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Thermodynamic analysis of halide binding
to haloalkane dehalogenase suggests the occurrence
of large conformational changes
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Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands
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Abstract

Haloalkane dehalogenase~DhlA! hydrolyzes short-chain haloalkanes to produce the corresponding alcohols and halide
ions. Release of the halide ion from the active-site cavity can proceed via a two-step and a three-step route, which both
contain slow enzyme isomerization steps. Thermodynamic analysis of bromide binding and release showed that the slow
unimolecular isomerization steps in the three-step bromide export route have considerably larger transition state
enthalpies and entropies than those in the other route. This suggests that the three-step route involves different and
perhaps larger conformational changes than the two-step export route. We propose that the three-step halide export route
starts with conformational changes that result in a more open configuration of the active site from which the halide ion
can readily escape. In addition, we suggest that the two-step route for halide release involves the transfer of the halide
ion from the halide-binding site in the cavity to a binding site somewhere at the protein surface, where a so-called
collision complex is formed in which the halide ion is only weakly bound. No large structural rearrangements are
necessary for this latter process.

Keywords: conformational changes; DhlA; halide binding; haloalkane dehalogenase; pre-steady-state kinetics;
thermodynamic analysis

Haloalkane dehalogenase~DhlA! from Xanthobacter autotrophi-
cus GJ10 is capable of hydrolyzing short-chain haloalkanes to
produce the corresponding alcohols and halide ions. This remark-
able ability to cleave carbon-halogen bonds in xenobiotic chemi-
cals makes it an important catalyst in the biotechnological removal
of contaminants. X-ray structures of DhlA show that the reaction
takes place in a mainly hydrophobic cavity located between two
domains: the main domain with ana0b-hydrolase fold structure
and the smallera-helical cap domain lying on top of the main
domain~Verschueren et al., 1993a!. The active-site cavity is formed
by a number of hydrophobic residues, the catalytic triad residues
Asp124, His289, and Asp260, and the halide-binding site formed
by Trp125 and Trp175.

A kinetic mechanism~Fig. 1! has been formulated for haloal-
kane dehalogenase on the basis of the catalytic mechanism~Ver-
schueren et al., 1993b; Pries et al., 1994, 1995! and kinetic
measurements~Schanstra et al., 1996a; Schanstra & Janssen, 1996!.
The conversion of 1,2-dibromoethane~DBE!, which is the best
substrate known for DhlA, starts with DBE entering the active-site

cavity ~E{DBE! followed by a nucleophilic attack of Asp124 on
the bromine-carrying C1 atom of the substrate. This results in the
cleavage of the carbon-bromine bond with the concomitant pro-
duction of a bromoethyl-enzyme intermediate and a bromide ion
~E-R{Br2!, the latter of which is bound between the two trypto-
phans of the halide-binding site. Next, the covalent intermediate is
hydrolyzed by a water molecule activated by His289 and Asp260.
The 2-bromoethanol molecule that is formed leaves the cavity
immediately and the bromide ion remains in the active site~E{Br2!.
Finally, the bromide ion is exported from the cavity to the solvent,

Reprint requests to: Dick B. Janssen, Department of Biochemistry, Uni-
versity of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
e-mail: D.B.Janssen@chem.rug.nl.

Fig. 1. Schematic representation of the conversion of 1,2-dibromoethane
~DBE! by haloalkane dehalogenase. Only kinetically relevant steps are
shown.
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which happens to be the slowest and most complex process during
catalysis.

