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Abstract
Bubble migration in a vibrating zero gravity environment is numerically investigated using ANSYS-
FLUENT software. A 3D CFD model is developed describing the two-phase �ow of a nitrogen bubble
immersed in a container full of ethanol. The Volume of Fluid (VOF) method and the geometric
reconstruction scheme are used to track the liquid-liquid interface. The container is vibrated horizontally
with different frequencies from 0 Hz to 1 Hz, and amplitudes from 0.005 m/s2 to 0.1 m/s2. The vibration
impact on the bubble arrival times to the top and its ensuing dynamic is analyzed. Different bubble
trajectory shapes are observed, other than the conventional vertical translation induced by the
temperature difference. Compared to the no vibration case, the bubble motion is slightly either
accelerated or decelerated for very low vibration amplitudes, Ab = 0.005 m/s2. For a �xed frequency f = 1
Hz, the bubble arrival time increases signi�cantly with the vibration amplitude increment relative to the no
vibration case. The vibration effect becomes more intense with the Marangoni number decrease when f = 
0.2 Hz and Ab = 0.005 m/s2. Those results are di�cult to obtain experimentally, signifying the importance
of this numerical study to understand bubble motion and migration in space.

Introduction
Bubble motion inside a cavity has attracted researcher’s attention for a long time, due to its importance in
many industrial applications. From petroleum engineering to space, the formation of bubbles can
sometimes be harmful for the enclosing equipment (cavitation issues) and bene�cial when it is adopted
to mass transfer operations [Thompson et al. (1980); Dijkink et al. (2006); and Nagasawa et al. (2001)].
When gravity is taken into account, bubble motion is complicated owing to bubble deformation,
coalescence and break up. Many studies were performed regarding the dynamic behavior of a bubble and
multiple bubbles [Krishna and Van Baten (1999); Radulescu and Robinson (2008); Yu et al. (2011); and
Nie et al. (2015)]. By reason of buoyancy, thermocapillary force is negligible. In order to understand the
in�uence of this force, previous studies investigated bubble motion in a microgravity environment
including zero gravity conditions. Young et al. (1959) were the �rst to prove experimentally that a negative
temperature gradient in the vertical direction in pure liquids is su�cient to hold small bubbles stationary
or drive them downwards. Thus, the interfacial tension at the bubble surface will change with position
because of its dependence on the temperature difference. This phenomenon is the thermocapillary
migration. Subramanian (1992) discussed theoretically and experimentally thermocapillary motion of
bubbles and drops. He con�rmed the results obtained by Young et al. (1959) and showed that under
certain conditions, a drop’s pure thermocapilllary migration normal to a plane can be more rapid when the
drop is near the surface than when it is far. Balasubramaniam et al. (1996) conducted experiments on
isolated drop and bubble motion in a reduced gravity environment aboard the NASA Space Shuttle in
orbit. They found quantitative discrepancies between the experimental results and the theoretical model
of the migration velocity of air bubbles, but the qualitative tendency has been validated. The interaction
between two drops was also examined. A small leading drop, with its motion unaffected, in�uences
signi�cantly the motion of a larger trailing drop by retarding it on account of the thermal wake behind the
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leading drop. Furthermore, other experiments were carried out to extend the parameter range of this last
experiment, Hadland et al. (1999), Wozniak et al. (2001). In Wozniak et al. (2001), the disturbance of the
imposed temperature �eld through bubble motion is studied and compared to a theoretical model based
on the numerical model developed by Ma et al. (1999), where the steady migration of a spherical drop is
simulated in a liquid under zero gravity conditions. As a consequence of the complexity of the
experiments and the disturbances that can occur, the results can sometimes be di�cult to interpret. In
order to circumvent those issues, many numerical models have been developed as a support for the
onboard researches. Hermann et al. (2008) presented a numerical method to predict the thermocapillary
motion of drops. It was found that the drop velocity decreases with Marangoni number (Ma) increase and
the drops present a complex behavior at large Ma as observed by Wozniak et al. (2001). Using
computational �uid dynamics (CFD) approach, Alhendal et al. (2013), analyzed a single bubble motion in
stagnant �uid in 2D and 3D domains. Their results were in good agreement with the space experiments
and showed that Volume of Fluid (VOF) method can be pro�tably employed to simulate thermocapillary
�ow.

