furthermore,
enrichment functions for interlaminar cracks in orthotropic
bimaterials were derived by Esna Ashari and Mohammadi [65].
XFEM has been recently employed for inhomogeneous isotropic
materials under thermal loadings for static [66] and dynamic
cracks by Zamani and Eslami [67]. Moreover, the natural frequen-
cies of a cracked plate in nonhomogeneous media were obtained
by XFEM using the homogenization technique [68].

Although Bayesteh and Mohammadi [69] have recently investi-
gated fracture of orthotropic FGM materials under mechanical
loadings, to the best knowledge of authors, XFEM has not been
employed to crack analysis in orthotropic FGM media under
thermal loadings. The main purpose of this study is to study
isotropic and orthotropic FGMs under combination of mechanical
and thermal loadings using XFEM. The paper begins with describing
the basic formulation of FGM materials, and associated concepts of
fracture mechanics, including evaluation of mixed mode stress
intensity factors. Then, the XFEM model is discussed by considering
the orthotropic enrichment functions, and the thermal effects on
the formulation. In addition, crack propagation in orthotropic FGM
materials under thermal and mechanical loadings is investigated for
the first time. Finally, several numerical examples are employed to
verify and compare XFEM models with the existing reference finite
element models and the efficiency and accuracy of XFEM are
discussed. The results may well illustrate the advantages of FGM
materials compared with the homogeneous alternatives under
thermal and mechanical loading conditions.

2. FGM stress-strain relationship

The total strain can be decomposed into the mechanical and
thermal components,

St — £m+£th (1)

where ¢!, ¢™ and ¢! are the total, mechanical and thermal strains,
respectively. €™ can be defined in the Lekhnitskii form of the

Hook’s law [70]:

el =a,505 (Lp=1.26) @
where

&1 =811, & =6n, & =2 3
01=011, 02=02, 0g=012 4

and a,s can be defined from the components of material com-
pliance tensor s;j

a1 412 ie S1111 St122 - 281112
Gz Gx Gy | = | S211 S2222 282212 (5)
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and

83-1 = SijkiOki (i,j,k,l = 1,2,3) (6)

In the case of plane strain, a,; should be substituted by

(aﬁ—aﬁaﬁ) -5 (7)
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Also, 8,?]11 can be expressed as
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where /; is defined in terms of the thermal expansion coefficient
o;; for plane stress states

J11 =011, A2z = 03, A33 =033, 412 =0 )
and for plane strain problems,

A1 =V31033+ 011, A22 = V32033 + 022, A33 =033, 412 =0 (10

3. Stress intensity factors
3.1. J-integral

The first step in obtaining the stress intensity factors (SIFs) is

to calculate the J-integral. Various expressions have been pro-
posed in recent years, including the non-equilibrium, the incom-
patibility, and the constant-constitutive-tensor formulations, as
proposed by Kim and Paulino [71]. In the present study, the
incompatibility formulation is employed to approximate the
J-integral because it requires less complicated derivatives with
more or less the same level of accuracy as the non-equilibrium
formulation, while the constant-constitutive-tensor method
leads to unacceptable inaccuracy with the C° finite element
formulation[71]. The incompatibility procedure is based on the
following relations:
Uij:Cijkl(x)gm- 85—# %(u,-,j+uj',-). O'ijJ'ZO 11
which includes the constitutive and equilibrium equations and
Ciir 1s the material modulus. The material compliance tensor sjj;
can be obtained from the first relation of Eq. (11)

& = Siju(X)0p (12)

In terms of the equivalent domain formulation (Fig. 1), the
J-integral can be expressed as

]= /A(Giju,"17W51j)q,jdA+/A(O',‘juiJfW(s]j),jqu (13)

where q is a smooth function varying from g=1 on the interior
boundary of surface A to g=0 on the outer one, as depicted in
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—— 01
Fig. 1. Equivalent domain integral.
Fig. 1. n; is the jth component of the outward unit normal to I, 6

is the Kronecker delta, the local Cartesian coordinate system x is
set parallel to the crack surface and w is the strain energy density,

1
W=j(0'118t]n1 +O'228T2+20'128qnz) (14)
which can be defined for plane stress problems as

1
w= 5(6118T1+O'228r2n2+0'338g13 +2(7128'1n2) (15)
and for plane strain conditions,
el =0l = —eft = —a33AT (16)

3.2. Interaction integral method

The interaction integral method is applied to calculate the
mode I and II stress intensity factors. The J integral J° for a
combination of two real and auxiliary fields can be divided into
three components of real J, auxiliary /** and the interaction M'

=]+ +M (17)
Considering
1
oy = o () = o, = o (e +efh) ()

the interaction integral M' can be defined as
M =M™ +M™ (19)
By some manipulation, M™ can be expressed as [66]
M™ = [, { ouit + o8 u; 1 — § (el + o 4xel) o1y b dA
.
+A {Gij (SI;EI_SU"’(X)) Gﬁﬁ }qu (20)
It should be mentioned that the thermal effect can be

neglected in the auxiliary field and so &™* is reduced to the
mechanical strain. Also for plane stress states,

o3 = off'els =0 @b
and

033655 =0and o55%egy # 0 (22)
033 =V31011 4+ V32022 —E330:33AT (23)

for plane stress condition.