Kinetic analysis of halide binding and release showed that there
are two reversible parallel routes for the bromide ion to leave the
active site~Fig. 1; Schanstra & Janssen, 1996!. In the first route
~upper route in Fig. 1!, a slow unimolecular enzyme isomerization
process~k4! leads to an “open” conformation~E1{Br2! from which
the bromide ion can rapidly dissociate~K5!. After this, the free
enzyme reverts to a “closed” state. According to this route, bro-
mide binding starts with a slow conformational change of the free
enzyme~k26!, leading to a more “open” form of DhlA~E1!. After
rapid binding, the enzyme reverts to a form from which the bro-
mide ion cannot quickly escape~k24!. The second export route for
the bromide ion~lower route in Fig. 1! starts with a slow unimo-
lecular step~k7!, which is followed by a fast bimolecular reaction
step in which bromide is released~K8!. During the normal catalytic
cycle, bromide release mainly proceeds via the upper route, since
reaction stepk4 is faster thank7. The isomerization step~k4! before
bromide release in the upper route is therefore the main rate lim-
iting step during conversion of 1,2-dibromoethane~Schanstra
et al., 1996a!.

Although the kinetics of bromide binding and release have been
studied in detail, little is known about the structural processes
associated with the three slow unimolecular steps. It has been
suggested that these enzyme isomerization steps involve structural
changes in the cap domain, since this part of DhlA is thought to
have considerable flexibility~Schanstra et al., 1996b; Schanstra &
Janssen, 1996!. To learn more about the structural processes and
thermodynamic driving forces that are associated with the unimo-
lecular isomerization steps, we have used the Arrhenius equation to
derive thermodynamic parameters for these steps by evaluating the
temperature dependence of the corresponding rate constantsk4,
k26, k7, and k27 ~Fig. 1!. The Van’t Hoff equation was used to
determine the thermodynamic properties of the overall bromide
binding and release.

Results and discussion

Temperature dependence of the steady-state bromide
dissociation constant

The steady-state fluorescence after mixing DhlA with various con-
centrations of bromide was used to calculate the fraction of the total
fluorescence that is quenched at saturating bromide concentrations
~ fa! and the apparent bromide dissociation constant~Kd!. The fa
~0.33! was constant within the temperature range used in the ex-
periments. The affinity of DhlA for bromide ions decreased twofold
when the temperature was increased from 15–358C ~Table 1!. The
Van’t Hoff plot was linear~Fig. 2A!, suggesting that the heat ca-
pacity change is small. Van’t Hoff analysis yielded the thermo-
dynamic parameters in Table 2. The contribution of the entropy to
the Gibbs free energy is substantial and positive in the temperature
range studied. Therefore, we can conclude that bromide release is
entropically driven.

Kinetic and thermodynamic analysis of bromide binding
and release at different temperatures

The kinetics of bromide binding and release were studied in the
range of 15–408C by stopped-flow fluorescence experiments in
which enzyme~5 mM ! was rapidly mixed with 10–1000 mM NaBr

~concentrations after mixing!. The fluorescence transients could all
be fitted by a single-exponential equation~Fig. 3A!, which gave an
observed bromide binding rate~kobs! for each bromide concentra-
tion. The dependence ofkobson the bromide concentration is shown
in Figure 3B for each temperature. These plots all display a typical
biphasic behavior. In the first part of the plot,kobsdecreases as the
bromide concentration increases in the range of 0–20 mM bro-
mide. This is in agreement with a reaction scheme in which isom-
erization steps have to precede binding and release of the bromide
ion ~upper route in Fig. 1!. In the second part of the plot,kobs

increases with increasing bromide concentrations and displays sat-
uration behavior at high bromide concentrations. This hyperbolic

Table 1. Bromide-dissociation constants and associated rate
constants of haloalkane dehalogenase at pH 8.2
and different temperatures

T
~K !

Kd

~mM!
k4

~s21!
k26

~s21!
k7

~s21!
k27

~s21!
K8

~M !

