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thermo-migration (TM) test were designed and implemented. The feasibility of this setup for TM stressing
was further verified with experimental and simulation methods; a temperature gradient in a solder seam
was calculated as 1070 K/cm. Microstructural evolution and mechanical properties of both plain and
composite solder alloys were then studied under the condition of TM stressing. It was shown that
compared to unreinforced SAC305 solder, the process of diffusion of Cu atoms in the composite solder
seam was remarkably suppressed. After the TM test for 600 h, Cu/solder interfaces in the composite solder
seam were more stable and the inner structure remained more intact. Moreover, the addition of fullerene
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20 ABSTRACT

21 In this work, SAC305 lead-free solder reinforced with 0.1 wt. % fullerene

22 nanoparticles was prepared using a powder metallurgy method. A lab-made

23 setup and a corresponding Cu/solder/Cu sample for thermo-migration (TM)

24 test were designed and implemented. The feasibility of this setup for TM

25 stressing was further verified with experimental and simulation methods; a

26 temperature gradient in a solder seam was calculated as 1070 K/cm.

27 Microstructural evolution and mechanical properties of both plain and com-

28 posite solder alloys were then studied under the condition of TM stressing. It

29 was shown that compared to unreinforced SAC305 solder, the process of dif-

30 fusion of Cu atoms in the composite solder seam was remarkably suppressed.

31 After the TM test for 600 h, Cu/solder interfaces in the composite solder seam

32 were more stable and the inner structure remained more intact. Moreover, the

33 addition of fullerene reinforcement can considerably affect a distribution of

34 Cu6Sn5 formed as a result of dissolution of Cu atoms during the TM test.

35 Hardness data across the solder seam were also found notably different because

36 of the elemental redistribution caused by TM.
37

38

39 Introduction

40 SAC305 (wt. %) lead-free solder is widely used in

41 electronic interconnections, thanks to its outstanding

42 mechanical properties and good reliability under

43 service conditions [1–3]. However, with fast devel-

44 opments in miniaturization and integration density in

45 high-density electronic packages, electro- and thermo-

46migration (TM) failures induced by a high current

47density and large thermal gradients have become a

48main problem which would threaten the reliability of

49SAC305 solder interconnections [4–8]. The

50microstructural and mechanical evolution together

51with failure modes of solder joints under TM and EM

52stressing were also reported in previous studies

53[9–14]. Abdulhamid et al. [9] comprehensively
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54 investigated the damage mechanics of 95.5Sn4Ag

55 0.5Cu (SAC405) lead-free solder joints under TM

56 stressing. After 1156 h TM stressing, they found that

57 the Cu concentration in cold side is significantly

58 higher than in hot side, while vacancy migration and

59 Sn grain coarsening are in the opposing direction. In

60 order to deeply understand the TM process, a fully

61 coupled thermo-mechanical model is introduced by

62 Basaran et al. [10]; the TM induced strength degra-

63 dation and grain coarsening effects were both ana-

64 lyzed. Further, they also comparatively studied the

65 migration mechanism in solder joints under EM and

66 EM/TM stressing [12].It was also reported that TM is

67 more likely to lead to failures of solder joints in some

68 cases [15]. Therefore, with the trend of decreasing

69 interconnection height, lead-free solder interconnec-

70 tions will face with reliability challenges related to

71 electro-migration (EM) and in particular, TM.

72 According to previous studies, mechanical prop-

73 erties and solderability of existing lead-free solders

74 could be improved by adding some foreign rein-

75 forcement (including metals, ceramics, and carbon-

76 based materials) into a solder matrix to prepare a

77 composite solder [16–21]. In addition, some

78 researchers also attempted to investigate an effect of

79 foreign reinforcement on EM in solder joints; it was

80 reported that a suitable type and an appropriate

81 amount of reinforcement added showed a positive

82 effect on suppressing EM in solder joints [22–27].

83 However, to date, a systematic study of TM behavior

84 of composite solder interconnections containing for-

85 eign reinforcement under large temperature gradient

86 is still lacking.

87 As a zero-dimensional carbon-based nanomaterial,

88 a unique molecular structure of fullerene determines

89 its physical stability, low density as well as its

90 excellent electrical, thermal, and mechanical proper-

91 ties [28–32]. Hence, it was usually used as reinforcing

92 phase in preparing polymer- and metal-based com-

93 posite materials [33, 34]. Chernogorova et al. [33]

94 reported that tensile strength and microhardness of

95 an aluminum/C60 composite alloy were significantly

96 improved with the addition of C60 reinforcement.

