
1SCIENTIFIC REPORTS |          (2019) 9:4535  | https://doi.org/10.1038/s41598-019-40890-2

www.nature.com/scientificreports

Thermochemistry and Kinetics 
of the Thermal Degradation of 
2-Methoxyethanol as Possible 
Biofuel Additives
Mohamed A. Abdel-Rahman1, Nessreen Al-Hashimi2, Mohamed F. Shibl  2, 

Kazunari Yoshizawa3 & Ahmed M. El-Nahas1,3

Oxygenated organic compounds derived from biomass (biofuel) are a promising alternative renewable 
energy resource. Alcohols are widely used as biofuels, but studies on bifunctional alcohols are still 
limited. This work investigates the unimolecular thermal degradation of 2-methoxyethanol (2ME) 
using DFT/BMK and ab initio (CBS-QB3 and G3) methods. Enthalpies of the formation of 2ME and its 
decomposition species have been calculated. Conventional transition state theory has been used to 
estimate the rate constant of the pyrolysis of 2ME over a temperature range of 298–2000 K. Production 
of methoxyethene via 1,3-H atom transfer represents the most kinetically favored path in the course 
of 2ME pyrolysis at room temperature and requires less energy than the weakest Cα − Cβ simple bond 
fission. Thermodynamically, the most preferred channel is methane and glycoladhyde formation. A 
ninefold frequency factor gives a superiority of the Cα − Cβ bond breaking over the Cγ − Oβ bond fission 
despite comparable activation energies of these two processes.

Limited energy reserves and global environmental impact of fossil fuel burning became a crucial issue pushing 
to searching for alternative renewable sources of energy1–6. Biofuels represent a promising alternative renewa-
ble source of energy. Biofuels appear in the energy map of many industrial countries7,8. �erefore, a revolution 
occurred in the forums of the production of biofuels from di�erent biomasses.

Among biofuels, the most popular bioethanol su�ers from some drawbacks such as low internal energy, water 
absorption, very high ignition temperature, lower combustion e�ciency, and high vapor pressure causing massive 
emissions to the atmosphere8–10 giving rise to adverse e�ects on the human health11. In order to avoid most of the 
above issues, bigger oxygenated materials are preferred. For instance, 2-methoxyethanol (2ME) with bifunctional 
groups namely etheric (O) and hydroxyl group (OH) is proposed as a model for sizeable molecular biodiesel addi-
tive hydroxyethers12 since it can mimic the behavior of the latter in the combustion process. Furthermore, 2ME 
is an excellent indirect biofuel candidate due to its original synthesis from small bioalcohols like methanol and 
ethanol. Besides, it can be obtained by modifying ethylene glycol (EG) itself. Ethylene glycol had recently become 
available from di�erent biomass categories using various procedures with high yield13–19 as a biofuel, but there 
still some concerns related to its low carbon content, low melting point (−13 °C), high viscosity, high toxicity, 
and high hydrophilic nature20. �ose issues can be avoided by using alone in the current engine infrastructure. 
2ME could function as a biofuel that might be better than ethanol, ethylene glycol regarding lower vapor pres-
sure, higher boiling point, and high energy content. It also shows high miscibility with oils and gasoline besides 
the expected enhanced ignition behavior due to its high oxygen content (42.1% per mol). �ese represent some 
essential useful properties for 2ME as a good biofuel candidate.

2ME has a wide range for applications in industrial and pharmaceutical proposes. For instance, it is used in 
inks, resins, dyes, paints, metal coatings, phenolic varnishes, detergents, cosmetics, cleaners’ products, protective 
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coatings like lacquers, and in airplane fuels as anti-freezing agent21,22. To the best of our knowledge, there is 
neither experimental nor theoretical work related to 2ME as a biofuel candidate. �erefore, we are going to shed 
new light on this subject in an attempt to explore the thermochemistry and kinetics of 2ME pyrolysis as bio-
fuel additives. �e current study could guide interpretation of the future experimental data obtained from 2ME 
combustion. �e Focal point analysis (FPA)23–26 is a highly e�ective method of the modern high ab initio theory 
which closely related to Wn (n = 1–3)27 and HEATn (High accuracy Extrapolated Ab initio�ermochemistry) 
methods28. FPA showed good results when applied to small to moderate size compounds23–26,29.

�is paper is organized as follows: Section 2 covers computational methods details. Section 3 presents the 
results and discussion which is divided into subsections for 2ME conformers, bond dissociation energies, 
enthalpy of formation, energies and IRC analysis, and rate constant calculation. Finally, section 4 concludes.

Computational details. Geometry optimization for 2ME, its decomposition products, and transition states 
have been performed using density functional theory (DFT) employing the Bose-Martin functional developed 
for kinetics (BMK)30 (42% electron correlation) in conjunction with the 6–31+G(d,p) basis set. �e multi-level 
complete basis set CBS-QB331–33 and G333 ab initio methods have also been used for more accurate energies cal-
culations at a moderate computational cost. �e expensive W1 method which is the �rst of Wn34,35 series is used. 
Wn (n = 1–3) methods are more accurate and expensive than CBS-QB3 and G3 methods and recommend for 
small systems investigations34,35.