Furthermore, after studying the bubble motion, other parameters were taken into consideration as the
bubble size, shape and deformation [O’Shaughnessy and Robinson (2008); Colin et al.(2008); Nurse et al.
(2013); Kalendar et al. (2021); and Wang et al. (2014)], the interaction between droplets [Alhendal et al.
(2016 a); Balcazar et al. (2016) and Kalichetty et al. (2019)] and the drop behavior under rotation,
[Yamagushi, et al. (2004); Gupta and Kumar (2007); and Alhendal et al. (2016 b)]. Another interesting
factor is the in�uence of vibration on drop motion and behavior. It is well known that in spacecraft, while
�oating in a microgravity environment, vibrations occur classi�ed as g-jitter. Managing those vibrations in
space is crucial as an important tool to control �ows and heat/mass transfers [Kawaji et al. (2006),
Garrabos et al. (2007), and Ahadi and Saghir (2013)]. It is absolutely bene�cial for different applications
like crystal growth, �uid management, heat exchangers and multiphase �ow. Therefore, even if theoretical
studies were performed such as Bleich (1956), there is a still a lack of knowledge and understanding on
vibration effects in a zerogravity environment. This complicated phenomenon intrigued many researchers
and became a very focused topic. Movassat et al. (2009) studied numerically the interaction of two
bubbles in a square vibrating container using the VOF solver. Their results showed that bubble collision
occurs faster when the vibration frequency and amplitude are important. For high accelerations, bubble
circular shape deforms, while only small shape oscillations are observed for small accelerations. At larger
accelerations, bubbles breakup before their collision. Shoikhedbrod (2016) developed a model to prove
that controlled vibration can be used to control gas bubble motion in the vertical direction and determine
conditions of gas bubbles �oating, drowning and oscillations in the liquid in reduced and microgravity
environments. The theoretical and numerical results obtained were in good agreement with the parabolic
aircraft tests.

By simulating complex behaviors such as Marangoni �ows in zero gravity conditions using the CFD
approach, we can in principle have a better understanding of the of the ensuing physical phenomena that
occur in space and can subsequently manage it in the most optimum way possible. In this work, the
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impact of vibration on the bubble motion and migration is investigated in a three-dimensional domain
(3D) using ANSYS-FLUENT software.

Problem Statement
As shown in Fig. 1, the con�guration studied is a cylindrical container �lled with ethanol at a height of
120 mm and a diameter of 60 mm in a zero gravity environment. The upper and lower walls are held at
temperatures Thot = 330 K and Tcold =300 K respectively. The lateral walls are adiabatic. An isolated
bubble of nitrogen N2, with a diameter d = 2 rb, is placed in the middle of the container. Its behavior under
the in�uence of the temperature difference and vibration is investigated in this 3D domain. The container
is vibrated in the horizontal direction with different vibration amplitudes (Ab) and frequencies (f). No-slip
condition is applied on all the walls. The bubble thermocapillary velocity is small and the �ow is laminar.
The host liquid is an incompressible Newtonian �uid and the thermophysical properties are assumed
constant except for surface tension. Table 1 presents the physical properties of the host liquid and the
gas bubble used in the simulations at T0 = 300K.

Table 1
Physical properties used in the simulations for Ethanol and Nitrogen.

Properties Ethanol Nitrogen (N2) Unit

Density ( ) 790 1.138 kg/m3

Speci�c heat (Cp) 2470 1040.7 J/(kg.K)

Thermal conductivity (k) 0.182 0.0242 w/(m.K)

Viscosity ( ) 0.0012 1.66x10− 5 kg/(m.s)

Surface tension ( ) 0.0275 N/m

Surface tension coe�cient ( ) 0.00009 N/(m.K)

Prandtl number (Pr) 16.28 0.79

As an initial condition, a steady state temperature �eld is established before releasing the bubble into the
unsteady motion. The initial �uid velocity in the container is set to zero. The driving force for the �ow is
surface tension variation with temperature.

Mathematical Model

ρ

μ

σ0 −

σT −

−
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The migration velocity or the YGB model, based on the linear model of Young, Goldstein and Block 1959,
is used to de�ne the bubble velocity:

1

It is suitable for small Reynolds and Marangoni numbers de�ned respectively as:

2

3

The Prandtl number is de�ned as the ratio of kinematic viscosity, , and thermal diffusivity, .

4

The velocity VT derived from the tangential stress balance at the free surface is used to scale the
migration velocity

5

where and are the dynamic viscosity and thermal conductivity of continuous phase and gas,
respectively.  is the density of the continuous phase �uid and is the radius of the bubble. The constant 

or is the rate of change of interfacial tension and  is the temperature gradient imposed
in the continuous phase �uid.