288 4.06 0.4 1.0 0.5 0.10 24 0.99
293 4.96 0.3 2.0 0.9 0.16 37 1.01
298 5.06 0.3 3.5 2.1 0.34 60 0.99
303 6.66 0.4 8.6 3.6 0.51 95 1.24
308 7.96 0.3 56 10.1 1.1 200 1.53
313 9.06 1.3 67 22 2.0 310 1.50

A

B

Fig. 2. Van’t Hoff analysis of the temperature dependencies of~A! the
overall steady-state bromide dissociation constant and~B! equilibrium con-
stant K8. The solid lines are linear least-squares fits of the data~see
Table 2!.
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increase ofkobs ~20–800 mM bromide! can be explained by as-
suming a second, parallel binding route involving the rapid for-
mation of a collision complex followed by a slow unimolecular
step, as is depicted in the lower route of Figure 1~Fersht, 1985;
Johnson, 1995; Schanstra & Janssen, 1996!. Both routes must
operate in parallel, since the time course of the fluorescence quench-
ing traces followed single exponentials over the whole concentra-
tion range. From the plots ofkobs vs. time, rate and equilibrium
constants can be obtained using numerical analysis~Schanstra &
Janssen, 1996!. Since no jump of the fluorescence intensity was
observed in the dead time of the instrument, the fluorescence traces
can only be simulated by assuming that the fluorescence of the
collision complex~E{Br2!* is not quenched by the bound bro-
mide ion. This suggests that in this complex the bromide ion is not
located between the tryptophan residues in the active-site cavity,
but is bound to a binding site somewhere at the protein surface.
Unique solutions could be obtained for the unimolecular rate con-
stantsk4, k26, k7, andk27, with an accuracy of610% ~Table 1!.
The other reaction steps in the upper route are too fast for accurate
measurements, withk24 . 400 s21 andk6 .~100 * k26! at each
temperature. The equilibrium constantK5 depends on the equilib-
ria E{Br2 a E1{Br2 andE a E1 and could not be determined
because only lower limits were obtained fork24 and k6. For the
lower route, the equilibrium constants of both steps could be de-
termined~k70k27 andK8!. At each temperature these values were
in accordance with the measured overallKd.

The unimolecular rate constants all increased with increasing
temperature. Plotting lnki vs. 10T resulted in Arrhenius plots
~Fig. 4! from which the energies of activation~Ea,i! and pre-
exponential factors~Ai! could be determined~Table 3!. All four
isomerization steps have activation energies~$80 kJ mol21! that
are typical of reactions involving protein conformational changes
~Gutfreund, 1995!. All three stepsk4, k26, andk7 are associated
with enzyme isomerization steps that lead to a form of the enzyme
that can rapidly bind or release a bromide ion. Yet, there is a
striking difference between the upper and the lower route. The

Table 2. Thermodynamic parameters for overall bromide
release from haloalkane dehalogenase obtained from
Van’t Hoff analysis at pH 8.2 and 308C (303 K)

Reaction step
in Figure 1

DG8
~kJ mol21!

DH8
~kJ mol21!

DS8
~J mol21 K21!

Overall Br2 releasea 12.7 24.6 39.5

Overall Br2 releaseb 12.7 25.4 42.1

K7 ~k70k27!
c 13.2 10.3 29.5

K8
d 20.5 15.1 51.6

aParameters obtained from Van’t Hoff plot~Fig. 2A!.
bK7 1 K8.
cParameters obtained from Table 3.
dParameters obtained from Van’t Hoff plot~Fig. 2B!.

B

A

Fig. 3. Kinetics of bromide binding to haloalkane dehalogenase.A: Stopped-
flow kinetic transients showing the intrinsic tryptophan fluorescence~lex5
290 nm,lem. 320 nm, arbitrary units! upon mixing 5mM of enzyme with
0, 2.5, 10, 30, 100, and 400 mM NaBr in T50EMAG buffer at pH 8.2 and
258C ~end concentrations!. All traces are well described by a single-
exponential equation with an observed rate constantkobs. B: Dependence of
the observed rate constantkobs on the bromide concentration over a tem-
perature range of 15–408C ~288–313 K!. The solid lines are fits obtained
by simulation of halide binding and release as depicted in the last part of
Figure 1.