Focal-point analysis approximation has been applied to determine the relative energies of both most stable 
and least stable 2ME conformers. �e highly accurate energy di�erence is obtained by single point calculations 
at CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z levels based on optimized structures 
of the selected conformers at B3LYP/aug-cc-pVTZ level. A three-parameter exponential formula was used for 
Hartree-Fock (HF) energy extrapolation to the complete basis set (CBS):

= + −E E ae (1)X
HF

CBS
HF bx

where X = {T, Q, 5} for aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z, respectively36. �e extrapolation of the 
MP2 was obtained by the two-parameter polynomial equation:

= + −E E aX (2)X
MP2

CBS
MP2 3

where X = {Q, 5} for aug-cc-pVQZ and aug-cc-pV5Z, respectively.
The transition states for different reactions of 2ME pyrolysis have been located with the aid of the 

eigenvector-following (EF) optimization technique as implemented in the Gaussian programs. Vibrational anal-
yses have been conducted at BMK/6–31+G(d, p) to characterize the nature of the obtained stationary points 
whether they are minima or transition states with real frequencies or one imaginary frequency, respectively, and 
for the zero-point vibrational as well as the thermal corrections of energies at 298 K. Vibrational modes have 
been analyzed using the Chemcra� program37. For further con�rmation of correct transition states that connect 
desired reactants and products, minimum energy paths (MEP) have been computed through intrinsic reaction 
coordinates (IRC)38,39. All electronic structures calculations have been conducted using the Gaussian 09 W suite 
of programs40.

�e atomization energy approach has been exploited to estimate the gas phase enthalpies of formations 
for 2ME and its released species at the standard state of temperature and pressure, as it is deduced from the 
well-known41 enthalpies of formation of the separated atoms. For any molecule M containing X numbers of iso-
lated atoms, the gas phase enthalpy of formation is obtained from
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where Ee (M) and Ee (Xi) are the theoretically calculated electronic energy of molecule M, and the ith atom X at the 
same level of theory, respectively. ZPVE is the zero-point vibrational energy of the molecule. [H298(M) − H0(M)] 
and [H298(Xi) − H0(Xi)] are thermal corrections to the enthalpy for the molecule M and the separated atoms X, 
respectively. �e individual atomic enthalpies ∆H°

f(Xi) are extracted from the NIST WebBook41. Kinetic param-
eters for di�erent channels of 2ME pyrolysis have been estimated over a wide range of temperatures using the 
Kisthelp package program42, where the classical transition state theory (TST)43 is coupled with Eckart tunneling 
correction44 to compute rate constants (k) for H-atom transfer reactions of 2ME pyrolysis over the applied range 
of temperatures (298–2000 K). �e rate constant reads:

χ σ=
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where h, kB, and R symbols are Planck, Boltzmann, and universal ideal gas constants, respectively, and χ T( ) is the 
Eckart tunneling correction. T is the system’s temperature in Kelvin, σ is reaction path degeneracy, p° is the stand-
ard pressure (1 atm), and ∆ °†G T( ) is the standard Gibbs free energy of activation for reaction. ∆n takes two value 
either zero in the case of unimolecular decomposition or 1 in the case of the bimolecular oxidation.
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�e more accurate correction term Eckart tunneling correction χ(T) which obtained through the numerical 
integrating probability of transmission ρ(E) over Boltzmann distribution of energies. �e asymmetric Eckart 
tunneling correction gives reliable results at low temperatures and previously demonstrated in many previous 
publications45–47.

�e transmission probability coe�cient χ(T) can deduce from the following equation:

∫χ = ρ

∆

∞ −
(T)

e

k T
(E)e dE,

H
f
0K

kB T

B 0

E
K TB

where ρ(E) is the probability of transmission through the one-dimensional barrier at energy E. ∆Hf
0K is the zero 

point correlated energy barriers in the forward direction.
Equilibrium relation (Keq = kforward/kreverse) has been used to calculate the rate constant of simple �ssion reac-

tions. At �rst, the equilibrium constant (Keq) was calculated automatically by the assistance of the Kisthelp pro-
gram42 then the previous experimental well-known association rate constants48–50 have been used as values for 
kreverse to get the forward rate constants (kforward) for the selected simple bond �ssion reaction.

All complex fission reactions barrier heights have been investigated using the more accurate ab initio 
CBS-QB3, G3, and BMK/6–31+G (d, p). �e last level of theory has been proven to have a signi�cant e�ciency 
for the structure optimization in previous works51,52.

Results and Discussion
Methoxyethanol conformers. 2ME has 12 conformers. �ree of them are illustrated in Fig. 1, and the 
rest of the optimized structures and energies are presented in the Supporting Information (SI). Several studies on 
2ME conformers highlighted the e�ect of the intramolecular hydrogen bond (IHB) between the alcoholic hydro-
gen and etheric oxygen on molecular properties53–56. Our �ndings at CBS-QB3, G3, and BMK/6–31+G(d, p) are 
in mutual harmony, see Fig. 2. �e most stable 2ME conformers adopt tGg− and gGg− structures with IHB54–56. 
However, tGg− is 1.6 kcal/mol more stable than gGg−. On the other hand, the least stable conformer (gGt), among 
the studied conformers, is 4.38 kcal/mol higher than tGg− at the CBS-QB3 level of theory.

Energy of 2ME conformations: Extrapolation to CCSD(T)/CBS level using FPA. Tables 1 and 2 
collect the results of FPA for the most and least stable 2ME conformers, while Table 3 shows a comparison of 
FPA results at MP2/CBS and CCSD(T)/CBS with our obtained values using ab initio methods (CBS-QB3 and 
G3) and the DFT/BMK/6–31+G(d,p). �e CCSD(T)/CBS energies are 1.43 ± 0.15, 2.47 ± 0.19, 4.11 ± 0.04, and 
4.25 ± 0.04 for the conformers gGg-, tTt, gTg, and gGt, respectively. �e uncertainty term is obtained using δ 
[CCSD(T)] ± ∆ECCSD(T) − ∆ECCSD. Comparing the obtained results of the FPA with that of our 2ME conformation 
analysis using ab initio composite methods and BMK/6–31+G(d,p) level shows harmony as appeared in Table 3, 
while the convergence of the quantum chemical electron correlations methods at the aug-cc-pVTZ basis set is 
sketched in Fig. 3.