VOF model and Computational procedure:
In this study, ANSYS-FLUENT package is employed to solve the governing continuum conversation
equations. It has been shown in Alhendal et al. (2013), that the use of volume of �uid (VOF) method is
very suitable to track the liquid/ gas interface and solve two-phase problems. This method deals with
completely separated phases without diffusion. The geometric construction scheme based on the piece-
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wise linear interface calculation (PLIC) method of Young (1982) is chosen. Geo-reconstruction is an
added module to the already existing VOF scheme that allows for a more accurate de�nition of the free
surface, Hirt and Nichols (1981). The motion of the bubble–liquid interface is tracked based on the
distribution of the bubble volume fraction, i.e. αG, in a computational cell, where the value of αG is 0 for
the liquid phase and 1 for the bubble phase. Therefore, the bubble –liquid interface exists in the cell
where αG lies between 0 and 1.

Throughout the domain, a single momentum equation is solved and shared by all the phases, given
below:

6

where  is treated as the mass-averaged variable:

7

 is the vibration force expressed as:  (8)

and  represents volumetric forces at the interface, resulting from the surface tension force per unit
volume. The continuum surface force (CSF) model proposed by Brackbill et al. (1992) is used to compute
the surface tension force for the cells containing the bubble-host liquid interface:

9

where σ is the coe�cient of surface tension,

10

and  is the surface tension at a reference temperature , is the liquid temperature,  is the surface
normal which is estimated from the gradient of volume fraction, and  is the local surface curvature,
given as:
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11

The tracking of the interface between the bubble and host-liquid is accomplished by the solution of a
continuity equation for the volume fraction of bubble:

12

The volume fraction equation is not solved for the host-liquid; rather, the liquid volume fraction is
computed based on the constraint:

(13)

where  and  are the volume fraction of the bubble and host-liquid phases respectively. The
transport equation properties are determined by the presence of the component phases in each control
volume and are calculated as volume-averaged values. The density and viscosity of each cell at the
interface is computed by the application of the following equations:

14

15

where ,  and are the density, viscosity and volume fraction of the different phases respectively.

The energy equation is also shared among the phases:

16

The VOF model treats energy ( ) and temperature ( ) as mass-averaged variables:
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(17)

where Eq. 16, for each phase is based on the speci�c heat of that phase and the shared temperature. The
properties  and  (effective thermal conductivity) are also shared by the phases.

Numerical Resolution
After creating the geometry and the mesh, the �nite volume grid obtained is transported into the Ansys-
Fluent software. The calculations are carried out using the pressure-velocity formulation embodied in the
PISO algorithm (Pressure-Implicit with Splitting of Operators) that performs two corrections on the grid
quality related to cell neighbor and skewness. The pressure interpolation is achieved using a pressure-
staggering option (PRESTO) scheme, while the momentum and the energy equations were discretised
using a second-order upwind differencing scheme. Other algorithms were also tried, such as QUICK,
instead of the second-order upwind scheme. Using these alternative methods gave similar simulation
results. However, using non-iterative methods is generally faster than the use of iterative alternatives
regarding computational time. Based on the simulation employing different operational conditions,
convergence is generally obtained using a non-iterative time step of 5×10− 3 s. All simulation runs are
executed using double-precision accuracy and no gravitational force is imposed.

Model Validation
Nitrogen bubble was placed 10 mm from the bottom (cold) wall using the region adaptation setting on
Ansys-Fluent (v.13, 2011). The size of the computational wall-bounded domain was chosen as 120 x 60
mm with impermeable sides (see Fig. 1). For simulations, the properties of nitrogen and ethanol were
taken as those given in Table (1) from Thompson et al. (1980). The VOF model with the UDF were
examined and validated properly. The results in Fig. 2 shows that the surface tension coe�cient was well
coded, suggesting that it is an appropriate choice to solve thermocapillary problems (Alhendal et al.
(2013,2016)).As the accuracy of the simulation is mostly dependent on mesh density, the process of
using different mesh sizes, time steps, convergence criteria and discretisation schemes, grid tests and
extending the geometry to a fully three-dimensional model was all checked and grid independency was
achieved by studying �ve different meshes as presented in Fig. 3 and Table 2. It has been found that a
grid of 324000 nodes corresponding to 576 cells per bubble diameter is the most suitable mesh that
gives good results with less computing time and memory usage, the results were also in good agreement
with those found by Thompson et al. (1980), and Alhendal et al. (2017). In the present paper, the same
grid is used for all the calculations. Figure 4 shows the 2D results for three different temperature
gradients at time step = 5 s. As shown, the bubble absorbs heat at the front and rejects it at the cold end,
as pointed by Nas & Tryggvason, 1993.