97 Watanabe et al. [34] fabricated an Mg–Al-Zn/fuller-

98 ene (C60) composite alloy with a powder metallurgy

99 method; the produced material demonstrated super-

100 elasticity under 548 K (with 256 % elongation). Our

101 research group also prepared a SAC305/fullerene

102 (mixture of C60 and C70) composite solder with a

103 powder metallurgy method; the influence of fullerene

104on microstructure and mechanical properties on SAC

105solder joints were also systematically studied. It was

106found that addition of a proper amount of fullerene

107was effective in microstructural refinement and

108improvement in mechanical properties of solder

109joints [35]. To study further the effect of fullerene

110reinforcement on thermo-migration behavior of sol-

111der joints, in this paper, a SAC/fullerene composite

112solder reinforced with nano-sized fullerene particles

113was similarly prepared with the powder metallurgy

114method. Cu/Solder/Cu-structured interconnections

115were then formed for subsequent thermo-migration

116tests. It is widely reported that TM in Sn-based solder

117joints can be triggered when a temperature gradient

118and an environmental temperature reach at least

1191000 K/cm and 100 �C, respectively [36]. Therefore,

120for TM tests, to achieve a large enough thermal gra-

121dient and environmental temperature without

122involving EM factor, a TM setup based on a heating

123plate with constant temperature and a Peltier ther-

124moelectric cooler was designed and prepared. Feasi-

125bility of the as-designed setup and corresponding

126samples was also further verified in this work.

127After progressively prolonged TM tests, evolution

128of interfacial intermetallics (IMCs) at the hot and cold

129ends and microstructure at the center of both plain

130and composite solder seams were comparatively

131studied. Additionally, the dissolution of Cu atoms

132into the solder seams was quantitatively evaluated.

133Moreover, the change in mechanical properties of the

134solder seams as a result of redistribution of elements

135during the TM test was also investigated. The find-

136ings in this work could promote our understanding

137of the impact of thermal gradient and environmental

138temperature on reliability of composite solder joints

139without the effect of current. It can also facilitate

140future studies on mitigating failures in solder joints

141induced by thermo-migration.

142Experimental

143Preparation of composite solder

144SAC305 (wt. %) lead-free solder powder (with

145diameter of 25–45 lm, Beijing Compo, China) and a

146mixture of fullerene nanoparticles (approximately

14780 % C60 and 20 % C70 with an average diameter of

14830 nm, JCNANO Materials Tech, China) were uti-

149lized as original materials. For preparation of
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150 composite solder, the preweighted solder powder

151 (99.9 wt %) and fullerene particles (0.1 wt. %) were

152 homogenously blended in a planetary ball mill for

153 20 h. The mixed powder was then uniaxially com-

154 pacted into solder billets (24 mm 9 8 mm 9 3 mm).

155 These compacted solder billets were then sintered at

156 180 �C for 3 h in a vacuum sintering furnace before

157 rolling into solder foils (with thickness of 100 lm) to

158 prepare TM samples.

159 Design and preparation of TM setup
160 and sample

161 To achieve a large enough thermal gradient across

162 solder seams, a lab-made TM test setup was designed

163 and prepared (as shown in Fig. 1a). The TM setup

164 consisted of a constant-temperature heating plate

165 with a temperature of 250 ± 5 �C as the heat resource

166 and a Peltier thermoelectric cooler for cooling. A

167 stable initial temperature (0 ± 2 �C) of the thermo-

168 electric cooler was guaranteed by a temperature

169 controller, while a heat sink and cooling fan were

170 used to ensure its proper functioning during current

171 stressing. The heating and cooling components were

172fixed on corresponding Cu bases with grooves (they

173were also the hot and cold sides in the TM tests). The

174spacing between two Cu bases was kept as 10 mm,

175while rectangular grooves with depth of 1 mm for

176placing TM samples were also produced on both hot

177and cold Cu bases with wire-electrode cutting.