Moreover, the thermal interaction integral is defined as
M = /A o ath gdA = /A 0 i1 (AT)+ 24T 1 1qdA 24)

In an elastic medium, the energy release rate can be expressed
as [71]:

G=J=c11K? +cioKiKy+c22K5 (25)
with
ax M1+#z>
C11=——==Im(——= 26
B 2 <#1#2 (20)
__O» 1 an
=77 [m<u1uz>+ 2 mitie) @7
a
Cn = %Im(lh +H) (28)

where y; are the roots of characteristic Eq. (31). The effect of two
superimposed fields can be considered as [72]

Ml =2c1q K?UXKI +C12 (K;H‘XK” + K;IIUXKI) + 2C22K;IIMXK" (29)

Substituting K{** = 1, K" = 0 andK{"* = 0, K{** = 1 into Eq. (29),
results in the following simplified simultaneous equations:

(30)

M} =2ci1K +ciKy - (K™ =1 and K = 0)
M), = cioKi+2cKy (K" =0 and Kjf* = 1)

to be solved for evaluation of actual modes I and II stress intensity
factors.

3.3. Auxiliary fields

The displacement and stress fields for an orthotropic problem
have already been developed by Sih et al. [73]. Since there is no
explicit analytical solution for FGM problems, the homogeneous
asymptotic orthotropic solution is used in the FGM condition by
using the material properties at the crack tip. Applying the
general methodology of the stress function ¢ = ¢ (x;+pux;) for
the anisotropic problem, the following characteristic equation is
obtained at the crack tip [70],

o T . i . J— .
allfﬂtlp4—201'gﬂtlp3 + (za]uza+a61£>unp2_2azlg'unp +df=0 (31

It is known that the roots ,ufip of Eq. (31) are complex and can
be defined in the form of conjugate pairs, ui?, @" and
15" 1" [70],

ﬂ?p ={+ip

tip . (32)
My = CZ + 'ﬂz

or sometimes in repetitive roots
uP =1 =C+ip (33)

The components of displacement in x; and x; directions can be
defined as,

Ut — K, /FRE {m [ ngppgpggzp(g)_ Mgl’p?l’ggm((?)] }
1 2

2r 1 i i i
+Ki ﬁRe{M [PiPgsPO)—piPeiP (o) } (34)
1 2

ug =Ky ;Re{m [P aPes? )15 aiPe P 0)] }
1 2

2r 1 in i in ti
+Kj \/;RE{M [qugg’”(@)fq;wgﬁ'p((?)] } (35)
1 2
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and the components of asymptotic auxiliary stress fields are
defined as

gan — _Ki_po [ HPHE" [ 45"
Rz VA PO N

Ky Re 1 ('u;ip>2 (‘ugip>2

ML /AR i 36
2nr | 1" | 870 g0 e
oux = K; Re ,1 - Hgip — ng
2 Vzar PP g o) gt o)
Ky 1 1 1
+ Re{—— |— 37)
vanr {uﬁ"’—ué"’ {gé"’(l)) gi’P(O)H
Gaux _ K; e 'ugipugip 1 _ 1
P Vamr T PP g 0) 850
+ K Re{ 1 {Hgm L H (38)
verr P - g 0) 85" (0)
where
g (0) =/ cos(0)+pPsin®) (i=1,2) 39
tip _ tip tip 2 tip _ tip , tip k=12 40
Py —an(l‘k> Ta -k (k=1,2) (40)
tip _ qtip tip G5 _ i k=1,2 41
a4, = a4y +ﬂtip—‘125 (k=1,2) 41)
k

and af}" and uﬁp are material properties at the crack tip, computed
by Egs. (6) and (31), respectively. (X1,X,) are the components of
global coordinate system, (x1,x) are the components of the local
crack tip system and the local crack tip polar coordinate system
(r,0) can be defined by x; +ix, =re'’, as illustrated in Fig. 2.

4. Extended finite element method

The extended finite element method (XFEM) has been fre-
quently adopted for fracture analysis of various engineering
problems in the past decade. XFEM is an extension of the standard
finite element method based on the partition of unity property
which is appropriately designed for the problems that involve
with discontinuity and singular fields.

One of the advantages of XFEM is modeling crack propagation
without the need to remeshing, which is computationally more
convenient. Moreover, far more accurate stress field can be
generated at the crack tip by applying known analytical

X2

Fig. 2. An orthotropic FGM body with a crack.

enrichment functions instead of using finer elements, as it is in
the case in the standard finite element method.

The minimum requirement for a function g, to satisfy the
partition of unity (PU) condition in the domain Qpy is

D> g=1 (xeQp) (42)
k=1

Such a PU function also satisfies the reproducing condition or
completeness for an arbitrary function y:

D&YX =YX (xeQpy) (43)
k=1

As the set of isoparametric finite element shape functions, N;,
satisfy Eq. (42), these functions can be employed as the local
enrichment functions to reproduce a desired field within the
domain Qe :

Y= Ny (xeQen) (44)
; S

where N°" expresses the set of enriched nodes and q; are the

additional DOFs. Generalization of a single function y into a set of

M enrichment functions, that represents an analytical field ¢

M= {1z ot} (45)

results in generalization of PU approximation (44) for reprodu-
cing ¢

b= M(x)( > ¢m<x>a.-m> (X € Qenr) (46)

i€ Nenr meM

The potential incompatibility of standard and enriched ele-
ments in an XFEM simulation should be properly handled. This is
usually performed by definition of a transition zone between the
enriched and non-enriched elements. Accordingly, the whole
domain can be categorized into four different subdomains, as
depicted in Fig. 3. Apart from the standard finite element model
away from the crack, part of the domain is enriched by the crack
tip enrichment functions, while the elements cut by a crack are
enriched by the Heaviside functions.