E = ∑
n

q=1
αqρqEq∑

n

q=1αqρq

ρ keff
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Table 2
Grid sensitivity check for a bubble with diameter of 10 mm for 3D models

Grid (∆x,∆y) Number of cells Cells per bubble diameter Bubble

speed (m/s)

(1) 1.0 x 1.0 324000 576 0.0149

(2) 0.6 x 0.12 384800 680 0.0150

(3) 0.6 x 0.11 448000 780 0.0148

(4) 0.475 x 0.95 777216 1324 0.0148

(5) 0.45 x 0.8 889644 1556 0.0150

Results And Discussion
On earth, low frequencies 0 Hz  f  1 Hz are usually neglected. However, in space this range of
vibration frequency can create oscillatory disturbances. At �rst, the vibration amplitude is �xed at Ab=

0.005 m/s2 and the frequency impact on the bubble migration is discussed. The temperatures of the
bottom and the top walls are held at Tcold = 300K and Thot = 330 K respectively (MaT = 488). Then, for f =

1 Hz, the vibration amplitude is varied ranging from 0.005 m/s2 to 0.1 m/s2 and its effect is analyzed on
the bubble dynamics.

Vibration Frequency

For MaT = 488 and Ab = 0.005 m/s2, the effect of vibration frequency on the bubble motion is plotted in
Fig. 5. When the vibration is absent, the bubble moves in a vertical trajectory from the container bottom to
its top. At f = 0.01 Hz, a vertical translation of the bubble is observed at �rst. Then, in a position, almost
equal to the half of the container height, the bubble motion deviates slightly to the left and continues
deviating until it arrives at the top. A similar behavior is observed for f = 0.05Hz with an enhancement of
the trajectory deviation from a position before the half of the container height, near the bottom. The
bubble arrives at the top in a position far from the center. By increasing f to 0.1 Hz, the bubble oscillates
creating a trajectory in the shape of a snake and reaches the top almost in the center. For f = 0.175 Hz, the
bubble trajectory becomes undulated and the bubble breaks up when it reaches the top. When the
frequency is much important (f = 1 Hz), the bubble motion seems to be in a vertical translation, however,
this is not the case. The bubble oscillates periodically around the container vertical axis until it arrives at
the top. Figure 6 shows the bubble center position in the three directions. For no vibration case and all the
frequencies, the bubble travels from the bottom to the top (Y direction) similarly in the �rst 2.5s, then,
beyond 2.5s, the bubble arrives rapidly at the container top when f = 0.175 Hz and f = 1 Hz taking 10.75s
(Fig. 6a). This time is reduced by 0.25s, 0.5s and 0.75s vis-à-vis the no vibration case, f = 0.01 Hz, and
both f = 0.05 Hz and f = 0.1 Hz respectively. This slight difference in the arrival time can be explained by

≤ ≤
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the oscillatory movements observed in both the X and Z directions (Fig. 6b and 6c). Those pulsations
deform the bubble shape from its initial circular shape as observed by Movassat et al. (2009). Therefore,
the shape change affects the bubble motion. In general, the primary force in�uencing the motion is
thermocapillary, but choosing the right frequency can accelerate the bubble migration. For f = 0.01 Hz, f = 
0.05 Hz and f = 0.1 Hz, the bubble migration is delayed compared to the no vibration case. The deviation
of the bubble from the center reduced the bubble motion.

Vibration Amplitude
In this section, for MaT =488, the vibration frequency is �xed at f = 1 Hz and its amplitude, Ab, is varied

ranging from 0.005 m/s2 to 0.1 m/s2. Actually, the bubble motion becomes complicated with Ab increase,
which consequently made it di�cult to present clear plots of its ensuing behavior. For this reason, from
the bubble center positions in X, Y and Z directions, the global motion can be understood (Fig. 7).
Understandably, the bubble takes a longer time to arrive at the top when the amplitude increases. From
11s in the no vibration case to 38.5s when Ab = 0.1 m/s2 (Fig. 7a). With the amplitude increment, the
oscillations become intense in both X and Z directions and change the bubble shape that slows down the
bubble motion. The bubble oscillates around the Z axis in the �rst 10s for all the amplitudes, then
deviates (Fig. 7b). Regarding the X direction, the oscillations are noticeable from Ab = 0.05 m/s2. For Ab =

0.06 m/s2, the bubble oscillations are quite symmetric on the negative side related to the X axis before
reaching the top. Beyond Ab = 0.06 m/s2, those oscillations become asymmetric and drift, displaying a
transient behavior (Figs. 4c, 4d). The second oscillation begins with different velocity and shape than the
�rst oscillation and the same thing behavior can be observed for the other oscillations. Additionally
similar dynamics have been observed for high frequencies and amplitudes by Movassat et al. (2009).
Compared to the frequency variation effects, the amplitude in�uences considerably not only the bubble
trajectory but also the arrival time at the top. In fact, the bubble migration decelerates or accelerates with
the frequency increase as compared to a negligible difference vis-à-vis the no vibration case. However, it
always decelerates with amplitude augmentation. The in�uence affecting the shape is greater at high
amplitudes caused by the changes that also occur regarding the inertia and pressure forces on the
bubble. Therefore, the bubble displays a non-linear behavior while incorporating vibration in�uences on
the thermocapillary force.