Bond dissociation energy. In order to assess the strengths of di�erent bonds in 2ME, their bond dissocia-
tion energies have been calculated. Figure 4 displays the bond dissociation energies of 2ME using the CBS-QB3 
composite method. �e results indicate that the Cɤ−Oβ and Cα−Cβ are the weakest bonds with bond dissociation 
energies of 86.2 and 86.7 kcal/mol, respectively. �e alcoholic Oα-H bond is the strongest one which is close to 
our previous results (104.5–106.3 kcal/mol) obtained for C1-C4 alcohols52,57. �e Cα-H and Cβ-H hydrogen atoms 
are the most acidic and are expected to be abstracted easier in the presence of oxidizing agents as compared to the 
other hydrogen atoms which agreed with similar bifunctional compound58.

Enthalpies of Formation. Enthalpies of formation for 2ME and its released compounds through combus-
tion have been calculated using atomization approach (at CBS-QB3) and isodesmic equations procedures (at 
BMK/6–31+G (d, p)). �e obtained results are collected in Table 4 using experimental enthalpies of formation 
values of Table 5. �e results have been compared with one another and with available experimental data. �e 
comparison shows impressive agreement with a maximum deviation of ±2 kcal/mol which gives con�dence in 
the future experimental determination of unknown species.

�e current study concentrates on 2ME pyrolysis. �e decomposition mechanism can be expanded into nine 
complex �ssions (barrier reactions) and eight simple bond scission reactions (barrierless reactions).

Complex �ssion reactions

→ → = +CH OCH CH OH TS1 CH OCH CH H O (R1)3 2 2 3 2 2

→ → + =CH OCH CH OH TS2 CH OH CH CHOH (R2)3 2 2 3 2

→ → +⋅⋅CH OCH CH OH TS3 CH OCH CH H O (R3)3 2 2 3 2 2

→ → +CH OCH CH OH TS4 HCHO C H OH (R4)3 2 2 2 5

https://doi.org/10.1038/s41598-019-40890-2
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Figure 1. Optimized structures of 2ME conformers at B3LYP/6–311G(d, p) (optimization level of CBS-QB3).

Figure 2. Relative stabilities of 2ME conformers (energy calculated relative to tGg−) at CBS-QB3, G3, and 
BMK/6–31+G (d, p).

https://doi.org/10.1038/s41598-019-40890-2
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→ → + ⋅⋅CH OCH CH OH TS5 HOCH CH OH CH (R5)3 2 2 2 2 2

→ → +CH OCH CH OH TS6 CH OCH CHO H (R6)3 2 2 3 2 2

→ → +CH OCH CH OH TS7 CH OCH HCHO (R7)3 2 2 3 3

∆EHF δ[MP2] δ [MP3] δ [MP4(SDQ)] δ [MP4] δ [CCSD] δ [CCSD(T)] ∆ECCSDT

(a) gGg−

aCCD 2.13 −0.74 0.01 0.01 −0.13 0.14 −0.14 1.28

aCCT 2.26 −0.76 0.02 0.00 −0.16 0.18 −0.15 1.38

aCCQ 2.27 −0.74 0.03 [0.00] [−0.16] [0.18] [−0.15] [1.43]

aCC5 2.27 −0.74 [0.03] [0.00] [−0.16] [0.18] [−0.15] [1.43]

CBS 2.27 −0.74 [0.03] [0.00] [−0.16] [0.18] [−0.15] [1.43]

(b) tTt

aCCD 1.58 1.00 −0.28 0.06 0.20 −0.24 0.17 2.49

aCCT 1.50 1.05 −0.29 0.06 0.23 −0.27 0.19 2.48

aCCQ 1.49 1.04 −0.29 [0.06] [0.23] [−0.27] [0.19] [2.46]

aCC5 1.49 1.06 [−0.29] [0.06] [0.23] [−0.27] [0.19] [2.46]

CBS 1.48 1.07 [−0.29] [0.06] [0.23] [−0.27] [0.19] [2.47]

Table 1. �e valence focal-point analysis (FPA) of energy di�erences (kcal/mol) of the most stable 
2ME conformers (a) gGg- and (b) tTt. Conformer geometries have been optimized at B3LYP/aug-
cc-pVTZ level. aCCD = aug-cc pVDZ; aCCT = aug-cc-pVTZ; aCCQ = aug-cc-pVQZ; aCC5 = aug-
cc-pV5Z; CBS = complete basis set. �e symbol δ denotes the increment in the relative energy 
concerning the previous level of theory, as given by the competing higher-order correlation series: 
HF → MP2 → MP3 → MP4(SDQ) → MP4 → CCSD → CCSD(T). For example, δ [MP4] = ∆EMP4 − ∆EMP4(SDQ). 
Values listed in brackets are taken for extrapolation. Equations (1) and (2) have been used for extrapolation of 
HF and MP2 energies to complete the basis set, respectively. Final values (in bold) include core correction.

∆EHF δ[MP2] δ [MP3] δ [MP4(SDQ)] δ [MP4] δ [CCSD] δ [CCSD(T)] ∆ECCSDT

(a) gTg

aCCD 4.11 0.10 −0.26 0.04 −0.03 0.02 −0.04 3.94

aCCT 4.13 0.17 −0.26 0.02 −0.03 0.04 −0.04 4.04

aCCQ 4.12 0.20 −0.24 [0.02] [−0.03] [0.04] [−0.04] [4.08]

aCC5 4.12 0.22 [−0.24] [0.02] [−0.03] [0.04] [−0.04] [4.09]

CBS 4.12 0.23 [−0.24] [0.02] [−0.03] [0.04] [−0.04] [4.11]

(b) gGt

aCCD 4.53 −0.35 −0.06 −0.01 −0.04 0.06 −0.04 4.09

aCCT 4.49 −0.21 −0.06 −0.01 −0.03 0.05 −0.04 4.19

aCCQ 4.49 −0.19 −0.05 [−0.01] [−0.03] [0.05] [−0.04] [4.23]

aCC5 4.49 −0.17 [−0.05] [−0.01] [−0.03] [0.05] [−0.04] [4.24]

CBS 4.49 −0.16 [−0.05] [−0.01] [−0.03] [0.05] [−0.04] [4.25]

Table 2. �e valence focal-point analysis (FPA) of energy di�erences (kcal/mol) of the least stable 2ME 
conformers (a) gTg and (b) gGt. See comments in Table 1.