Fig. 4. Arrhenius plot for the unimolecular rate constants involved in the
three-step route~open symbols! and two-step route~filled symbols! for
bromide export~upper and lower routes in Fig. 1, respectively!. The solid
lines are the linear least-squares fits of the data.
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slow unimolecular stepsk4 andk26 of the upper route of Figure 1
have higher activation energies than stepk7 in the lower route,
though they are 20- and 8-fold faster than stepk7, respectively. The
structural changes associated with the isomerization steps in the
upper route must therefore be different from those taking place in
the lower route. Also stepk27 has a lower activation energy than
k4 andk26 in the upper route.

The pre-exponential factors~A! associated with stepsk4 andk26

are also very high as compared to the other steps in the reaction
mechanism~Table 3!. In fact, the pre-exponential terms of 1023

and 1020 for step k4 and k26, respectively, exceed the limit of
simple molecular rotations and vibrations~;1014! by multiple
orders of magnitude and therefore cannot be interpreted in terms of
meaningful frequency factors~Gutfreund, 1995; Fitzgerald et al.,
1996!. This could provide evidence that large-scale protein mo-
tions involving many bond torsions may occur in reaction stepsk4

andk26. Similar pre-exponential factors of 1024–1025 were found
by Fitzgerald et al.~1996! when studying a hinged loop rearrange-
ment near a buried artificial cavity in cytochromec peroxidase.

The values ofEa,i andAi , together with the rate constants~ki!,
were used to calculate the free energies of activation~DG‡!, en-
thalpies of activation~DH ‡!, and entropies of activation~DS‡!
~Table 3!. The difference in the magnitudes of the activation free
energies for the four reaction steps reflects the difference in rate
constants: the slowest step,E{Br2 r ~E{Br2!* has the highest
value forDG‡. Furthermore, the entropic and enthalpic contribu-
tions to the free energies of activation are negative and positive,
respectively, for all four isomerizations. The pre-exponential fac-
tors were also calculated from the activation entropy~Equation 8!
and proved to be nearly identical to theA values determined by
extrapolation of the Arrhenius plots~Table 3!. Since both the for-
ward and reverse reaction rates,k7 andk27, could be determined,
we could calculate the standard free energy, reaction enthalpy, and
entropy for this reversible unimolecular step~Table 2!. Together
with the thermodynamic parameters ofK8, which were obtained
from Van’t Hoff analysis~Fig. 2B!, we could calculate the standard
thermodynamic parameters of overall halide release, which were in
good agreement with the values obtained directly from Van’t Hoff
analysis of the overallKd ~Table 2!.

Interestingly, both transitionsk4 and k26 in the upper route of
Figure 1 have significantly larger transition state entropies and
enthalpies compared with the values of the isomerization stepsk7

andk27 in the lower route~see Table 3!. Thus, the entropy com-
ponents are much more important in the transition state free ener-
gies of the unimolecular steps in the upper route than in the lower
route.

The large activation entropies for stepsk4 andk26 are indicative
of considerable structural rearrangements. It has been suggested
that bromide release may require the entrance of water molecules
into the active-site cavity~Schanstra & Janssen, 1996!. A large
entropy effect can be expected both because of structural changes
and desolvation processes~Rand, 1992; Gutfreund, 1995!. A tran-
sition state in which the halide ion is both bound to the protein and
solvated is difficult to envision without significant structural changes,
since the buried active-site cavity is too small to accommodate
both a halide ion and a number of water molecules. Furthermore,
the transition states of stepsk4 andk26 show similar entropy and
enthalpy contributions although no halide is present during the
process described byk26. The isomerization observed in the upper
route could involve significant conformational changes leading to
a more open structure and the formation of a solvent accessible
channel that leads to the active site. Similar changes were observed
in cytochromec peroxidase~Fitzgerald et al., 1996!.