178According to the difference of coefficients of heat

179conduction for different materials, the sample for TM

180was designed as an asymmetrical structure with a

181shorter hot end (2 mm) and a longer cold end

182(10 mm); a Cu plate (with thickness of 1 mm and

183width of 5 mm) was used as substrate material for

184both hot and cold sides of the sample. For sample

185preparation, end surfaces of the Cu substrates of both

186sides were well polished before soldering. A solder

187foil with dimensions of 5 mm 9 1 mm 9 0.1 mm

188was then clamped between two Cu substrates; finally,

189the clamped Cu substrates and the solder foil toge-

190ther with the clamp were placed in a reflow oven to

191prepare a sample of Cu/solder/Cu sandwich-like

192structure. The width of solder seams in reflowed

193solder samples remained similar to the thickness of

194the initial solder foils (namely, 100 lm); schematic

195diagram of a reflowed sample is shown in Fig. 1b. For

Figure 1 Schematic diagram

of TM setup (a), TM samples

(b), and thermocouple

positions (c).
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196 the TM tests, the hot and cold ends of the prepared

197 sample were correspondingly embedded in the

198 above-mentioned grooves on both hot and cold Cu

199 bases; the embedded depth was approximately

200 1 mm. To ensure good thermal conduction, thermal

201 silicone grease was applied on each contact surface

202 between different parts in the tests. In order to know

203 the levels of temperature gradient and environmental

204 temperature in the solder seam, experimental mea-

205 surements and finite-element modeling were

206 employed to evaluate the feasibility of the TM setup

207 and the samples. A finite-element model was built

208 with ANSYS 15.0 according to the actual dimensions

209 of the setup and sample. To get good modeling

210 results for a temperature distribution across the sol-

211 der seam, thermocouples were first utilized to obtain

212 the real temperature at points A and B during current

213 stressing (the distances from A and B to the solder

214 seam were 1 mm and 9 mm, respectively, as illus-

215 trated in Fig. 1c). The obtained average temperatures

216 for points A and B were recorded when the temper-

217 ature difference reached a balance; the recorded data

218 were then set as the loading temperatures of the two

219 ends for the subsequent modeling.

220 TM tests and characterization

221 In the TM tests, five samples for each kind of solder

222 (plain and composite) were tested to satisfy different

223 testing purposes. Specifically, microstructural evolu-

224 tion of one selected sample for each kind of solder

225 was continuously observed a using scanning electron

226 microscope (SEM QURTA 200) every 200 h; the total

227 stressing time of the TM tests was designed as 600 h.

228 The rest of samples that experienced the same TM

229 stressing process were used for mechanical and

230 compositional analysis. A focused ion beam (FIB)

231 system was employed to study the distribution of Cu-

232 Sn IMCs within a subsurface layer of the studied

233 solder seams, while features of the inner structure

234 were studied with an X-ray Micro-CT scanner (Metris

235 XT H 160Xi) before and after the TM tests. Mechan-

236 ical properties of the solder seams before and after

237 the TM tests were also evaluated with a nanoindenter

238 (Hysitron Ti750) at a constant load rate of 10 mN and

239 a dwell time of 5 s. To know the difference in

240 mechanical properties in different areas, in nanoin-

241 dentation tests, each solder seam was evenly divided

242 into three areas, denoted as A, B, and C at different

243 positions between cold and hot ends. Five randomly

244selected locations for each area were tested to ensure

245reliability of the test results. In addition, to evaluate

246quantitatively the process of dissolution of Cu atoms

247into the solder seams under a large temperature

248gradient, the seams were cut off from the TM samples

249after different TM stressing times. After that, residual

250Cu at the surface of the solder seams was removed by

251fine polishing. The treated solder seams were then

252ultrasonically dissolved in aqua regia solution for

253elemental analysis using an inductively coupled

254plasma optical emission spectroscopy (ICP-OES,

255Varian-720) with test precision at PPM level.

256Results and discussion

257Feasibility evaluation of TM setup
258and sample

259Evolution of measured temperature at points A and B

260with the stressing time in the TM test is shown in

261Fig. 2. It can be seen from the curves that the tem-

262perature saw a continual increase at the hot end after

263current stressing, while the temperature of the cold

264end demonstrated a small decrease first and then

265increased gradually; after approximately 7 min of the

266stressing, the temperature difference between the hot

267and cold ends reached equilibrium. During this

268stable stage, the average temperatures of the hot

269(point A) and cold (point B) ends were measured as

270206.7 and 40.3 �C, respectively.

271The temperature data obtained from the TM sam-

272ple were used as original temperature parameter for

273finite-element modeling (FEM). The calculated tem-

274perature distributions in the TM setup and the solder

275seam are presented in Fig. 3. According to the sim-

276ulation results, the temperature of hot side of the

277solder seam reached 181.4 �C, while the temperature

278of the cold side could reach 170.7 �C. In such a case,

279the temperature difference in the solder seam could

280achieve 1070 K/cm, since the width of the solder

281seam was 100 lm; the average environmental tem-

282perature at the solder seam was approximately

283176 �C. According to previous studies [37], TM in

284lead-free solders can be triggered when the temper-

285ature gradient and the environmental temperature

286reach at least 1000 K/cm and 100 �C, respectively. In

287this work, it is clear that the obtained levels of tem-

288perature gradient and environmental temperature in

289the solder seam properly meet these requirements.
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290 Thus, the TM setup and the produced sample are

291 feasible for the TM tests.