Conformer

FPA
BMK/6–
31+G(d, p) CBS-QB3 G3CCSD(T)/CBS MP2/CBS

tGg− 0 0 0 0 0

gGg− 1.43 1.53 1.62 1.57 1.52

tTt 2.47 2.55 2.48 2.61 2.57

gTg 4.11 4.35 4.48 4.36 4.20

gGt 4.25 4.33 4.90 4.38 4.38

Table 3. Comparison of FPA results with other computational methods.

https://doi.org/10.1038/s41598-019-40890-2
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→ → +CH OCH CH OH TS8 Cyc(C H O) H O (R8)3 2 2 3 6 2

→ → +CH OCH CH OH TS9 CH OHCCH OH (R9)3 2 2 4 2

Simple bond �ssion reactions

→ +⋅ ⋅CH OCH CH OH CH OCH CH OH (R10)3 2 2 3 2 2

→ +⋅ ⋅CH OCH CH OH CH O CH CH OH (R11)3 2 2 3 2 2

→ +⋅ ⋅CH OCH CH OH CH O CH CH OH (R12)3 2 2 3 2 2

→ +⋅ ⋅CH OCH CH OH CH OCH CH OH (R13)3 2 2 3 2 2

→ +⋅ ⋅CH OCH CH OH CH OCH CH O H (R14)3 2 2 3 2 2

→ +⋅ ⋅CH OCH CH OH CH OCH CH OH H (R15)3 2 2 2 2 2

→ +⋅ ⋅CH OCH CH OH CH OCH CH OH H (R16)3 2 2 3 2

→ +⋅ ⋅CH OCH CH OH CH OCH CHOH H (R17)3 2 2 3 2

Complex �ssion reactions are those reactions proceeding by H-atom transfers via cyclic transition state, while 
simple bonds �ssion are those occurring by homolytic cleavage of the chemical bonds. We will concentrate here 
on that formed due to complex ones. Among nine unimolecular complex reactions, the formation of methoxyeth-
ene, methoxy methylcarbene, and oxetane occurs by dehydration (R1, R3, and R8), while 2-methoxy acetaldehyde 
is formed via hydrogen molecule elimination (R6) reactions. Reaction R5 proceeds via three-membered ring 
transition state producing ethylene glycol and triplet methylene. �e other complex �ssion reactions R2, R4, R7, 
and R9 are accomplished by 1,3-H atom transfer reactions via four-membered ring transition state to produce 

Figure 3. Focal point analysis results for aug-cc-pVTZ basis set.

Figure 4. Bond dissociation energies (BDE) of 2ME (kcal/mol) at CBS-QB3 at room temperature.

https://doi.org/10.1038/s41598-019-40890-2
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methanol and vinyl alcohol, formaldehyde and ethanol, formaldehyde and dimethyl ether, and methane and 
glycolaldehyde, respectively.

�e optimized structure of 2ME and proposed transition states leads to the formation of methoxyethene 
(TS1), vinyl alcohol (TS2), methoxymethyl carbene (TS3), ethanol (TS4), ethylene glycol (TS5), 2-methoxy acet-
aldehyde (TS6), dimethyl ether (TS7), oxetane (TS8), and glycolaldehyde (TS9) given in Fig. 5.

Detailed optimized structures of products and bonds lengths variations versus IRC of complex fission 
reactions are given in the SI (Figs 1S–9S), while the potential energy diagrams of 2ME pyrolysis at the G3 and 
CBS-QB3 methods are shown in Fig. 6 and the results at BMK/6–31+G(d,p) are listed in Table 8S. �e barrier 
heights and reaction energies of the main favorable routes at CBS-QB3 and G3 methods are tested against the W1 

Species AE Isodesmic Exp.

CH3OCH2CH2OH −91.29 −90.21 −90.04 ± 1.94a, −94.58b

CH3OCH2OCH3 −83.67 −81.96 −83.18 ± 0.19c

HOCH2CH2OH −94.76 −89.85 −92.57d, −93e, −93.24f, −92.69g, −94.22 ± 0.67h

CH3OCH2CHO −68.68 −66.56

OHCCH2OH −72.17 −71.02

CH3OCH=CH2 −26.02 −26.88

Cyc(C3H6O) −19.57 −19.24i, −19.24 ± 0.15j

CH2=CHOH −28.67 −30.11 −30.57k, −29.86 ± 2l, −26.52 ± 2m

CH3OCH3 −45.39 −44.94 −44 ± 0.12n

CH3OH −48.88 −47.89 −48.99 ± 2.39o

CH3OCH2CH2O
∙ −35.26 −34.21

CH3OCH2CH∙OH −47.22 −47.23

CH3OCH∙CH2OH −46.67 −46.50

∙CH2OCH2CH2OH −45.91 −46.64

HOCH2CH2O
∙ −40.61 −42.14

CH3OCH2CH2
∙ −2.23 −2.40

CH3OCH2
∙ −0.47 −1.07 −0.10p

CH3O
∙ 4.27 5.77 5.02 ± 0.50q, 4.06 ± 0.96r

∙∙CH2OH −4.12 −5.14 −3.97 ± 0.22s, −2.15 ± 0.95r

Table 4. Enthalpies of formation for 2ME, and its relevant compounds calculated by using atomization 
energies approach (AE) at CBS-QB3 and isodesmic reactions at BMK/6–31+G (d, p), results are in Kcal/mol. 
aReferences65, bref. 66, cref. 67, dref. 68, eref. 69, fref. 70, gref. 71, href. 72, iref. 73, jref. 74, kref. 75, lref. 76, mref. 77, nref. 78, oref. 79, 
pref. 80, qref. 81, rref. 82, sref. 83.