The activation enthalpies associated with all four unimolecular
steps are consistent with disruption of multiple interactions, which
can be Van der Waals interactions, hydrogen bonds or ion pairs,
individually corresponding to energies in the range of 1–10, 12–25,
and 20–50 kJ mol21, respectively~Fersht, 1985!. The activation
enthalpies of 126 and 111 kJ mol21 for reaction stepsk4 andk26,
respectively, are relatively high and may even reflect the cis-trans
isomerization of a proline residue, the activation enthalpy of which
lies in the range of 92–113 kJ mol21 ~Koide et al., 1993; Fitzgerald
et al., 1996; Veeraraghavan et al., 1997!. Proline cis-trans isomer-
ization could serve as a hinge point in the movement of a loop or
flap to open a cavity for the entry of ligands as observed inCan-
dida rugosalipase ~Grochulski et al., 1994! and cytochromec
peroxidase~Fitzgerald et al., 1996!. In haloalkane dehalogenase,
Pro57 and Pro168 exist in the cis configuration and they are lo-
cated in the main and cap domain, respectively~Verschueren et al.,
1993a!. Pro168 might be the most likely candidate to undergo a
cis-trans isomerization during the conformational change, since it
is located in an N-terminal helix-loop-helix structure~residues
159–181! in the cap domain that was proposed to be involved in
the enzyme isomerization~Schanstra et al., 1996b; Krooshof et al.,
1998!.

On the basis of the observations mentioned above, we propose
that the three-step halide export route~upper route in Fig. 1! in-
volves conformational changes that result in a water accessible
active site, which allows solvation and subsequent escape of the
halide ion. We suggest that the two-step route~lower route! for
halide release involves the transfer of the halide ion from the
halide-binding site in the cavity to a binding site somewhere at the

Table 3. Thermodynamic parameters of the transition states of the unimolecular steps involved in bromide binding
and release in haloalkane dehalogenase at pH 8.2 and 308C (303 K)

Reaction step in Figure 1
Ea

‡

~kJ mol21!
DH ‡

~kJ mol21!
DG‡

~kJ mol21!
DS‡

~J mol21 K21! log Aextrap
a log Acalc

b

E{Br2 r E1{Br2 ~k4! 1296 9.5 1266 9.5 68.86 0.3 190 23.06 0.1 23.1
E r E1 ~k26! 1146 5.8 1116 5.8 71.06 0.3 135 20.16 0.1 20.3
E{Br2 r ~E{Br2!* ~k7! 88.66 4.3 86.16 4.3 75.96 0.3 33.5 15.46 0.1 15.0
~E{Br2!* r E{Br2 ~k27! 78.36 4.0 75.86 4.0 62.86 0.3 43.0 15.56 0.1 15.5

aObtained from Arrhenius plot by extrapolation toT r `.
bCalculated fromDS‡.
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protein surface, where a so-called collision complex is formed in
which the halide is only weakly bound. No large structural re-
arrangements seem to be necessary for this process, but its rate is
much lower than that of the upper route~Fig. 1!.

Materials and methods

Protein expression and purification

Haloalkane dehalogenase was purified fromEscherichia colistrain
BL21~DE3! transformed with plasmid pGELAF1, which carries
the haloalkane dehalogenase gene~dhlA! under the control of the
T7 promoter~Schanstra et al., 1993!. Expression and purification
were achieved as described earlier~Schanstra et al., 1993!. The
enzyme was concentrated with an Amicon ultrafiltration cell using
a PM30 filter and stored at220 or 48C in TEMAG buffer~10 mM
Tris-sulfate pH 7.5, 1 mM EDTA, 1 mM 2-mercaptoethanol, 3 mM
sodium azide, and 10%~v0v! glycerol!. Protein concentrations
were determined from absorbance measurements at 280 nM, using
the absorbance coefficient of 4.873 104 M21 cm21, and the purity
was checked by SDS-polyacrylamide gel electrophoresis.