The displacement field can be obtained from the standard FEM
and enriched XFEM,

u = ufEM | gXFEM (47)
where uXFE™ can be expressed as
uXFEM — utip +uHe (48)

u’? and u”® represent the displacements associated with crack
tip enrichment and Heaviside enrichment domains, respectively.
It should also be mentioned that discretization of the domain
geometry in XFEM is performed in the same way as the

O Tip node

D Tip enrichment domain
o Split node

[ ] split enrichment domain

Fig. 3. Definition of different regions.
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Fig. 4. Definition of the sign distance function.

traditional finite element method,

x=>Y Ni(&n)% (49)
ieQ
4.1. Heaviside enrichment for discontinuity

XFEM can readily simulate a discontinuity within a finite
element by applying the Heaviside enrichment function,

1
H(é)={ W

where the sign distance function £(x) at a point ¥ can be defined
from its projection xr on the crack, as shown in Fig. 4.

VE>O

VE<O (50)

&) =dny (51)
where
d=x—Xxr (52)

and n,f is the unit normal vector of crack line at xr.
The Heaviside enrichment approximation, u"¢ can then be
expressed as

ufe =% " Ni®H(&)as (53)

seNH

4.2. Crack tip enrichments

Implementation of the crack tip enrichments leads to accurate
reproduction of the highly non-linear stress and displacement
fields around the crack tip. The displacement field around the
crack tip can be estimated by

= 3 M—(x)( S fk(x)l%,vk> (54)
ie NtP keF
where F is the set of tip enrichment functions,

F={f1forfm) (55)

NP are the enriched nodes using the tip enrichments func-
tions and b;, are the extra DOFs associated with the crack tip
enrichments. The crack tip enrichment functions for isotropic
homogeneous materials can be defined in the form of [55]

F= {ﬁsin <Q> ,"/Tcos <Q> ,A/Tsin <Q> sin(0),~/rcos <Q> sin(@)}
2 2 2 2
(56)

Alternatively, several functions for crack tip enrichments have
been proposed by Asadpour et al. [56-58], which can be expressed
in a general form in the local crack-tip polar coordinate system,

F(r,0)= {ﬁcos (%) \/21(0),/Fcos (%2) V22(0),
JTsin (92—1) g1(0),/rsin <%> NEXO) } ©7)

with

gi(0) = \/(cos(9)+§jsin(9))2 + (ﬁjsin(0))2 (=1,2) (58)

0,(0)=tan™! _ bBsin® (k=1,2) (59)
cos(0)+ Cksin(0>

where {; and f3; defined in Eq. (32).
Applying the Heaviside and crack tip enrichment approxima-
tions, the displacement field can now be expressed as,

ux) = |:ZNi(X)ﬁi:| +

iel

- { > Nr(")(ka(X)f)kr)} (60)

SN (x)H(é(x»és]
seNt

t e NP keF

5. The finite element discretization

For an isotropic homogeneous system, the fully coupled
thermo-mechanical set of equations can be written as,

kV2T = aATotr(€)+ pceT (61)

*u
at?
where o is the volumetric coefficient of thermal expansion,k is the
heat conductivity coefficient, 4 and p are the Lame’s coefficients,
c. is the specific heat at constant strain and p is the mass density.
The thermal equation is related to the mechanical field through
the aATotr(€) term, which vanishes in static and steady state
conditions:€ = 0. As a result, only a one-way coupling remains in
(62): only the mechanical solution is affected by the thermal field.
Generalization of (61) for steady state orthotropic and non-
homogeneous conditions can then be written as,

o aT(X1,X2) 3 aT(X1,X2)
X X, ) + X, <’<22(X1 .Xz)iax2
where k;; is the heat conductivity coefficient along the i direction.
Dirichlet and Neumann boundary conditions can be defined as

T=T onIr (64)

UV U+ (A+ ) VirE)—aiVT = p (62)

(lm(xl Xs) ) —0 (63)

q,=q-%T-Tp) onIy (65)

where 9 is a transfer or radiation coefficient, Ty is a known
equilibrium value [74], q is a prescribed value of q = —KkVT on the
boundary I'q and q, is the normal component of q on I'qK is
defined as:

K |k 0 66
- 0 ](22 (66)

Generally, adiabatic cracks, which contain a strong discontinuity
in the temperature field, are mostly assumed in FGMs under
dynamic or unsteady state (transient) conditions, whereas isother-
mal cracks (with a discontinuous flux) are being considered for
quasi-static and steady-state solutions, usually in bimaterial FGMs.
While mode I insulated (adiabatic) crack problems subjected to
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certain thermal boundary conditions may well lead to a one-
dimensional thermal problem, the effect of strong discontinuity,
cannot be neglected in general mixed mode conditions. Never-
theless, a number of reference FGM problems [32,33] had assumed
boundary conditions in such a way to avoid the direct effect of crack
on thermal equation (such as a gradient parallel to the crack
direction). This is certainly not the case for general thermo-
mechanical crack problems, such as arbitrary inclined cracks, but
as discussed by Kim and Amit [32], in steady state and static
conditions for single FGM materials (and not bimaterials), it is
acceptable to neglect the effect of crack on the thermal results.
Therefore, the solution is performed in a way where the mechanical
quantities are affected by the thermal response, whereas the
thermal solution is assumed to be independent of fracture and
mechanical characteristics.

While approximation (60) is used to discretize the mechanical
field variable u, the following isoparametric finite element
approximation is implemented to discretize Eq. (63):

T= ZN,(é,ﬂ)i—, (67)

ieQ

where T; is the temperature at node i. The final set of discretized
equations can then be written as,

Qf+f"=0 (68)

Ku=f (69)

where the components of Q = Qj;, fih :ff"’ and the vector f = f; are
defined as

Q= /Q b7 kb, dQ+ /r N[oNyar (70)
th _ /r Ni{@—9To)dl" (71)
where

b =[5 & (72)
and

f— (;BTCsfth+fm (73)

where B is defined as ¢ =B, that @ is all enriched and non-
enriched nodal displacement vector, £ was defined in Eq. (8) and
f™ is part of load vector due to mechanical loading. For definitions
of f™ and other conventional terms, refer to [75].