Species Exp. Refs Species Exp. Refs

CH3CH2CH2CH2OH −65.70 84 CH3
∙CHOH −14.50 ± 3 85

CH3CH2CH2OH −60.97 86 CH3CH2CH2O
∙ −9.90 87

CH3CH2OH −56.12 ± 0.12 88 ∙CH2CH2OH −7.00

CH3OH −48.06 ± 0.05 79 ∙CH2OH −4.09 ± 0.81 89

CH3OCH3 −44 ± 0.12 78 CH3O
∙CH2 −0.10 80

CH3CH2OCH3 −51.72 ± 0.16 80 CH3CH2CH = CH2 −0.15 ± 0.19 90

CH3OCH2CH2OCH3 −81.93 ± 0.17 91 CH3CH = CH2 4.88 92

CH3CH3 −20.03 ± 0.07 93 CH3
∙CH2 28.39 ± 0.31 94

CH3CH2CH3 −24.90 ± 0.12 93 CH3CH2
∙CH2 23.9 ± 0.48 82

CH3CH(CH3)2 −32.07 ± 0.15 93 ∙CH2CH(CH3)2 16.73 82

HCOOH −90.49 95 HCHO −26.05 ± 0.43 96

HOCH2CH2OH −92.57 ± 0.48 97 CH4 −17.89 98

HOCH2CH2CH2OH −97.54 ± 1.22 71 CH3O
∙ 5.02 ± 0.50 81

(CH3)2CHOH −65.20 84 (CH3)2CHO∙ −11.10 ± 1.20 99

CH3CHO −39.70 ± 0.12 100 ∙CH2CHO 3.51 ± 0.38 101

C2H5CHO −45.08 ± 0.19 102 CH3OCHO −86.47 103

CH3CH2OOH −41.92 ± 3.08 104 CH3CH2OO∙ −6.55 ± 2.37 104

CH3OOH −31.31 105 CH3CH2O
∙ −3.25 ± 0.96 81

CH2 = CH2 12.55 98 CH3CH2COOCH2CH3 −111.81 106

CH2 = CH-CH2OH −29.53 ± 0.36 97 CH3
∙CHCOOCH2CH3 −68.83 106

CH2 = CH-OH −30.59 75

Table 5. Experimental Enthalpies of formation for reference species used in isodesmic reactions.
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method to validate the reliability of their values for the current molecular structure. �e results of barrier heights 
show that the CBS-QB3 and G3 results are in a good agreement with that of W1 with a maximum di�erence of 1.0 
and 0.5 Kcal/mol for CBS-QB3 and G3, respectively. �e comparison also indicates a 1.3 Kcal/mol for maximum 
energy di�erence of main simple bond �ssion reactions at CBS-QB3 (see Fig. 6). So, from hereina�er, unless 
noted otherwise, all results are discussed at the CBS-QB3 level of theory.

Energies and IRC analysis. Among complex reactions, two reactions (R3 and R5) proceed via 
three-membered ring transition state, while the rest is passing over the four-membered ring. Almost all reactions 

Figure 5. Optimized geometrical structure of 2ME and transition states for its thermal degradation at 
CBS-QB3.

https://doi.org/10.1038/s41598-019-40890-2


9SCIENTIFIC REPORTS |          (2019) 9:4535  | https://doi.org/10.1038/s41598-019-40890-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

are endothermic so that structures of transition states are close to those of products more than reactants accord-
ing to Hammond postulate59. As a result of the high oxygen content in 2ME (42.1% per molecular weight), a theo-
retical study on 2ME combustion is essential since many oxygenates like ether, alcohols, and carbonyl compounds 
can be released to the atmosphere during its ignition.

Formation of ethers compounds. Decomposition of 2ME resembles a platform of many ether catego-
ries like methoxyethene, methoxymethyl carbene, dimethyl ether (DME), oxetane, and 2-methoxy acetaldehyde. 
Methoxyethene formation is the preferable kinetic channel on the potential energy diagram of 2ME decom-
position with a barrier height and reaction energy of 72.2 and 6.5 kcal/mol, respectively. �e reaction can be 
accomplished via intra-molecular H-atom abstraction from Cβ by the alcoholic OH (1,2-water elimination) via 
the four-membered ring transition state TS1. �e selected transition state involves inter-rotational of gauche 
dihedral angle (OCCO) and anti-gauche dihedral angle (CCOH) to be −108° and 102°, respectively. �e IRCs 
of the methoxyethene formation appear in Fig. 1S. Figure 1S shows a fast rapture for the strong C1-O1 bond 
(BDE = 97.9 kcal/mol) rather than the weakest C2-H3 bond (BDE = 96.7 kcal/mol). �e reason is attributed to the 
high-frequency factor of the C1-O1 bond compared to that of the C-H bonds (see SI). �e broken C2-H3 bond 
at s = −1 amu1/2 bohr is associated with the O1-H3 bond formation, where the two curves cross each other at the 
transition state (s = −0.2 amu1/2 bohr). Formation of the C1-C2 double bond occurs gently during the reaction.

