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SEPARATION SCIENCE AND TECHNOLOGY 

Vol. 39. No. 16, pp. 3897-3942,2004 

REVIEW 

Thermodynamic Analysis of 
Separation Systems 

Department of Chemical Engineering, Virginia Polytechnic Institute and 

State University, Blacksburg, Virginia, USA 

ABSTRACT 

Separation systems mainly involve interfacial mass and heat transfer as 

well as mixing. Distillation is a major separation system by means of 

heat supplied from a higher temperature level at the reboiler and rejected 

in the condenser at a lower temperature level. Therefore, it resembles a 

heat engine producing a separation work with a rather low efficiency. 

Lost work (energy) in separation systems is due to irreversible processes 

of heat, mass transfer, and mixing, and is directly related to entropy pro- 

duction according to the Gouy-Stodola principle. In many separation 

systems of absorption, desorption, extraction, and membrane separation, 

the major irreversibility is the mass transfer process. In the last 30 years or 

so, thermodynamic analysis had become popular in evaluating the effi- 

ciency of separation systems. Thermodynamic analysis emphasizes the 
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use of the second law of thermodynamics beside the first law. and may be 

applied through (i) the pinch analysis, (ii) the exergy analysis. and (iii) the 

equipartition principle. The pinch analysis aims a better integration of a 

process with its utilities. It is one of the mostly accepted and utilized 

methods in reducing energy cost. Exergy analysis describes the 

maximum available work when a form of energy is converted reversibly 

to a reference system in equilibrium with the environmental conditions; 

hence, it can relate the impact of energy utilization to the environmental 

degradation. On the other hand. the equipartition principle states that a 

separation operation would be optimum for a specified set of fluxes and 

a given transfcr area when the thermodynamic driving forces are uni- 

formly distributed in space and time. Thermodynamic analysis aims at 

identifying. quantifying, and minimizing irreversibilities in a separation 

system. This study presents an overview of the conventional approaches 

and the thermodynamic analysis to reduce energy cost, thermodynamic 

cost. and ecological cost in separation systems with the main emphasis 

on distillation operations. Some case studies of cost reduction based on 

the thermodynamic analysis are also included. 

Key Words: Distillation; Thermodynamic analysis; Pinch analysis; 

Exergy analysis: Equipartition principle; Thermoeconomics. 

INTRODUCTION 

Distillation is a major separation system in chemical process industries. It 

uses heat supplied at higher temperature levels, and rejects almost equal 

amount of heat in the condenser at lower temperature levels yielding a separ- 

ation work of mixtures. Therefore, it is an energy intensive system, and 

accounts more than 3% of the energy dissipation in the United states.['] In 
the last 50 years, reduction of energy consumption in distillation attracted 

intensive research. Earlier research is mainly concentrated on optimum 

reflux ratio and column pressure. Beside that, the retrofits, such as heat- 

integrated columns, application of heat pumps, changing feed stage location, 

and using feed splitting have also been popular. Later, researchers explored 

the use of principles of thermodynamics in reducing the cost of separation 

systems, particularly in distillation operations. The excessive cost of separ- 

ation systems results partly because of energy dissipation or lost work, and 

combination of the first and second laws of thermodynamics can identify 

and quantify the lost work due to irreversible processes. Efforts to minimize 

the entropy production have become popular since, according to the Gouy- 

Stodola principle, the lost separation work is directly related to entropy 

production resulting from irreversible heat, mass transfer, and mixing. This 
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innovative approach is called the thermodynamic analysis, and started with the 

pinch analysis, which integrates a process with its utilities in a way to reduce 

the cost of energy. Later exergy analysis was developed to identify the parts of 

systems with excessive irreversibilities and, hence, to control the lost work. 

Some researchers have recently combined the pinch analysis and the exergy 

analysis, and related thermodynamic imperfections with environmental con- 

cerns. Based on the developments in nonequilibrium thermodynamics 

(NET), some recent research has reported the implications of the rate of 

entropy production on the use of available energy in separation 

Equipartition principle is one result of such research, and it states that the 

uniform distribution of thermodynamic forces in space and time can 

improve the thermodynamic effectiveness of separation systems. The thermo- 

dynamics approach may have wide implications in reducing the energy cost, 

thermodynamic cost (imperfections), and environmental deterioration. With 

this in mind, this study presents a critical evaluation of various approaches 

for reducing the cost of energy in separation systems with the emphasis on dis- 

tillation. Within the next sections, some of the conventional approaches and 

relatively recent innovative approaches of thermodynamic analysis are pre- 

sented. Some case studies on reducing the energy cost by several approaches 

are also presented. Finally thermoeconomics are briefly presented. 