292 Microstructural evolution

293 The microstructures of both plain and composite

294 solder seams after different TM stressing times are

295 shown in Figs. 4 and 5; the variation in thickness of

296 interfacial Sn-Cu IMCs during TM testing is plotted

297 in Fig. 6. It can be found from images of the solder

298 seam before the TM test that b-Sn, Ag3Sn IMC and

299 Cu6Sn5 IMC were present in both kinds of solder

300 seams. It is worth noting that the sizes of b-Sn phase

301 and Ag3Sn IMCs in the fullerene-reinforced com-

302 posite solder seam were found to be apparently

303 smaller than that in the plain SAC305 solder seam.

304 This phenomenon can be explained in the following

305 way: the added foreign reinforcement provided more

306 nucleation sites during the solidification process; they

307 also could impede the growth of grains by hindering

308 atomic diffusion [35]. With the TM stressing time

309 increasing, large quantities of bulky Cu-Sn IMCs can

310 be found in both plain and composite solder seams;

311 these Cu-Sn IMC are a mixture of the initial Cu6Sn5 in

312 the SAC305 solder and the newly formed Cu6Sn5 as a

313 result of dissolution and migration of Cu atoms

314 coming from the Cu substrates. However, it is

315 apparent that the size and quantity of these Cu-Sn

316 IMCs in the plain SAC305 solder seam were larger

317 than those in the composite solder seam, as shown in

318 Figs. 4d, g, j and 5d, g, j. For the unreinforced SAC305

319 sample, it was found that Cu-Sn IMCs formed first at

320the hot end and the central position of the solder

321seam after 200 h stressing. With the stressing time

322increasing, the amount of Cu-Sn IMCs continued to

323grow, and these oval-shaped IMCs were also gradu-

324ally distributed in the whole solder seam (after 400 h

325stressing). After 600 h TM stressing, most of the Cu-

326Sn IMCs were observed to locate at the central posi-

327tion and the cold end of the solder seam. By contrast,

328after 200 h TM stressing, although the formation and

329location of Cu-Sn IMCs in the fullerene-reinforced

330solder seam are similar to those in the plain solder

331seam, the size of these newly formed IMCs was

332clearly smaller when compared to their counterparts

333in the unreinforced SAC305 solder seam after the

334same stressing time. In addition, there is also a big

335difference in microstructures for two solder seams

336after 400 h and 600 h of TM stressing. Specifically,

337Cu-Sn IMCs formed as result of Cu diffusion were

338found in both solder seams at the early stressing

339stage (0–200 h); however, compared to the obvious

340migration of Cu-Sn IMCs in the plain solder seam, the

341changes of location of these IMCs in the composite

342solder seam were not that evident over time. Fur-

343thermore, most of IMCs in the composite solder seam

344were still located at the hot end and the central

345position after 400 h and 600 h stressing; only a small

346part of these IMCs were found at the position closed

347to the cold end, since the distribution of reinforce-

348ment added in the composite solder seam might not

349relatively uniform after reflow process.

350In addition to the difference in microstructural

351evolution for two solder seams, the growth

Figure 2 Evolution of

temperature at points A and B

with stressing time.
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352 characteristics of interfacial IMCs of two types of

353 samples were also different during TM stressing. For

354 the plain solder seam, as shown in Fig. 4, the thick-

355 ness of interfacial IMCs at the cold end obviously

356 increased with the stressing time. The measured data

357 for thickness shown in Fig. 6a also confirmed this

358 trend; the thickness of interfacial IMCs at the cold

359 end increased from the initial 2.12 lm to 8.96 lm

360 after 600 h stressing, i.e., approximately 323 %. In

361 addition, the morphological evolution of interfacial

362 IMC at hot end also worth noting. It can also be

363 found from Fig. 4 that the thickness of interfacial

364 IMCs at the hot end similarly showed a gradually

365 increasing trend during the first 400 h of stressing;

366 the thickness increased from 2.51 lm to 3.36 lm, as

367 shown in Fig. 6a. However, the thickness variation of

368 interfacial IMC at hot end was not that pronounced

369 compared to that for the cold end. Further, some

370 Kirkendall voids were found in interfacial IMCs at

371 the hot end after 400 h of TM stressing (see Fig. 4i).