Methoxymethyl carbene is an unstable compound that is obtained by 1,1-water elimination of Cα via TS3. �e 
reaction requires a preliminary structure conversion from the most stable conformer tGg- to the tGt structure 
through multi-steps with �nal reaction energy of 2.9 kcal/mol. �e reaction proceeds via a three-membered ring 
transition state with barrier energy of 82.5 kcal/mol. �e transformation process of 2ME to methoxymethyl car-
bene is displayed in Fig. 2S. Figure 2S shows a superior rapture for the C1-O1 bond than the C1-H1 one. �e dis-
integration of the C1-O1 bond begins at s = −1.2 amu1/2 bohr, while the formation of the O1-H1 bond progresses 
simultaneously with cracking of the C1-H1 bond. �e two curves cross each other at s = −0.5 amu1/2 bohr. �e 
slight decrease in values of the C1-O1 bond length a�er the cracking is a clue for the formation of an intermediate 
compound with an H-bond linking separated atoms near each other.

Oxetane production has the highest barrier energy value among water elimination reactions from 2ME with 
a barrier height of 98.3 kcal/mol. �e high energy barrier can be attributed to the formation of a highly strained 
four-membered cyclic product. �e reaction proceeds by the alcoholic abstraction of the Cɤ hydrogen (1,4-water 
elimination) with the four-membered ring transition state TS8. �e barrier height and the reaction energy of 98.4 
and 12.9 kcal/mol are in line with the work in ref.60 where the barrier height and the reaction energy were 96.0 
and 15.7 kcal/mol, at the same level of theory, for the same investigated channel of 1,4- dehydration of n-butanol. 
Table 6 shows a comparison between 2ME and n-butanol with respect to 1,1-, 1,2-, and 1,4- H2O elimination 
reactions. Oxetane is formed over multi-conversion processes as the most stable tGg- converts to tGt then to g-Gt 
conformer by a rotational barrier of 0.6 kcal/mol and reaction energy of 0.4 kcal/mol relative to tGt conformer 
(2.7 and 1.5 kcal/mol, respectively in case of n-butanol60). Figure 3S illustrates a fast cleavage of the strong C1-O1 
bond relative to the weakest C3-H7 bond which occurs at s = 1.5 amu1/2 bohr. �e formation of the O1-H7 bond 
starts at s = −0.1 amu1/2 bohr. �e two curves of C3-H7 and O1-H7 bonds cross each other at s = 0.9 amu1/2 bohr, 
while the formation of the single σ covalent bond C1-C3 occurs gradually during the reaction.

DME is produced via TS7. �e alcoholic H-atom migrates to Cβ resulting in DME and formaldehyde. �e 
alcoholic H-atom rotates from the gauche dihedral angle of 51° to 0° for facilitating the conversion process. �e 
change of bond lengths for the formation of DME is shown in Fig. 4S. �e Figure shows that the weakest C1-C2 
bond (BDE = 86.7 kcal/mol) dissociates earlier (at s = −2 amu1/2 bohr) than the strong alcoholic O1-H8 bond 
(BDE = 108.1 kcal/mol) rapture at s = −0.8 amu1/2 bohr. �e C2-H8 bond is formed at s = 1 amu1/2 bohr and the 

Figure 6. Potential energy diagram of unimolecular decomposition of 2ME (energies in kcal/mol) at G3 italic, 
CBS-QB3 plain, and W1 (bolded in parentheses).
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carbonyl C1-O1 bond of formaldehyde is formed smoothly during the reaction. �e curves of the O1-H8 and 
C2-H8 bonds cross each other at the transition state.

2-Methoxyacetaldehyde is a direct result for the 1,2-H2 elimination from 2ME. �e reaction proceeds via the 
TS6 with a barrier height and reaction energy of 88.9 and 20.9 kcal/mol, respectively. Figure 5S shows a variation 
of selected bonds lengths during the formation of 2-methoxy acetaldehyde. It is clear that breaking the weak 
C1-H1 bond (BDE = 96.2 kcal/mol) occurs �rst and then the alcoholic O1-H8 bond (BDE = 108.1 kcal/mol), 
while the carbonyl C1-O1 double bond formation progresses smoothly during the reaction.

Formation of alcohols and carbonyl compounds. Many alcohols such as methanol, vinyl alcohol, eth-
anol, glycolaldehyde, and ethylene glycol are released through the combustion of 2ME. Vinyl alcohol production 
occurs via TS2. It is the 2nd kinetically preferable pathway with a barrier height di�erence of 0.6 kcal/mol rela-
tive to the most stable methoxyethene transition state TS1. �e less stable vinyl alcohol (enol) transforms into 
the most stable acetaldehyde (keto) (TS11) via the 1,3- intramolecular H atom transfer. �e reaction barrier is 
55.9 kcal/mol and the reaction energy is 11.54 kcal/mol relative to the vinyl alcohol that agrees with our past 
recorded data57 and with alkenol – alkanal conversion using CBS composite methods61,62.

According to Fig. 6S, the weakest O2-C2 bond (BDE = 86.7 kcal/mol) is broken �rst (at s = 2 amu1/2 bohr) 
then the C1-H1 bond (BDE = 96.2 kcal/mol) stretches slowly until rapture at s = 0.9 amu1/2 bohr. Fission of the 
C1-H1 bond and the formation of the alcoholic O2–H8 bond occur at the same time and the two curves cross 
each other at s = 0.3 amu1/2 bohr, while the formation of the enolic double bond C1–C2 occurs step by step during 
the conversion process.

