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Abstract: The purpose of this work is to investigate the entropy generation in a laminar, 
gravity-driven conducting liquid film with fully developed velocity flowing along an incline 
heated plate in the presence of a transverse magnetic field. The upper surface of the liquid 
film is considered free and adiabatic. The effect of heat generation by viscous dissipation is 
included in the analysis. The influence of the applied magnetic field and the viscous 
dissipation on velocity, temperature and entropy generation is examined. 
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Nomenclature 
A  area, (m2) 
B  magnetic induction,  (Wb.m-2) 
Br  Brinkman number, TCu Pm ∆λµ 22  

PC  specific heat, (J.kg-1.K-1) 
Ha  Hartman number, µσδB  

BN   entropy generation number, magnetic induction 

CN  entropy generation, axial conduction 

FN  entropy generation, fluid friction 

SN  entropy generation number, total 

YN  entropy generation number, transverse conduction 
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Pe  Peclet number, λδρ PmCu  
q  wall heat flux, (W.m-2) 
Q  liquid mass flow rate, (kg.m-1.s-1) 

0Q  liquid mass flow rate in absence of the magnetic field, (kg.m-1.s-1) 

Re  Reynolds magnetic number, δησ mu   

GS  entropy generation rate, (W.m-3.K-1)  
T  temperature, (K) 
u  axial velocity, (m.s-1) 
U  dimensionless axial velocity 
x  axial distance, (m) 
X  dimensionless axial distance 
y  transverse distance, (m) 
Y  dimensionless transverse distance 
Greek symbols 
α  scalar constant 
δ  thickness of the liquid film (m) 

T∆  reference temperature difference, λ
δ∆ qT=         

η  magnetic permeability, (H.m-1) 
µ  dynamic viscosity, (kg.m-1.s-1) 
λ  thermal conductivity, (W.m-1.K-1) 
Θ  dimensionless temperature, ( )( ) TTy,xT ∆0−    

Ω  dimensionless temperature difference, 0TT∆  

ρ  density of the fluid, (kg.m-3) 
σ  electric conductivity, (Ω-1.m-1) 
Subscripts  
b  bulk value 
m  maximum value 
0  inlet value, reference value 

 

Introduction 

Entropy generation is closely associated with thermodynamic irreversibility, which is encountered 
in all heat transfer processes. Different sources are responsible for generation of entropy such as heat 
transfer and viscous dissipation [1982; 1996]. The analysis of entropy generation rate in a circular duct 
with imposed heat flux at the wall and its extension to determine the optimum Reynolds number as 
function of the Prandtl number and the duty parameter were presented by Bejan [1996; 1979]. Sahin 
[1998] introduced the second law analysis to a viscous fluid in circular duct with isothermal boundary 
conditions. In another paper, Sahin [1999] presented the effect of variable viscosity on entropy 
generation rate for heated circular duct. A comparative study of entropy generation rate inside duct of 
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different shapes and the determination of the optimum duct shape subjected to isothermal boundary 
condition were done by Sahin [1998]. Narusawa [1998] gave an analytical and numerical analysis of 
the second law for flow and heat transfer inside a rectangular duct. In a more recent paper, Mahmud 
and Fraser [2003; 2002] applied the second law analysis to fundamental convective heat transfer 
problems and to non-Newtonian fluid flow through channel made of two parallel plates. The study of 
entropy generation in a falling liquid film along an inclined heated plate was carried out by Saouli and 
Aïboud-Saouli [2004]. As far as the effect of a magnetic field on the entropy generation is concerned, 
Mahmud et al. [2003] studied the case of mixed convection in a channel.  

The purpose of this article is thermodynamics analysis of a fully developed liquid film flowing 
along an inclined heated plate in the presence of a transverse magnetic field. The effect of heat 
generation by viscous dissipation is included in the analysis. Expressions for dimensionless velocity 
and temperature, entropy generation number are obtained. 

 
Problem formulation and analytical solution 

The problem as shown in Fig. 1 concerns a fully developed Newtonian, laminar, gravity-driven 
liquid film of thickness δ  flowing along an inclined heated plate in the presence of a transverse 
uniform magnetic field B

ρ
. The magnetic Reynolds number Re is assumed to be small, so that the 

induced magnetic field is neglected and the Hall effect of magnetohydrodynamics is ignored. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Schematic diagram of the problem. 