372 After 600 h of stressing, it can be seen that the initial

373 interface at the hot end was damaged; only a very

374 thin layer of IMC retained on the Cu substrate. The

375 interfacial damage at the hot end can be attributed to

376 considerable diffusion and migration of Cu atoms

377 from the substrate into the solder seam during the

378 TM stressing process; this interfacial damage also

379 further blocked diffusion pathways for Cu atoms. As

380 to the cold end, some granular Ag3Sn phase with

381 light gray color was also observed in Cu6Sn5 inter-

382 facial IMC after 600 h of TM stressing. The observed

383 formation, migration, and location of Cu-Sn and Sn-

384 Ag IMCs in the SAC305 solder seam during TM

385 stressing illuminate that both Cu and Ag atoms

386migrate from the hot end to the cold one under the

387large temperature gradient; this finding in the pre-

388sent study is consistent with the current research

389results obtained by other researchers [15, 38].

390In contrast, the growth of interfacial IMCs between

391the composite solder seam and the Cu substrates was

392mitigated considerably during TM stressing. Specif-

393ically, the thickness of interfacial IMCs at the cold

394end similarly showed an increase with the stressing

395time, from initial 1.86 to 4.86 lm after 600 h (Fig. 6b).

396The thickness increment for interfacial IMC at the

397cold end was approximately 161 %, significantly less

398than that in the plain SAC305 solder seam. In addi-

399tion, no Ag3Sn phase was found in interfacial IMCs

400at the cold end after 400 h or 600 h of TM stressing.

401For the hot end, the thickness of interfacial IMCs also

402increased with the stressing time, from initial 2.14 to

4033.52 lm after 600 h. However, in contrast to serious

404damage happened at the hot interface in the plain

405SAC305 solder seam, morphology of interfacial IMCs

406at the hot end in the composite solder seam

407remained intact even after 600 h stressing, except

408that only a few of Kirkendall voids were found in

409this area. Thus, it is believed that incorporation of

410fullerene reinforcement inhibited the dissolution

411process of the Cu substrate, formation, and migration

412of Cu-Sn IMCs as well as the growth of interfacial

413IMCs. Based on the microstructural comparison

414between the plain and composite solder seams after

415TM stressing, the retardation of growth and migra-

416tion of IMCs in the solder seam can be explained as

417follows. Fullerene is a nonreactive, noncoarsening

418material, when appearing in grain boundaries; pre-

419sent fullerene might hinder the migration of atoms

Figure 3 Temperature distributions in TM setup (a) and solder seam (b).
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420 which could otherwise accelerate the process of IMC

421 formation. Thus, the relationship between the

422 growth rates for different crystal orientations of

423 IMCs changed, leading to restrictions on growth and

424 migration of IMCs. It is also widely believed that the

425 diffusion coefficient of Cu atoms in the Sn matrix is

426 relatively large [39]. Thus, combined diffusion

427 between Cu and Sn atoms determined the growth of

428the interfacial Cu-Sn IMC phase at the solder/copper

429interface. According to our previous study on loca-

430tion of fullerene added in the solder matrix [35], it is

431supposed that some fullerene reinforcement stuck

432around the Cu-Sn phases, acting as barriers for dif-

433fusion of Sn to the Cu substrate or even obstructing

434formation of Cu6Sn5, inhibiting the growth of an

435interfacial IMC layer.

Figure 4 Microstructural evolution of SAC305 solder seam under temperature gradient of 1072 K/cm: a–c initial; d–f 200 h; g–i 400 h;

j–l 600 h.
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436 In addition, to understand further the distribution

437 position of Cu-Sn IMCs in a subsurface layer of the

438 solder seam, a dovetail groove with depth of 10 lm

439 was prepared on the solder seams after 600 h of

440 stressing using FIB, and the respective images are

441 shown in Fig. 7. It can be known that after a long-

442 term TM stressing, most of Cu-Sn IMCs formed by

443Cu diffusion were found to locate at the central

444position and the cold end of the plain SAC305 solder

445seam; the size and location of these IMCs were con-

446sistent with the SEM results as shown in Fig. 4.