Vibration impact on different MaT

For f = 0.2 Hz and Ab= 0.005 m/s2, the temperature of the top is changed from 310 K to 330 K
corresponding to MaT = 162.7 and MaT = 488 respectively. Figure 8 shows different bubble trajectory
shapes. The bubble oscillates and its shape deforms while traveling from the bottom to the top. However,
in the no vibration case, regardless of MaT, the bubble motion keeps a vertical linear trajectory.
Furthermore, the bubble takes less time to reach the top whenever the Marangoni number is important
(Fig. 9a). Actually, this �nding is similar to the results found by Alhendal et al. (2013) for the no vibration
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case. Oscillations are also noticed in the Z direction (Fig. 9b). In the X direction, the bubble is in a
translatory motion for the �rst 2.5s when MaT = 162.7. Then, oscillations appear drifting to the positive
side when the bubble approaches the container top (Fig. 9.c). For MaT = 244 and MaT = 325.35, the �rst
oscillation is negative then becomes positive, drifting up and �nally pushing the bubble to the positive
side of the container wall. Beyond those Marangoni numbers, the oscillations are asymmetrical around
the X axis and pushing the bubble near the container center. In fact, the undulations, at MaT = 162.7, are
very noticeable compared to the other cases. In this studied Marangoni range, those undulations diminish
with MaT increase. Therefore, when the temperature difference is important, the thermocapillary force is
less affected by the vibration.

Conclusions
In a container full of ethanol, a nitrogen bubble migration under vibration, in zero gravity environment, is
studied using ANSYS/FLUENT. The governing equations of the simulated model are discretized using the
�nite volume method and solved by the PISO algorithm. The VOF method with the geometric
reconstruction scheme is employed to model the two-phase �ow. Either changing the amplitude or the
frequency, the bubble motion changes from vertical translation to oscillatory trajectories due to the
deformations imposed on the bubble shape. For a �xed amplitude and regardless of the frequency, the
bubble arrival time is slightly similar to the no vibration case, despite the changes observed on the
trajectory. However, when the amplitude increases, asymmetric and drift oscillations are observed making
the bubble migration slower vis-à-vis the no vibration case. In general, the motion leading force is the
thermocapillary force, but choosing the adequate frequency and amplitude plays an important role in
either accelerating or slowing down the bubble migration. Similar to the no vibration case, increasing the
Marangoni number accelerates the bubble migration. Those novel results, which are di�cult to obtain by
experiments, can help researchers to fathom out the thermocapillary �ow and bubble motion in space
and therefore, enable practices to exploit them in the best way possible in different applications as �uid
management and multiphase �ows.
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Figures

Figure 1

Schematic of the computed �eld for the bubble migration
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Figure 2

Present results validation with previous work
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Figure 3

Ascension distance of a bubble nose for �ve different grid sizes vs. time (s)

Figure 4
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Temperature contours (Right) and streamlines (Left) for the single bubble (d=10 mm) at t=5 s, with
bottom wall temperature 300K.

Figure 5

Bubble migration dynamics at different values of vibration frequency for MaT = 488 and Ab = 0.005 m/s2.
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Figure 6

Bubble centre position in the three directions for different frequencies at MaT = 488 and Ab = 0.005 m/s2. 
(a) Y-direction; (b) Z-direction; (c) X-direction
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Figure 7

Bubble center position in the three directions for different Amplitudes at MaT = 488 and f = 1 Hz. (a) Y-

direction; (b) Z-direction; (c) X-direction (0.05,0.06,0.07 ms-2); (d) X-direction (0.08,0.09,0.1ms-2).
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Figure 8

Bubble migration dynamics at different values of Marangoni numbers for f = 0.2 Hz and Ab=0.005 m/s2.
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Figure 9

Bubble center position in the three directions for different MaT  for f = 0.2 Hz and Ab = 0.005 m/s2.  (a) Y-
direction; (b) Z-direction; (c) X-direction.