6. Numerical integration

The Gauss quadrature rule is employed for numerical integra-
tion. Four and one gauss point rules are applied for the standard
four-node and three-node elements, respectively. A non-cracked
enriched element uses the seven-order Gauss integration. The
sub-triangulation method is used to improve the accuracy of
integration of cracked elements, in such a way that none of the
sub-triangles include the crack, as depicted in Fig. 5 for three and
four node elements. Then, 7 Gauss points are used for each sub-
triangle. The total number of Gauss points depends on the
number of triangles, but in average, almost 72 Gauss points are
used in a tip element. Other enriched elements that do not
contain any discontinuity or singularity use 7 x 7 Gauss points.

Fig. 5. Integration subtriangles around a crack.

7. Crack propagation
7.1. Isotropic criteria

Several criteria are available for crack propagation in isotropic
media, including the maximum hoop stress [76], the maximum
strain energy release rate [77], and the minimum strain energy
density [78] criteria.

In this study, the maximum energy release rate criterion is
implemented. According to Hussain et al. [75], the energy release
rate for a propagation angle 6y can be expressed as

G(0o) = %gz(f)g){ (1+43cos?(09)) K7 +8sin(0)cos(0o)K Ky +(975c052(00))1<,2,}
tip

(74)
with
3 4 1700/71 0/2n
8(00) = 3+cos2(0p) <1 + 00/n> (73)
where
Eip plane stress
=\ {22 plane strain 79
The crack propagation angle is then obtain by

aG(0 &G0

G, =0 T <0, Glo=Gully) )

where the critical energy release rate is represented by G(0p):

K2
Gcr(eo) = % (78)
tip

7.2. Orthotropic criterion

In this study, two orthotropic criteria are examined. The first
one is the maximum circumferential stress criterion with-
out considering the angular change of material toughness, as
proposed by Aliabadi and Sollero [79] while the second criterion
is based on the maximum circumferential stress to strength
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ration [80], which considers the angular change of material
toughness in orthotropic materials.

The circumferential stress in terms of the Cartesian stress
components can be defined as

Gy = 0xSin*0+ 0,c05*0—20,,sinfcosd (79)

Considering Eqs. (36)-(38), this stress can be rewritten as

K; tip tip Ky

= Res A B,—u-"B + Re{A(B,—B 80
a(,ﬂ_m{(ulzuzl)}m{(zo} (80)
where

__ 1 _
A= P -1

) 15
B = (,ul?"J sin(9)+cos(0)> @1

In the first approach, Eq. (80) is maximized with respect to 0 in
order to determine the crack extension angle. This approach does
not take into account the orthotropic nature of material tough-
nesses, but as discussed by Aliabadi and Sollero [79], the ortho-
tropic nature is indirectly included through the computation of
stress intensity factor.

In the second approach, Saouma et al. [80] assumed that the
material toughness at a typical angle 0 is defined by K} =
K?.cos20+KY.sin®0, where (K.)™ and (K%,)" are the toughnesses
of mode I along the x; and x, directions at the crack tip,
respectively. They illustrated that the angle of crack propagation
(0p) for a general inclined crack in an anisotropic medium is

crack propagation angle with
respect to the local crack axis

60 X1

X2

¢ initial crack angle with respect

o to the material X; axis

E22 Ell

» X

Fig. 6. Crack trajectory angle.

a X, b

2L =20
2L =20

OO . vt o)

2W =20 '

0 [

Y

o N N © Y N S ¢ -

evaluated by maximizing (Kyg/Kgy), which leads to, [80]

o,  KiRen (ug"’Bl - y;"PBz) +KuRe{AB1~B)}

max —
99

— (82)
Kj}.cos2(0p + w)+K7. sin”(0p + w)
where  is the initial crack angle with respect to the material x;-
axis, and 6y is the crack propagation angle with respect to the
local crack axis, as defined in Fig. 6.

8. Numerical simulations

8.1. An FGM plate with an inclined center crack for both isotropic
and orthotropic cases

A mixed-mode crack problem in the plane stress condition is
considered to compare the predicted stress intensity factors for
thermal and mechanical loadings with available reference results
to assess the accuracy and performance of the proposed method.

The plate and crack geometry are demonstrated in Fig. 7. The
crack is located at the center of the plate with length of 2a, angle
of 0<0<90 and a/W=0.1, L/W =1. The thermal loading as
shown in Fig. 7(a), is applied while the top and bottom edges of
plate are restrained. In Fig. 7(b), the second loading condition is
assumed as the equivalent mechanical load of the thermal loading
(Fig. 7(a)). For the uncracked plate, both loading conditions in the
plane stress state result in a uniform strain.

For an isotropic case, the following material properties are
used:

E°=1.0,v=03 (83)

The nonhomogenity parameter fa is equal to 0.5 and the
variations of mechanical and thermal parameters are assumed to
be exponential along the horizontal axis (X;),

E(X1) = E%e, a(Xq) = ™1, v(X1) = vg (84)
and for an orthotropic case, the reference values are

E$1 =10% ES, =10°,19, = 0.3, G}, = 1216 (85)
and their variations are expressed as

Eni(X1) = ES e, Exp(X1) = EDe1, vin(X1) = 92, G12(X1) = Gef (86)
aq1(X1) = 0§12%1, 055(Xq) = 03,2 (87)

X,
dig
Y
1] X,
oo e
2w =20

Fig. 7. Geometry of square plate under (a) thermal-induced prescribed strain, and (b) mechanical loadings.
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Also, equivalent thermal and mechanical loadings are

(1) = (€22)en = —UX1DAOX1)=1.0 (88)

(€22)mecn =€=A/2L=1.0 (89)

The fixed mesh configuration for all crack angles has been
shown in Fig. 8. The problem of FGM plate under thermal loading
is modeled using XFEM and the results of the problem is
presented for isotropic and orthotropic cases in Tables 1 and 2,
respectively.