447Similarly, the observed location and size of Cu-Sn

448IMCs in the composite solder seam using FIB were

449almost the same as the results shown in Fig. 5. The

Figure 5 Microstructural evolution of SAC305/F composite solder seam under temperature gradient of 1072 K/cm: a–c original; d–

f 200 h; g–i 400 h; j–l 600 h.
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450 difference of location of Cu-Sn IMCs in the subsur-

451 face layer of two kinds for solder seams further

452 indicates that the presence of foreign reinforcement

453 can not only retard the migration of atoms on surface

454 of the solder seam but also mitigate this diffusion in

455 the inner of the solder seam.

456 To quantitatively measure the effect of addition of

457 fullerene on diffusion of Cu atoms from the Cu

458 substrate to the solder seams, the weight percentages

459 of Cu in the solder seams were analyzed after dif-

460 ferent TM stressing times using ICP. For the ICP tests,

461 in order to meet the testing requirements (the weight

462 of sample is at least 100 mg) as well as to understand

463 the Cu content as precise as possible, four treated

464 samples (cut and polished solder seams; the weight

465 of each solder seam was approximately 38 mg) were

466 chosen for each kind of solder. The average Cu con-

467 tent for each solder was used as the testing result for

468 comparative analysis; the ICP results are shown in

469 Fig. 8. Although the cutting and polishing processes

470 can cause errors in measuring the content of Cu in the

471 solder seams, the obtained results shown in Fig. 8

472 revealed an obvious difference in the Cu content in

473 two types of solder seams after different stressing

474 times. Specifically, it increased with the TM stressing

475 time; however, the increase rate in the plain SAC305

476 solder was much higher seam during whole stressing

477 process than that in the composite solder seam. After

478 600 h of stressing, the average Cu content in the

479 former reached 4.55 wt %, about 9 times higher than

480 its initial value of 0.52 wt %. In contrast, the average

481 Cu content in the composite solder seam after 600 h

482 stressing was 2.09 wt %; only about 4 times higher

483than its initial value of 0.51 wt %. It is also worth

484noting that the increase rate of Cu in the plain

485SAC305 showed a decreasing trend in the interval

486from 400 h to 600 h. This phenomenon can also be

487explained by the fact that the diffusion and migration

488paths of Cu atoms at the Cu/solder interface were

489damaged due to a long-term TM stressing; this found

490change in the Cu content agrees well with the

491observed results as shown in Fig. 4. To avoid the

492error caused by the above-described phenomenon,

493only the data for times below 400 h were used to

494calculate the dissolution rate of Cu atoms during TM

495stressing. This rate was calculated employing the

496following formula:

v ¼
M w2 � w1ð Þ

T
; ð1Þ

498498where v is the dissolution rate of Cu atoms, M is the

499average weight of the solder seam, T is the stressing

500time, w1 and w2 are the weight percentages of Cu in

501the solder seams after 0 h and 400 h stressing,

502respectively. After 400 h stressing, the net increase of

503Cu in the SAC305 solder seam was 3.27 wt %; since

504the weight of the solder seam was 38 mg, 1.24 mg of

505Cu was dissolved into the solder seam during 400 h

506of stressing. Due to the fact that the experimental

507parameters, including the temperature gradient and

508environmental temperature within the solder seam

509were relatively stable, the dissolution rate of Cu

510atoms form the substrate to the solder seam can thus

511be calculated as 3.1 9 10-6 g/h. By comparison, the

512increment of Cu content was only 0.488 mg in the

513composite solder seam after 400 h stressing; the

Figure 6 Evolution of thickness of Cu-Sn IMCs at the Cu/SAC305/Cu (a) and Cu/SAC305-F/Cu (b) with TM stressing time.
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514 dissolution rate of Cu atoms was calculated as

515 1.22 9 10-6 g/h, which is only about a half of that in

516 the plain solder seam. The ICP results and the cal-

517 culated dissolution rates of Cu atoms clarify that

518 addition of fullerene reinforcement contributed to

519 mitigation of the diffusion from the Cu substrate into

520 the solder seam under TM conditions.

521 To further access the effect of TM on inner struc-

522 ture of the solder seams, MCT nondestructive scan-

523 ning was employed to analyze the solder seam area;

524 the scanning results are shown in Fig. 9. Apparently,

525 solder seam areas of both types of samples appear

526 rather intact, without apparent defects before TM

527 stressing (see Fig. 9a and c). However, big differences

528 in inner structures were found for two solder seams

529 after 600 h of TM stressing. Specifically, voids and

530 cracks caused by elemental migration were found at

531 both hot and cold interfaces of the plain SAC305

532 solder seam; further, large amounts of Cu-Sn IMCs

533 (dark-gray areas) can also be observed at both sides

534 of the solder seam (Fig. 9b). In contrast, the inner

535 structure of the composite solder seam after long-

536 term stressing seems to be less affected when com-

537 pared with the SAC305 solder seam; only few voids

538 were found. The newly formed Cu-Sn IMCs (dark-

539 gray areas) are mainly distributed at the hot side of

540 the solder seam, while only a small quantity of these

541 IMCs were found at the cold side (Fig. 9d). The

542scanning results illustrate that addition of fullerene

543reinforcement into solder seam could help to main-

544tain this structural integrity, extending the service life

545of solder interconnections exposed to a large tem-

546perature gradients.