EG production is the highest endothermic route among all H-atom transfer channels with reaction energy of 
90.6 kcal/mol. �e reaction proceeds by 1,2- H-atom transfer via TS5 as one of the Cγ hydrogen migrates to the 
Oβ via a strained three-membered ring transition state. �e high recorded reaction energy may be related to the 
formation of the less stable triplet methylene. �e investigation related to the IRC in Fig. 7S indicates a fast break-
age of the O2–C3 bond (BDE = 86.1 kcal/mol) at s = 2 amu1/2 bohr, while the C3–H6 bond stretches and breaks 
at s = 1.5 amu1/2 bohr with the formation of the O2–H6 bond. �e two curves interrupted at s = 0.8 amu1/2 bohr. 
Similar to the methoxymethyl carbene, the variational of the O2–C3 bond length is a clue for the formation of the 
H-bond which makes the two separated atoms close to each other a�er the product formation.

Ethanol is produced via TS4 with an energy barrier of 86.2 kcal/mol and reaction energy of 6.7 kcal/mol. �e 
reaction occurs by shi�ing one of the Cγ hydrogens to the Cβ passing over the etheric oxygen Oβ. Figure 8S reveals 
that the O2-C2 bond breaks before the C3-H7 bond, which agrees with the bond dissociation values of the two 
bonds, while the O2-C3 double bond forms slowly during the reaction. �ermodynamically, ethanol formation is 
preferable than methoxyethene production by 0.2 kcal/mol.

Glycolaldehyde is also a bifunctional compound that has alcohol and aldehyde groups. It is formed through 
TS9 which is the highest energy barrier among all complex channels (100.4 kcal/mol). However, it is the prefera-
ble thermodynamic pathway with reaction energy of −1.2 kcal/mol. Figure 9S in the SI shows the earlier rapture 
of the least energy O2-C3 bond (BDE = 86.2 kcal/mol), while the C2-H4 bond (BDE = 96.7 kcal/mol) stretches 
gently till it gets broken at s = −0.6 amu1/2 bohr. Formation of the C3-H4 bond occurs at s = 1.5 amu1/2 bohr. �e 
two curves of C3-H4 and C2-H4 bonds cross each other at s = 0.7 amu1/2 bohr, while the O2-C2 double bond is 
formed gently during the reaction.

Rate constant calculation. Figure 7 displays the Arrhenius diagram for the main kinetically favored 
paths of 2ME decomposition over the temperature range 298–2000 K. For liner relations between ln k vs. 1000/ 
T for reactions R10, R11, and R12, the activation energy and pre-exponential factor can be derived from the 
two-parameter Arrhenius equation:

= −∆ †

k AeT
E TTST

( )
/R

Taking the Natural Logarithm of the two sides

= −
∆ †

k T A
E

T
ln ( ) ln

R

TST

Plotting ln kTST(T) versus 
T

1000  shows a straight line with a frequency factor A (s−1) = eIntercept and an activation 

energy ∆ = × .†E (cal/mol) slope 1 987.
In Fig. 7, the tunneling correction calculated by Eckert method plays a vital role for the curvature of the 

relation between ln k vs. 1000/T for R1 and R2 reactions at T ≤ 500 K. �erefore, these reactions can �t the 

path

n-butanola 2MEb

barrier 
height

reaction 
energy product

barrier 
height

reaction 
energy product

1, 1- 81.2 — Propyl carbene 82.5 — Methoxymethyl carbene

1, 2- 67.9 9.3 1-Butene 72.2 6.5 Methoxyethene

1, 4- 95.9 15.7 Cyclobutane 98.3 12.9 Oxetane

Table 6. A comparison of barrier heights and reaction energies (kcal/mol) for 1, 1-; 1, 2-; and 1, 4- water 
elimination reactions of n-butanol and 2ME in room temperature at CBS-QB3. aReference 60, bCurrent study.
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three-parameter Arrhenius equation of A, n, and Ea. Table 7 lists parameters of rate equations of main kinetic 
paths for 2ME.

In the case of three-parameter Arrhenius equation, the following equation is used:

= −∆ †

k AT eT
n E TTST

( )
/R

Taking the Natural Logarithm of the two sides gives;

= + − ∆ ‡k A n Eln ln lnT /RT

= = .At T T k k1 1

�e equation converts to the general form

+ + ∆ =‡A n Y Eln X Z (3)1 1 1

X1, Y1, and Z1 are known values.
By similar at T = T2 k = k 2, and T = T3 k = k3.

We will get another two equations of the three variables A, n, and ∆ †E .

+ + ∆ =‡A n Eln X Y Z (4)2 2 2

+ + ∆ =‡A n Eln X Y Z (5)3 3 3

�e algebraic solution of the three Eqs (3), (4) and (5) gives values of A, n, and ∆ †E .
Arrhenius equations for the calculated rate constant (s−1) for main channels R1, R2, R10, R11, and R12 in the 

temperature range 298–2000 K can be summarized as follow:

= . × × −− .k T(T) 6 30 10 T exp( 26264/ )R1
15 8 07

= . × × −− .k T(T) 2 22 10 T exp( 28233/ )R2
10 6 91

= . × −k T(T) 3 10 10 exp( 43485/ )R10
22

= . × −k T(T) 6 31 10 exp( 45379/ )R11
23

Figure 7. Arrhenius plots for 2ME pyrolysis through decomposition reactions R1, R2, R10, R11, and R12 over 
the temperature range 298–2000 K.