Halide binding experiments

The pre-steady-state kinetics of halide binding were determined by
stopped-flow fluorescence quenching experiments using an Ap-
plied Photophysics SX17MV stopped-flow instrument. A wave-
length of 290 nM was used for excitation. Equal volumes of the
protein and ligand were rapidly mixed and the resultant quenching
of the intrinsic protein fluorescence was followed by measuring
the fluorescence signal above 320 nm using a cutoff filter. All
reactions were performed over a temperature range of 15–408C
~288–313 K! in TEMAG buffer at pH 8.2. The reported reactant
concentrations are those present in the reaction chamber, after
mixing. At temperatures higher than 308C, fresh enzyme was used
for each measurement, which was allowed to equilibrate for a short
period of time~max 2 min! to prevent thermal denaturation. All
fluorescence traces, which were the average of three individual
experiments, were fitted using computer software provided with
the stopped-flow instrument.

The apparent halide dissociation constants~Kd! were derived
from the steady-state part of the fluorescence traces using nonlin-
ear regression fitting~SigmaPlot, Jandel Scientific! of

~F0 2 F!

F0
5

fa•@X
2 #

@X2 # 1 Kd
~1!

whereF is the observed steady-state fluorescence at halide con-
centration@X2#, Kd is the apparent dissociation constant, andfa is
the fraction of the total fluorescence that is quenched at saturating
halide concentrations~..Kd!.

Kinetic data from the pre-steady-state part of the stopped-flow
traces were further analyzed by iterative numerical integration, as
described previously~Schanstra & Janssen, 1996! using the sim-
ulation software Gepasi~Mendes, 1993! linked to the spreadsheet
program Quattro-Pro~Borland International Inc.!. The Gepasi pro-
gram uses numerical integration to simulate reaction schemes. The
total fluorescence of all enzyme species at each time point was
calculated in Quattro-Pro, using a one-third reduction of fluores-

cence by halide binding. As a constraint in the simulation and
fitting process, the dissociation constant for halide binding was
used according to

Kd 5
K4k3k25~k1 1 k21!

k21~k3k5 1 k23k5 1 k3k25!
. ~2!

Determination of thermodynamic parameters
of bromide binding and release

Thermodynamic parameters of bromide binding and release were
derived from the temperature dependence of the steady-state bro-
mide dissociation constant using the Van’t Hoff equation:

d ln Kd

d~10T !
5 2

DH7

R
~3!

whereKd is the apparent bromide dissociation constant,R is the
gas constant,T the absolute temperature, andDH8 is the standard
reaction enthalpy. Consequently, a straight line is to be expected
with a slope equal to2DH80R when lnKd is plotted against 10T.

The dissociation constant was also used to calculate the standard
free energy of reaction by

DG7 5 2RT•ln Kd. ~4!

Finally, the standard reaction entropy~DS8! arises from:

DS7 5
~DH7 2 DG7!

T
. ~5!

Determination of thermodynamic parameters of activation

Thermodynamic parameters of activation were obtained from the
temperature dependence of an elementary reaction rate constant.
The energy of activation~Ea,i! is defined as

Ea, i 5 RT2
d ln ki

dT
, ~6!

whereR is the gas constant,T the absolute temperature, andki the
rate constant of reaction stepi. Integration of Equation 6 yields

ln ki 5 ln A 2
Ea, i

RT
. ~7!

Both Ea,i and A can be considered constant over a temperature
range of about 50 K~Chang, 1981!, so that plotting lnki vs. 10T
results in a linear relationship~Arrhenius plot! with slope2Ea,i0R
and intercept lnA, to be determined by extrapolation toT r `.
The pre-exponential factorA may alternatively be calculated by

A 5 SkBT

h D•eS11
DSi

‡

R D ~8!

wherekB is the Boltzmann constant,h is Planck’s constant, and
DSi

‡ is the transition state entropy belonging to reaction stepi.
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The free energy of activation~DGi
‡
!, enthalpy of activation

~DHi
‡
!, and entropy of activation~DSi

‡
! for an elementary reaction

at a given temperature were subsequently calculated from

DGi
‡

5 RT•lnSkBT

hki
D , ~9!

DHi
‡

5 Ea, i 2 RT, ~10!

and

DSi
‡

5
~DHi

‡
2 DGi

‡
!

T
. ~11!
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