 

Neglecting the inertia terms in the momentum equation compared to the body force and the 
magnetic term, the momentum equation is then: 
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where µ  is the dynamic viscosity, ρ  the fluid density, σ  the electric conductivity and g  the gravity 
acceleration. 
The boundary conditions are: 

No-slip condition                                           ( ) 00 =u                                                                    (2a) 

Free surface                                                  ( ) 0=
∂

∂
y

u δ                                                                  (2b) 

The velocity profile is obtained by integrating Eq. (1) and using the boundary conditions given by 
Eq. (2). It may be written:  
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Introducing the following dimensionless variables for the velocity and the transverse 

distance
mu

)y(u)Y(U = , 
δ
yY = , the dimensionless velocity becomes: 

( ) ( )
( ) 1

1
−

−−
=

Hacosh
)Y(HacoshHacosh

)Y(U                                              (4) 

where Ha  is the Hartman number defined as: 

µ
σδBHa =                                                              (5) 

and  
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The liquid mass flow rate Q  is: 

( )∫=
δ
ρ

0
dyyuQ                                                          (7) 

Substituting Eq. (3) into Eq. (7), the liquid mass flow rate is: 

( )⎥⎦
⎤

⎢⎣
⎡ −= Hatanh

HaHa
singQ 32

32 11
µ
θδρ                                      (8) 

In absence of the magnetic field, the liquid mass flow rate is [10]: 

µ
θδρ

3

32

0
singQ =                                                        (9) 

Therefore the liquid mass flow rate may be written: 

( )⎥⎦
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Q

32
0

113                                         (10) 

 
The energy equation for the present problem is: 
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The boundary conditions are:                                                                                                         
Inlet temperature                                     ( ) 00 Ty,T =                                                              (12a) 

Constant heat flux at the wall             ( ) q
y

,xT
=

∂
∂

−
0λ                                                               (12b) 

Adiabatic upper surface                         ( ) 0=
∂

∂
y
,xT δ                                                                (12c) 

Using the following dimensionless variables: 

2δρ
λ

PmCu
xX = ,

δ
yY = , ( ) ( )

mu
yuYU = , ( ) ( )

T
Ty,xT

Y,X
∆

Θ 0−
=                    (13)                 

where T∆  is a reference temperature difference defined as: 

λ
δ∆ qT =                                                                  (14) 

The energy equation can be written in the following dimensionless form: 
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subjected to the following boundary conditions:  
 

( ) 00 =Y,Θ                                                              (16a) 
( ) 10

−=
∂

∂
Y

,XΘ                                                           (16b) 

( ) 01
=

∂
∂

Y
,XΘ                                                             (16c) 

Br = TCu Pm ∆λµ 22  is the Brinkman number. 

 
To get a solution of Eq. (15), a separation of variables solution is assumed in the following form 

[10]: 
 

( ) ( ) ( ) ( ) ( )YXYXY,X 2121 ΘΘΘΘΘ ++=                                          (17) 
 

The first term in the right-hand side of Eq. (17) is significant for decaying initial transition and 
entrance effect, the second term is significant for axial temperature rise due to accumulated wall heat 
flux and the third term is significant for transverse temperature variation to wall heat flux into fluid. 
Neglecting entrance effect and assuming that the system already passed the decaying initial transition. 
Then the first term at the right-hand side of Eq. (17) will disappear [8, 9]. Combination of Eq. (15) and 
Eq. (17) leaves two separated ordinary equations [10]. The solution of these two ordinary equations is: 
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(18)                 
where α , 2C  and C  are constants of integration. 

Using the boundary conditions (16b) and (16c), it is found that: 
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In the above expression 1A , 2A , 3A  and 4A  can be defined by: 
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To evaluate the constant of integration C , the bulk mean temperature given in Eq. (21) is 
examined:                                                    

( ) ( ) AdY,X
A

X
A

b ∫= ΘΘ 1                                                     (21) 

where the area element Ad  and the area A  are: 

YdAd δ= , δδ =∫=
1

0
dYA                                                    (22) 

Using Eq. (21), the bulk mean temperature is: 

( ) ( ) YdY,XXb ∫=
1

0
ΘΘ                                                      (23) 

The boundary conditions defined by Eq. (16a) leads the following condition on the bulk mean 
temperature: 

( ) 00 =bΘ                                                              (24) 

Substituting Eq. (18) in Eq. (23) and using Eq. (24), the constant of integration is:  
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According to Woods [1975], the entropy generation rate is: 
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The dimensionless entropy generation number is defined by the following relationship: 

GS S
q
T

N
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2
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=                                                           (27) 

using the dimensionless velocity and temperature, Eq.(27) can be rewritten as: 
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where Pe = λδρ PmCu  and Ω = 0TT∆  are respectively the Peclet number and the dimensionless 

temperature difference. CN  and YN , are respectively the entropy generation numbers due to the 

conductive heat in the axial and the transverse directions. FN  is the entropy generation number due to 

the fluid friction and BN  is the entropy generation due to the hydromagnetic effect. 
 