Fig. 8. Finite element mesh of the square plate.

Table 1
Normalized stress intensity factors at both crack tips for the isotropic case.

For the isotropic case, the results are compared with the
reference results for thermal loading by Kim and Paulino [32]
and for equivalent mechanical loading by Konda and Erdogan [17]
and Dolbow and Gosz [55]. Good agreements are observed in
all cases.

For the orthotropic case, the results are obtained for both
thermal and equivalent mechanical loadings using XFEM. Again,
the predictions of XFEM are in good agreement with the reference
results by Amit and Kim [33] under thermal and mechanical
loadings for different crack angle.

Variation of normalized |K| and phase angle s in terms of the
crack angle are demonstrated for left and right tips in Fig. 9(a) and
(b), respectively

IK| = \/K?+K? (90)
l// —=tan! (K"/K)) (91)

Clearly, |K| for the right tip is higher than the left one since the
material properties increase along the X; direction. In addition,
the phase angle is increased by the increase of the crack angle.

An indirect conclusion can also be made for crack propagation
problems. For example, if the inclined crack was allowed to
propagate, it would deviate towards the horizontal X; direction.
This can be observed in Fig. 10 where the largest energy release
rate is associated with a horizontal crack.

In order to further investigate the effect of numerical para-
meters on the results, the independency of normalized SIFs to

0 SIF Left tip Right tip
Thermal Thermal Mechanical Thermal Thermal Mechanical
XFEM [33] [17] [49] XFEM [33] [17] [49]
0 Ki/Ko 0.663 0.665 0.674 0.681 1.419 1.423 1.424 1.445
Ki /Ko 0 0 0 0 0 0 0 0
18 Ki/Ko 0.616 0.61 0.617 0.623 1.273 1.283 1.285 1.303
Ki/Ko 0.213 0.211 0.213 0.213 0.337 0344 0.344 0.353
36 K;/Ko 0.451 0.455 0.46 0.467 0.93 0.923 0.925 0.93
Ki /Ko 0.354 0.362 0.365 0.364 0.562 0.549 0.548 0.56
54 Ki/Ko 0.249 0.245 0.247 0.251 0.48 0.488 0.49 0.488
Ki /Ko 0.391 0.394 0.397 0.396 0.536 0.532 0.532 0.54
72 K;/Ko 0.063 0.058 0.059 0.062 0.144 0.145 0.146 0.142
Ki /Ko 0.245 0.266 0.269 0.268 0.344 0314 0.314 0.316
Table 2
Normalized stress intensity factors for orthotropic case.
0 Normalized SIF Left tip Right tip
XFEM [32] XFEM [32]
Thermal Mechanical Thermal Thermal Mechanical Thermal
0 Ki/Ko 0.659 0.66 0.666 1.429 1.426 1.428
Ki /Ko 0 0 0 0 0 0
18 Ki/Ko 0.592 0.592 0.599 1.329 1.329 1.322
Ki /Ko 0.227 0.227 0.244 0.246 0.246 0.216
36 Ki/Ko 0.426 0.426 0.416 1.01 1.01 1.019
Ky /Ko 0.398 0.398 0415 0411 0411 0.409
54 Ki/Ko 0.194 0.194 0.18 0.587 0.587 0.6
Ki/Ko 0.435 0.435 0.438 0.443 0.443 0.448
72 K;/Ko 0.027 0.027 0.006 0.216 0.216 0.216
K /Ko 0.27 0.27 0.282 0.305 0.305 0.29
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Fig. 9. (a) Variation_of normalized [K| versus crack angle 0 and (b) phase angle v
versus crack angle 0 for left and right tips.
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Fig. 10. Energy release rate in orthotropic condition.

radius of J-integral is examined, as depicted in Fig. 11. Clearly, the
size of the J-integral domain does not notably affect the solution.

In addition, to illustrate the effect of crack tip enrichments in
reproducing the exact stress field, variations of g,, stress along
the crack line in the crack tip element is compared with the exact
homogeneous orthotropic solution in Fig. 12. While XFEM in the
presence of crack tip enrichments has an excellent coincident
with the exact solution, results without the crack tip enrichment
dramatically deviate from the exact solution.

Comparison of the reference FGM model [32] with 5336 nodes
and the present XFEM model with only 1600 nodes (less than a
third) shows the higher efficiency of XFEM in comparison with
the conventional numerical methods.

Several numerical simulations have shown that using large
enriched area has no significant effect on the J-integral, computed
from the far stress field than localized asymptotic solution. It was
also observed that the optimal size of the enrichment domain
may differ in various examples, but enriching a domain of radius
of about 0.2a (where a is initial crack length) usually leads to

2.5
—n— 0=0, left tip — 0=0, right tip
2 +—
Z — - 0=54, left tip eees 0=54, right tip
E 1.5
=
E 1
P
> e egegoesssseeenssseseesesessssseesssscesssssteessssotas
05 == —== —_— e — = — s
0
0.35 0.45 0.55 0.65 0.75 0.85 0.95

J-integral factor contour (r/a)

Fig. 11. Normalized |K| versus radius of J-integral.

o,, (along crack line)

r/a

Fig. 12. Comparison of g, solution with and without crack tip enrichments (crack
tip at 0 =0).

quite satisfactory results. To illustrate the effect of size of the
enrichment domain, Table 3 presents some of the results for the
normalized stress intensity factor for various radii of enrichment
domain. Clearly, the results are not sensitive to enrichment radius
for both crack tips, except for Re=0.25 which slightly deviates
from other solutions.