547Mechanical properties

548In most previous studies, hardness of composite

549solder joints containing foreign reinforcements was

550evaluated using an automatic digital microhardness

551tester or a Vickers microhardness tester [11, 40–43].

552Some researchers tested hardness and modulus of

553solder joints by employing a nanoindenter [44, 45]. By

554investigating hardness distribution in solder joints

555after current stressing, Ren et al. [46] reported that the

556hardness data showed a gradient distribution within

557a solder joint from an anode side to a cathode.

558However, by now, no studies mentioned the effect of

559thermal gradient on mechanical properties of com-

560posite solder joints containing foreign reinforcement.

561Therefore, in this investigation, to study the

562mechanical strength of small areas in solders seams,

563nanoindentor was used to assess a variation in

564hardness of different solder seams before and after

565600 h TM stressing. A constant loading rate of 10 mN

566and a dwell time of 5 s were set as the operating

567parameters for these tests. Continuous monitoring of

Figure 7 SEM images of FIB-cut trenches on subsurface layer of SAC305 (a) and SAC305/F (b) solder seams.
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568 the constant applied load, constant dwell time, and

569 indenter’s depth displacement was applied to iden-

570 tify the hardness of different solder seams. In

571 nanoindentation test, five points were randomly

572 selected for both plain and composite solder seam

573 before TM stressing. For the solder seams after 600 h

574 stressing, as mentioned in the experimental part, five

575 points were also randomly chosen from A, B, and C

576 areas for each types of solder seams; the partitioning

577 of areas A, B, and C is shown in Fig. 7.

578 All load–displacement diagrams for indentation

579 points and the relevant hardness data for different

580 samples are shown in Figs. 10 and 11. By comparing

581 diagrams for the plain and composite solder seams

582 before stressing, it is clear that the average indenta-

583 tion depth for the former (1338 nm) is larger than that

584 for the later (1263 nm). This finding indicates that the

585 resistance to deformation and hardness of the full-

586 erene-reinforced composite solder were higher than

587 those of the plain SAC305 solder. Improved

588 mechanical strength can be explained as follows. On

589 the one hand, the reduction in the maximum depth

590 was due to the decrease in the grain sizes of the plain

591 solder after doping with 0.1wt. % of fullerene

592 nanoparticles (see Figs. 4a, 5a). On the other hand, a

593 dispersion-strengthening effect as well as a pinning

594 effect caused by introduction of foreign reinforce-

595 ment also makes a considerable contribution. The

596 calculated hardness data shown in Fig. 11 also con-

597 firms this point of view; the average hardness of the

598 fullerene-reinforced composite solder seam was

599 0.256 ± 0.05 GPa, which is 21.9 % higher than that of

600the plain SAC solder. However, it was found that a

601scatter in load–displacement diagrams for the com-

602posite solder seam was larger than that for the plain

603solder. This phenomenon indicates that the distribu-

604tion of fullerene in the solder matrix might not be

605homogeneous. As well known, foreign reinforce-

606ment, especially, inert particles (including ceramics

607and carbon-based materials), are hard to be wetted

608reactively by the molten solder; there is a large

609interfacial free energy between the molten solder and

610the reinforcement. Thus, most of the added rein-

611forcement might be excluded out of the molten solder

612during the soldering process, leading to a loss of

613reinforcement and inhomogeneous distributions of

614reinforcement in solder joints. This problem need to

615be further studied in the future to facilitate the

616application of composite solders in the electronic

617industry.