Results and discussion 

The velocity profiles ( )YU  are represented in Fig. 2 for various values of the Hartman number Ha . 
As it can be seen, the action of the applied magnetic field B

ρ
 is to flatten the velocity profile near the 

free surface of the liquid film. The influence of the Hartman number on the liquid mass flow rate is 
illustrated in Fig. 3. As the Hartman number increases, the liquid mass fluid rate decreases. This means 
that the mean velocity of the liquid decreases. The application of the magnetic field induces a resistive 
force acting in the opposite direction of the flow, thus causing its deceleration.   
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Figure 2. Velocity Profiles as function of the transverse distance for different Hartman numbers. 

 
Fig. 4 presents a comparison between the temperature profiles ( )Y,XΘ  across the liquid film 

without the hydomagnetic effect, with hydromagnetic effect and with hydromagnetic and viscous 
dissipation effects. The temperature decreases along the transverse direction. For given transverse and 
axial directions, the temperature increases with the application of the magnetic field and the presence 
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of viscous dissipation because of the heat generated by the hydromagnetic and viscous dissipation 
effects. 

For a given axial distance X  and Brinkman number Br , the effect of the Hartman number Ha  on 
the temperature profile ( )Y,XΘ  is illustrated in Fig. 5. An increase of the Hartman number yields 
higher temperature profiles because of the heat dissipation due the action of the magnetic field. 
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0,0
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0,8

1,0

Q/Q0

Ha

 
Figure 3. Influence of the Hartman number on the liquid mass flow rate. 

 
The action of the Brinkman number Br  on the temperature profiles for given axial position X  and 

Hartman number Ha  is illustrated in Fig. 6. As the Brinkman number increases, the temperature 
increases consequently because of the heat generated by viscous dissipation. 
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Figure 4.  Comparison between the temperature profiles across the liquid film without the 

hydomagnetic effect, with hydromagnetic effect and with hydromagnetic and viscous 

dissipation effects. 
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Figure 5. Temperature profiles as function of the transverse distance at different Hartman numbers. 

 
The effect of the Hartman number Ha  on the transverse distribution of the entropy generation 

number is plotted in Fig. 7. As the Hartman number increases the entropy generation number increases 
in the transverse direction and a minimum in the entropy generation number appears near the heated 
plate. At the upper surface where both velocity and temperature are maximum (or minimum) which 
cause zero velocity and temperature gradients leaving no contribution to the entropy generation 
number ( second and third term of Eq. (28)), the entropy generation number is most sensitive to the 
Hartman number which is proportional to the magnetic field. The presence of the magnetic field 
creates additional entropy (fourth term of Eq. (28)).  
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Figure 6. Temperature profiles as function of the transverse distance at different Brinkman numbers. 

 
Fig. 8 illustrates the effect of the Brinkman number Br , for fixed Hartman number and 

dimensionless group, on the transverse distribution of the entropy generation number, in which there is 
a minimum near the heated plate. For a given transverse position, the entropy generation number is 
higher for higher Brinkman number. The augmentation of the Brinkman number increases the 
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contribution of the entropy generation number due to the conductive heat in the transverse direction 
because of the viscous dissipation. In all cases the heated plate acts as a strong source of irreversibility. 
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Figure 7.  Entropy generation number as function of the 

transverse distance at different Hartman number. 
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Figure 8. Entropy generation number as function of the 

transverse distance at different Brinkman numbers. 

 
The effect of the dimensionless group 1−ΩBr , on the transverse distribution of the entropy 

generation number is depicted in Fig. 9. The dimensionless group determines the relative importance 
of viscous effect. For small dimensionless group, the entropy generation number decreases along the 
transverse distance. For higher dimensionless group, the entropy generation number decreases first, 
then increases with increasing transverse distance. For a given transverse position, the entropy 
generation number is higher for higher dimensionless group. This is due to the fact that for high 
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dimensionless group, the entropy generation numbers due to the fluid friction and to the magnetic field 
increase (third and fourth term of Eq. (28)). 
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Figure 9.  Entropy generation number as function of the transverse 

distance at different dimensionless group. 

Conclusion 

This paper presents the application of the second law of thermodynamics to a gravity-driven liquid 
film along an inclined heated plate in the presence of a transverse magnetic field and viscous 
dissipation effects. The velocity and temperature profiles are obtained and used to evaluate the entropy 
generation number. The effects of the Hartman number, Brinkman number and the dimensionless 
group on velocity, temperature and entropy generation number are discussed. 

From the results the following conclusions could be drawn: 
Higher Hartman number causes flattened velocity profiles because the magnetic field slows down 

the movement of the fluid along the plate. 
Temperature profiles shift to higher temperatures with increasing Hartman and Brinkman numbers 

because of the heat generated by magnetic and viscous dissipation.   
The entropy generation number increases with Hartman number, Brinkman number and 

dimensionless group. As the Hartman number, Brinkman number and dimensionless group increases, 
the entropy generation number due respectively to the magnetic field, the conductive heat in the 
transverse direction and the fluid friction increases.      
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