In addition, Fig. 13 shows the level of influence of mesh
discretization on the results. It is clearly observed that by
increasing the number of DOFs, the solution quickly converges
and the results become mesh independent.

8.2. Edge cracked plate

An edge cracked FGM plate, depicted in Fig. 14, is considered.
The upper and lower edges are constrained in the X, direction
(U2 = 0)

Variation of different parameters such as the Young’s modulus,
Poisson’s ratio, thermal expansion coefficient and thermal con-
ductivity coefficient can be represented in the forms of

E +E*

EX1)=—5—+ E ;E . tan h(fX1) 92)
V(Xy) = % n v_;V+ tan h(BX1) (93)
oaXy) = % + %tan h(6X1) (94)
k(X1) = # + ki;w tan h(6X1) (95)

Both plane stress and plane strain conditions are considered
with the following properties

a/W=02-08,L/W=2.0 (96)

p=15.0,6=5. (97)
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Table 3
Comparison of normalized stress intensity factor for different enrichment radii.

0 Normalized SIF Left Right
Re=0.1 Re=0.15 Re=0.2 Re=0.25 Re=0.1 Re=0.15 Re=0.2 Re=0.25
0 K 0.666 0.666 0.666 0.656 1.442 1.442 1.444 1.437
K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36 K 0.423 0.423 0.423 0.422 1.019 1.019 1.020 1.049
Ki 0.386 0.386 0.386 0.466 0.461 0.460 0.460 0.486
(E.ET)=(1,3), (v_,v*)=(0.1,03), (a—,a™") 1.65
— + 4
—(0.01,003), (k" k") =(1,3) (98) L b ppe——
. I
The dominant size of the gradient part of the plate is governed | e Exact
by parameters f and ¢. This is clearly observed in Fig. 15, where o 1554
by increasing f3, E; varies more sharply in a narrower width in X )
the central part of the plate. v s
The results of present XFEM are compared with the reference T
finite element method for the isotropic case in Table 4. The «
numbers of nodes in XFEM and reference models are 681 and B -y +
1001, respectively.
According to Fig. 16, a sharp change for variations of K; occurs 1.4
for =15 when the crack tip is located within the dominant FGM 0 20000 40000 60000 80000
part of the plate. In contrast, variations of K; remains relatively Number of DOFs

smooth for =0 for all cracks tip positions.
The same example is now solved for the following orthotropic
material properties,
Eqy

E=+E1Exn, v=nv1, st=211_nz K0=L—U 99)
Exn v 2G12

o1 ki En

i _tn _ =i 100
o kop  Ex (100)
E;;=1, Ef;=3,0v" =03, v =03, E; =3, ko=1 (101)
011 =1, O(1+1 =3, k;] =1, lir] =3 (102)

Fig. 17 shows the effect of orthotropic conditions on the mode
I stress intensity factor in terms of different Eq;/Ey, ratios.
Accordingly, by reducing E11/E2; the first mode stress intensity
factor reduces and at Eq;/Ey; =1, the isotropic SIF is recovered.

In addition, the combined effect of orthotropy and tempera-
ture gradient on SIF is investigated in Fig. 18 for three different
values of Eqq/Ey;. It is clearly observed that the reduction of
Eq1/E2; results in increase of K;.

8.3. Thermal barrier coating with an edge crack

Surface cracks perependicular to a coating surface occure in
thermal barrier coating (TBC) problems as a result of thermal
stresses. An orthotropic FGM coating on an isotropic bond coat
and isotropic metal substrate is demonstrated in Fig. 19.

Periodic cracks are considered in FGM coating with the
interval of b=2 and one of these periodic sections is modeled.
The TBC is assumed at an initial temperature (To) and then a
steady state difusion due to different thermal boundary condi-
tions is applied to the system.

The following specifications are employed for XFEM modeling
in the plane strain condition,

a=0.1-09,b=2 (103)
W;=1, W, =05 Ws=5 (104)
T = T(X] = O) = OZTO and T3 = T(X] = 65) = 0.5T0 (105)

with Ty = 1000’

Fig. 13. Convergence of stress intensity factor for the horizontal crack problem.

Variations of material parameters for the orthotropic FGM
coating region can be represented in the following forms

E11(X1) = ES1 + (Epe—E$1)X1°, E22(X1) = ES2 + (Epc—E$2) X3,

(106)
E33(X1) = ES3 + (Epe—ES3) X1 (107)
G12(X1) = G2 + (Gpe—Gi2) X1 (108)
Vii(X1) = V§+ (Vpe—V§)X1? (i.e.,v12,V13,V23) (109)
%i(X1) = o+ (otpe—0§) X1 * (i=1,2,3) (110)
kii(X1) = ki + (kpe—ki) X1 (i=1,2,3) (111)
with the reference values of
91 =27.6 Gpa, E5; =120 Gpa, E53 =50 Gpa, Gj, =34 Gpa

(112)
V%z 20.25, Vcl3=0.2, V53 =0.15 (113)
051 =10.01 x 1075, 05, =15 x 1075, 0§35 =12 x 106 °C™ 1) (114)
k€1=1,k32=5, k§3 =3 (115)
Epe=137.9 Gpa, vpe =027, oy = 15.16 x 1076 (116)
kpe =25 (117)

For the isotropic FGM region:

EXp) = & ;Ebf + ES_ZE’” tan h(BX1) 118)
VXy) =2 “;be + V‘_ZV”“ tan h(fX1) (119)
koey) = Ko 6 Roe o g, (120)