Reaction A(S−1) n Ea (kcal/mol)

R1 6.30 × 10−15 8.07 52.19

R2 2.22 × 10−10 6.91 56.10

R10 3.10 × 1022 0 86.40

R11 6.31 × 1023 0 90.17

R12 2.70 × 1023 0 86.41

Table 7. Rate Expressions for the predominant reactions (R1, R2, R10, R11and R12) over the temperature range 
298–2000 K at CBS-QB3.
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= . × −k T(T) 2 70 10 exp( 43487/ )R12
23

�e branching ratio of the dominant paths of 2ME pyrolysis in a temperature range of 298–2000 K is given in 
Table 8. �e results show highly domination of the low energy barrier H atom transfer reaction which leads to 
the formation of the methoxyethene (R1) with minor contribution of vinyl alcohol formation (R2) at T ≤ 400 K. 
Despite the CTST rates of R1 and R2 reactions are quite equal, the tunneling correction of R1 is higher by a factor 
of 12.5 at T = 298 K to 3 at 400 K which is the cause of the dominating R1 reaction over R2 at T ≤ 400 K. On raising 
the temperature, a signi�cant contribution from the simple bond scission of Cα − Cβ and Cβ − Oβ bonds (R11 and 
R12) appears, where the higher frequency factors of these channels can overcome the higher activation energies 
required for them to proceed. Despite raising the temperature, a small contribution is observed for the low acti-
vated energy Cα − Oβ bond (Ea = 86.4 kcal/mol) compared to the comparable Cα − Cβ bond (Ea = 86.4 kcal/mol) 
and the higher Cβ − Oβ bond (Ea = 90.2 kcal/mol). �is can be attributed to the high-frequency factors of the latter 
two paths compared to the former one. At T ≥ 700 K, the contribution from the Cβ − Oβ bond �ssion increases 
gradually and starting competing with the �ssion of the Cα-Cβ bond at T > 1600 K until they have an almost equal 
ratio at T = 2000 K. In general, the Cα − Cβ bond �ssion is considered as the most dominated pathway for 2ME 
especially at T ≥ 500 K that matches with records from similar studies on oxygenated compounds52,57,63,64. Due to 
missing of kinetic data of n-butanol at CBS-QB3, the total rate of 2ME pyrolysis is compared with 2-butanol57 at 
the CBS-QB3 at di�erent temperatures. �e results show the superiority of 2ME pyrolysis; hence it is a promising 
biofuel additive.

Conclusions
�e current paper presents a detailed theoretical study on 2-methoxyethanol (2ME) pyrolysis utilizing both DFT 
(BMK/6–31+G(d, p)) and ab initio (CBS-QB3 and G3) procedures. A comparison with n-butanol was taken into 
account due to the structural similarity and absence of experimental data for 2ME. �e obtained results can be 
summarized as follows:

 1. All the investigated reactions are endothermic except that form methane and glycolaldehyde.
 2. Production of methoxyethene via 1,3-H atom transfer represents the most kinetically favored path in the 

course of 2ME pyrolysis at room temperature and requires less energy than the weakest Cα − Cβ simple 
bond �ssion. �ermodynamically, the preferable channel is methane and glycoladhyde formation.

 3. �e strength of Cα − Cβ and Cγ − Oβ bonds is very close, which re�ects the signi�cant contribution in 
overall rate constant especially at high temperature.

 4. For barrier heights, the results obtained from BMK/6–31+G (d, p) are in poor agreement with G3 and 
CBS-QB3. �e deviation was 0.2–2.5 kcal/mol compared to CBS-QB3 and a signi�cant deviation (5–
12 kcal/mol) for channels involving hydrogen atom migration over the etheric group.

 5. Comparison between 2ME and n-butanol regarding 1,1-, 1,2-, and 1,4-water elimination shows faster 
water elimination reactions for n-butanol than that of 2ME.

 6. Many oxygenated compounds can be released due to the high oxygen content of 2ME biofuel. �erefore, 
detailed studies of 2ME oxidation are necessary for suggesting it as an inferior or superior biofuel relative 
to n-butanol.

Temp/Ratio ΓR1 ΓR2 ΓR10 ΓR11 ΓR12 ΓR13 ΓR15 ΓR16 ΓR17

298 94.01 5.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

300 93.69 6.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00

400 51.69 18.04 2.98 0.54 26.74 0.00 0.00 0.00 0.00

500 0.27 0.24 9.04 4.25 86.21 0.00 0.00 0.00 0.00

600 0.01 0.01 8.61 7.60 83.76 0.00 0.00 0.00 0.00

700 0.00 0.00 8.21 11.36 80.43 0.00 0.00 0.00 0.00

800 0.00 0.00 7.93 15.33 76.73 0.01 0.00 0.00 0.00

900 0.00 0.00 7.65 19.19 73.14 0.01 0.00 0.00 0.00

1000 0.00 0.00 7.44 22.88 69.64 0.02 0.00 0.01 0.00

1100 0.00 0.00 7.23 26.35 66.36 0.04 0.00 0.01 0.00

1200 0.00 0.00 7.06 29.58 63.27 0.07 0.01 0.02 0.01

1300 0.00 0.00 6.86 32.52 60.48 0.10 0.01 0.03 0.01

1400 0.00 0.00 6.72 35.23 57.86 0.13 0.01 0.04 0.01

1500 0.00 0.00 6.58 37.69 55.46 0.18 0.02 0.06 0.01

1600 0.00 0.00 6.45 39.97 53.23 0.23 0.02 0.08 0.02

1700 0.00 0.00 6.32 41.99 51.26 0.28 0.03 0.10 0.02

1800 0.00 0.00 6.20 43.86 49.40 0.34 0.04 0.12 0.03

1900 0.00 0.00 6.10 45.50 47.75 0.41 0.05 0.15 0.04

2000 0.00 0.00 6.01 47.15 46.09 0.48 0.05 0.18 0.04

Table 8. Shows branching ratioa (Γ) of main pathways R1, R2, R10, R11, and R12 in the overall reaction of the 
thermal decomposition of 2ME aEckart tunneling correction.
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Data Availability
All data generated through this study are collected in this manuscript and the Supporting Information �le.
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