618From Fig. 10b and d as well as the hardness data

619shown in Table 1, an obvious difference in indenter

620depths and distributions of hardness data can be

621found for the two studied types of TM stressed solder

622seams. These results vividly demonstrate that the

623hardness data of the plain SAC solder seam after

624600 h stressing gradually decreased from its cold end

625(area A) to the hot end (area C), from the average

626value of 0.2534 GPa for area A to 0.1932 GPa for area

627C. This phenomenon can also be explained using

628migration and redistribution of different elements in

629the solder seam caused by TM stressing. During this

630process, a large amount of Cu atoms dissolved into

631the solder seam, forming Cu-Sn IMCs; these newly

632formed Cu-Sn IMCs were then continually pushed

633toward the cold end by the reverse thrust resulted

634from migration of Sn atoms from the cold end to the

635hot one [15]. In addition, like Cu atoms, Ag atoms

636were also confirmed to move in the same direction

637when the solders were subjected to a large tempera-

638ture gradient. The migration and redistribution of Sn,

639Ag, and Cu during TM stressing would finally lead to

640an increase of Cu-Sn and Ag-Sn IMCs at the cold end

641and the central position of the solder seam. This point

642of view also agrees with the observed results as

643shown in Figs. 4 and 7a. The elemental redistribution

644caused by the temperature gradient would largely

645determine the hardness distribution in the solder

646seams. According to previous reports, the hardness

647values of the b-Sn, Ag3Sn, and Cu6Sn5 phases are

648estimated as 0.35 ± 0.04 GPa [47], 2.9 ± 0.2 GPa [48],

649and 6.10 ± 0.53 GPa [49], respectively. It is apparent

Figure 8 Evolution of weight percentage of Cu in solder seams

with stressing time.
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650 that the enrichment of some rigid phase (including

651 Cu-Sn and Ag- Sn IMCs) at the cold end gave a rise to

652 an improvement of hardness in this area.

653In contrast, the distribution of hardness values in

654the composite solder seam showed an opposite

655result: the hot end (area C) demonstrated a higher

Figure 9 MCT scanning

results for plain (a, b) and

composite (c, d) solder seams

before (a, c) and after (b,

d) 600 h stressing.

Figure 10 Testing results of indentation points for plain (a, b) and composite (c, d) solder seams before (a, c) and after (b, d) TM for

600 h.
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657 sideration of the migration features of different ele-

658 ments as well as the obtained results shown in Figs. 5

659 and 7b, it can be concluded that the migration rate of

660 all elements in the composite solder seam was

661 diminished due to the addition of foreign reinforce-

662 ment. As described in Sect. 3.2, most of the newly

663 formed Cu-Sn IMCs were located at the central

664 position and the hot end of the solder seam (namely,

665 areas C and B); this was also the main reason for

666 higher hardness values in these areas than in other

667 areas. As for the cold end, although it was also

668 exposed to a large temperature gradient during TM

669 stressing, it was affected more like an isothermal

670 aging process, since the migration rate of elements

671 was largely mitigated. During the stressing period,

672 the decline in hardness resulting from coarsening of

673 the b-Sn and Ag3Sn phases might exceed the

674 enhancement effect caused by enrichment of Cu-Sn

675 and Ag-Sn IMCs, leading to the overall decrease in

676 hardness.

677 Conclusions

678 The SAC305/0.1F lead-free composite solder was

679 produced through the powder metallurgy route. A

680 temperature difference generator and relevant TM

681 samples were designed and prepared; the evaluated

682 temperature gradient in the solder seam in the setup

683 was 1070 K/cm. After TM stressing, diffusion of Cu

684 from the substrate to the solder seam was found in

685 both plain and composite solders; this phenomenon

686 was particularly prominent in the unreinforced solder

687 seam. After 600 h of TM stressing, the interface at the

688 hot end was damaged considerably, while a signifi-

689 cant increase in the thickness was found in interfacial

690 IMCs at the cold end. Although interfacial IMCs in the

691 composite solder seam also showed an increasing

692 trend during TM stressing, the interfacial structure

693 remained intact comparedwith that of the plain solder

694 seam. According to ICP results, the dissolution rate of

695 Cu in the plain SAC305 solder under the employed

696experimental condition was 3.1 9 10-6 g/h; while for

697the composite solder, it was only 1.22 9 10-6 g/h. In

698addition, the scanning MCT results revealed that

699fullerene reinforcement helped to maintain integrity

700of the inner structure. The nanoindentation results

701demonstrated that hardness of the solder alloy obvi-

702ously improved thanks to the doping of fullerene

703nanoparticles; moreover, mitigated elemental migra-

704tion caused by the presence of the reinforcement could

705alter the distribution of hardness values in a solder

706seam under TM stressing. The findings of this study

707indicate that addition of fullerene could mitigate the

708negative effect of TM; hence, composite solders con-

709taining foreign reinforcement have a potential for a

710use under harsh service conditions.
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