2
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Fig. 15. Variation of Ex, for different values of . Fig. 16. Variations of the first mode stress intensity factor for different positions of
crack tip.
Table 4
Stress intensity factors K; for two different f in plane stress state and isotropic 6
condition.
s
ajw p=15 =0 \
4
XFEM FEM [33] XFEM \ M Isotropic
23
0.200 1.035 1.052 0.443 \
0.300 1.153 1.151 0.464 2
0.400 1.124 1.124 0.473
0.500 0.806 0.809 0.392 1
0.600 0.301 0.300 0.315 0
0.700 0.205 0.201 0.274 0 05 1 15 2 25 3 35 4 45 5
0.800 0.139 0.134 0.213
E11/E22
Fig. 17. The effect of orthotropy on SIF.
with thermal field in the FGM domain is clearly distinguishable from
its linear and smooth variations elsewhere.
E; =175.8 Gpa, v¢ =0.25, o, = 13.91 x 106, ks=7 121)

Fig. 21 compares the XFEM predictions of stress intensity

The solution of heat conduction Eq. (63) matches the reference factors with the reference results. It is clearly observed that the
results, as shown in Fig. 20. The highly non-linear variation of the same accuracy is obtained using 1333 nodes in XFEM model in
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Fig. 18. Variation of SIF versus thermal gradation in different conditions.
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Fig. 19. Thermal barrier coating with the constituents, and the finite element mesh.
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Fig. 20. The solution of heat conduction equation.

comparison with 2975 nodes used in the reference singular
FEM model.

8.4. Crack propagation in FGM plate

Here, crack propagation in isotropic and orthotropic media
under mechanical and thermal loadings is investigated. The
geometry of the problem is demonstrated in Fig. 22 for both
mechanical and thermal loadings under the plain stress condition.
The following orthotropic material properties are considered:

E% =114.8 Gpa, ES, = 120.84 Gpa, G, = 9.66 Gpa, 1%,
=0.21, K%, =2 Mpaym

Ier

(122)

1800
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1300
el ——XFEM

B Ref.
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1200
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a (crack length)

Fig. 21. SIF versus crack length.

K, =5k,=1,09 =15x107° 03, =10 x 107° (123)
and for isotropic conditions:
EO
0 0 0 0
E® =+\/E}; x E9,, V0 =/¥9, x19,, G =m (124)
K= \/I3, x k9, o0 = /o0, x 09, (125)

Variations of material properties are according to Pij=P8 X
e where Py = Ej;,v;j,Gjj.kij, 0, Kier and a=20 mm is the initial
crack length. A structural quadrilateral mesh including 1325
elements and 1404 nodes is adopted, as depicted in Fig. 23.

In mechanical loading, a uniform stress is increasingly applied
on the upper edge of the plate until it reaches the critical state
then the crack length is increased by 2 mm increments along the
calculated direction. Afterwards, the amount of uniform stress is
decreased to reach the critical condition again. In the thermal
problem, incremental steps are applied to Tie;.

First, the horizontal crack problem is solved under mechanical
loading for the orthotropic condition. Variation of the critical
stress versus the crack length is depicted in Fig. 24 for two
amounts of fa. It is observed that substantially higher stresses
can be tolerated by the FGM state (fia=0.4) compared to the
homogeneous condition (ffa = 0).

To consider the thermal effect on crack propagation in ortho-
tropic FGM materials, the same problem with boundary condi-
tions depicted in Fig. 22a is considered. The top and bottom edges
are insulated and the temperature is applied on both left and right
edges, for both homogeneous and inhomogeneous plates. Here, it
is assumed that the right side is subjected to a constant tem-
perature field T,,-gh[:OG and the temperature at the left side
decreases until the crack reaches the critical state. Then, the
crack length is increased by Aa =2 mm and the same procedure is
repeated. As depicted in Fig. 25, the FGM material with fa=0.4
can withstand more than the other one. Since both mechanical
and thermal properties increase, the critical applied temperature
gradient increases by the increase in total crack length. It is,
however, important to note that different results are achieved if
the crack is insulated or the problem is solved in an unsteady
state.

In addition, mixed mode crack propagation in the isotropic
condition is investigated under the thermal loading for ffa=0.4.
There is a tendency for crack to further propagate in the first
mode, as can be clearly seen in Fig. 26; almost negligible Kj; in
later stages of crack propagation. Furthermore, the results of
critical traction for isotropic mixed mode crack propagation under
mechanical loading for # =15 and fa=0and 0.4 are shown in
Fig. 27 where the FGM material has clearly shown higher capacity
in comparison with the homogeneous one.
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Fig. 22. The initial configuration of crack propagation in an FGM plate.

Fig. 23. The finite element mesh of the FGM plate.
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Fig. 24. Effect of non-homogeneity on maximum applied stress for different crack
lengths.
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Fig. 25. Variations of the critical thermal boundary conditions on the left edge in
terms of the total crack length for homogeneous and non-homogeneous
orthotropic media.
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Fig. 26. Mixed mode crack propagation in isotropic media under thermal loading
(0=45 pa=04).

8.5. Crack propagation in a plate with hole

To investigate the two dimensional thermal effect on mixed
mode crack propagation, a square 20 x 20 plate with an inclined
crack (a=2.5 mm) emanated from the internal circular hole is
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considered, as depicted in Fig. 28. The exponential FGM property
variation is along the X; direction,

Pj =P} x e (Ba=05) (126)
where
Pij = Eijvvij:Gijvkij,aiijlcr (127)

A fixed finite element mesh with 2764 four-nodded elements
and 2868 nodes is employed for all crack propagation patterns, as
depicted in Fig. 29. The thermal boundary condition is 1000 °C on
all plate edges. The critical state is obtained in each step by
decreasing the tolerable hole temperature. Also, a constant crack
propagation length of Aa=1 mm is used for all cases.

First, the orthotropic condition is considered,

E%, =114.8 Gpa, E3, =11.7 Gpa, G3, =9.66 Gpa, 3, =0.21, K%, = 2 Mpav/m
(128)

K =5k,=109 =15%x 1075 43, =10 x 10°° (129)

and then, an equivalent isotropic problem with two different
boundary conditions are considered (see Eqs. (124) and (125))

EO

o_ 0_ 0_
E° = 36.649 GPa, v* = .0214, G =20 )

(130)

K =2.2361, 0° = 1.2247 x 1073 131)

In the first isotropic case, all edges are restrained in the X,
direction while they are free in the X; direction (Fig. 28a). In the
second isotropic case, all the nodes on four boundary edges are
restrained in both directions (Fig. 28b). The temperature

8
7
6
\ —pa=4
5 .
= = Ba=0
g 4 > N \\
3 > ~ \
~ iy \
2 =<
-
1 T=~
0
15 20 25 30 35 40
a (crack length)

Fig. 27. Critical traction load oy, versus crack length for isotropic mixed mode
crack propagation (0 =15°).

distribution contours for isotropic and orthotropic cases are
depicted in Figs. 30 and 31 respectively. It is clearly observed
that while a symmetric distribution is obtained in the isotropic
case, the central symmetry has changed in the orthotropic case.
Variation of the critical hole temperature in terms of the crack
length are depicted in Fig. 32. The existing differences for the two

Fig. 29. The finite element mesh.

Fig. 30. Temperature distribution for the isotropic cases at first step.

L

20

Fig. 28. Definition of geometry and boundary conditions: (a) all edges are restrained in X; and X, directions and (b) all edges are restrained in X, direction.
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Fig. 33. Crack trajectory in isotropic and orthotropic cases.

isotropic cases can be attributed to the effects of boundary
conditions. Since the tolerable hole temperature of the orthotro-
pic case is dramatically decreased with respect to the equivalent
isotropic problem, the orthotropic material can withstand sub-
stantially higher temperature gradient compared with the iso-
tropic material properties.

Fi

g. 34. Crack trajectory for different crack length increments.

—— 14631 nodes
e TI0D 008 |2
= Inifial crack
=+ 2868 nodes

Fig. 35. Crack trajectory for different node numbers.

In addition, the predicted crack propagation trajectories for
different cases are depicted in Fig. 33. In the first isotropic case,
the non-symmetric boundary conditions in the two directions leads
to crack rotation, while in the second one, the crack propagates
almost self-similarly in the same initial direction. In the orthotropic
case, the crack tends to propagate along the weakest direction.

In order to study the effect of crack length increment on
predicted crack propagation trajectories, a constant hole tempera-
ture equal to 500°C for all increments is assumed. Fig. 34 depicts
the crack trajectories for two different crack length increments
Aa=0.5,1. Clearly, almost identical crack propagation paths are
obtained for two different crack propagation increments. However,
it should be noted that for very coarse discretizations, the results for
various propagation increments may slightly differ.

In addition, the crack trajectory for different meshes under the
same constant temperature conditions is depicted in Fig. 35. Again,
the crack trajectories remain almost similar and coincident for
different finite element meshes. Similar conclusions can be made
from the displacement and stress contours at different stages of the
crack propagation. Here, only sample stress contours for the initial
and final steps of crack propagation are illustrated in Figs. 36 and 37.

Moreover, a comparison has been made between available
crack propagation criteria to predict the propagation pattern for
orthotropic FGMs. They include the orthotropic criterion based on
the maximum hoop stress (ignoring the angular change of
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Fig. 36. Stress contours for the initial step: (a) axx (b) ayy (C) Oxy.

material toughness), and the orthotropic maximum hoop strength
criterion (considering the angular change of material toughness).
Fig. 38 shows a dramatic difference between the predictions of
the two approaches for the present material properties. But this not
always the case. In order to further investigate the problem, another
case of nearly isotropic material (E1;/E;; =0.95.) is considered:

E%, =114.8 Gpa, ES, = 120.84 Gpa, G°, = 48.67 Gpa, v{, =0.21
(132)

Other parameters (including thermal properties) remain similar
to the original model. The predicted crack propagation paths for the
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-1000

Fig. 37. Stress contours for the final step: (a) ox (b) )y (C) Oxy.

nearly isotropic case are compared in Fig. 39. It is clearly observed
that while totally two different crack trajectories are obtained from
the two existing orthotropic crack propagation criteria for the case
of large orthotropic ratios (Fig. 38), the crack trajectories follow a
similar path as the orthotropic ratio approaches 1 (Fig. 39).

9. Conclusion

In the present study, XFEM has been employed to model FGMs
under thermal and mechanical loadings. Orthotropic enrichments
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Fig. 39. Crack paths predicted by different crack propagation criteria (E1; /E2; = 0.95).

have been adopted for accurate solution of orthotropic media and
their effects to reproduce the asymptotic crack tip stress field
have been investigated. As a result, the exact singular stress field
near the crack tip can be reproduced. Furthermore, implementing
crack tip enrichments leads to substantial decrease of required
number of DOFs compared with the standard finite element
models with the same accuracy and convergence rate.

In addition, the two crack propagation formulations in ortho-
tropic FGM media have been discussed and the effect of thermal
stress on mixed mode crack propagation is investigated. The
substantial differences are observed between the two criteria
when the orthotropic ratio becomes larger than 1.

Moreover, comparisons have been accomplished between
homogeneous and FGM materials under mechanical and thermal
loadings and in all cases, FGM materials showed substantially
more efficient behavior.
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