SOME CONVENTIONAL APPROACHES 

Approaches for energy saving in distillation systems may vary according 

to the number of components, nature of mixtures, and utility constraints. Most 

of the conventional approaches involve internal and external modifications and 

a better integration of columns with the rest of energy exchanging systems. For 

well-balanced, nearly ideal mixtures, the most useful configuration is to separ- 

ate pure components in each column in successive order of decreasing vola- 

tility. However, for mixtures, such as those containing large proportions of 

less volatile components, each case must be considered in detail to save 

energy, which may be s~bstantial."~ Large concentration changes in multi- 

component mixture separations may lead to considerable energy losses, there- 

fore, the key components should be removed from the feed mixture. As seen in 

Fig. 1 ,  light-nonkey components can be removed by using an absorber, and the 

bottom products of the absorber provide the feed to the main distillation 

column. Similarly, heavy-nonkey components are removed by using a prestrip- 

per, and the over products of the stripper become the feed of the main distilla- 

tion column. These modifications can reduce the load of the column for 

debottlenecking and the required number of stages.["s1 A recent work con- 

siders the feed composition and relative volatilities for sequencing columns 
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Figure 1. Prefractionation arrangements: (a) removing light keys with absorber, 
(b) removing heavy keys with stripper. 

with respect to their costs of 0 ~ e r a t i 0 n . l ~ ~  Hybrid processes of distillation and 

vapor permeation can be alternatives to azeotropic and extractive distillation 

and lead to improved separation systems.[7J 

Thermally coupled multiple effect distillation columns are well known in 

energy saving;L53S1 the feed is sent into two columns operating at different 

pressures, and temperatures of the condensing vapors and boiling liquids 

will be different from each other by a minimum temperature difference 

AT,,,. As Fig. 2 shows, the heat from the condensing vapor in the column 

below is transferred to the reboiler within the column above. Feed split can 

be adjusted to have equal duties of adjacent boiling and condensing 

streams. Therefore, the heat duties of boiling and condensation, Qett, are 

approximately equal to the heat duty for a single effect, Q, divided by the 

number of effects (QeR = Q/Nef). This saves energy despite an extra operat- 

ing and capital cost of equipment.['] On the other hand. in a diathermal system 

with heat exchangers all along the column, or interstage heat exchangers, or 

internal tray design with heat exchanging coils, it is possible to adjust the 

flow ratio of the phases to vary the slopes of operating lines. Consequently, 

the operating lines become closer to equilibrium curves, and, hence, the 

irreversibility due to mass transfer can be reduced. However this requires 
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Figure 2. Two-effect distillation column;[51 B: bottom product. D: distillate. 

taller columns, and, hence, an economical analysis to evaluate the gains and 

losses,[91 although the side reboilers reduce the consumption of expensive 

high-pressure steam. Optimum locations of heating and cooling zones could 

lead to maximum exchangeable energy loads.[101 Such modifications have 

been mainly carried out for binary systems, although some work on heat inte- 

gration for multicomponent distillation systems is also reported.[","] 

Column and heat exchanger network integration in refinery operations is 

highly pop~lar.['3-221 In the synthesis of a heat exchanger network, the main 

objective is to determine the maximum energy recovery based on the heating 

and cooling requirements of the process streams leading to the minimum hot 

and cold utilities, which can be calculated by a linear programming 
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approach.[51 Colunln retrofit models and heat exchanger network retrofit 

models may be optimized based on a successive quadratic programming 

solver.[''] Less energy consumption and more free capacity at a minimum 

capital investment may be possible by installing intermediate re boiler^,['^"^' 
pumps-around at certain locations. and adjusting the cooling duty for each 

pump-around,[151 preflashing units before the crude oil distillation unit,"61 

and reducing the operating pressure and increasing the preflash overhead 

vapor (Fig. 3).L5,181 The reboiler flashing is relatively the most economical 

among these  configuration^.^'^ For close boiling feeds for which small pres- 

sure changes are required, the cost of compression is not too high. In the 

close boiling system of propylene-propane separation, a heat pump lowers 

the annual cost by about 3770, and minimizes the flue gas emissions by 

about 60%.['~] The optimality criterion may be the payback period for a pre- 

liminary economic analysis of heat pump-assisted distillation ~ ~ s t e r n s . ~ ' ~ ]  

However, designers should consider the power consumption and water man- 

agement aspects of heat pump operations for an economical  erati ti on.['^-'^] 
Attainable region analysis is a graphical optimization mainly used to find 

a complete set of all possible outcomes from a specified feed set. It is applied 

to a binary distillation operation with side condensers and reboilers, and the 

attainable region of composition, cost, and reflux/boil up ratio space is con- 

structed.['" Cost of the heat transfer units is included in the objective function 

to be minimized; the optimized solution could reduce column size and energy 

cost up to 1~%.~". '~]  

Feed conditioning is another important external modification; it is less 

expensive compared with the inter heating or inter cooling, and feed precool- 

ing or preheating can be useful to unload the top or bottom sections of the 

column. Cold feed may require a large amount of heat exchange below the 

feed stage to strip the light components. Using a process simulator, 

optimum split ratio and feed location can be obtained; feed splitting and pre- 

heating with the bottom product can save up to 50% energy (Fig. 4).L'9.'01 Of 

course, one should evaluate thoroughly the economic cost of internal and 

external modifications, which may be identified and evaluated by incorporat- 

ing the principles of thermodynamics; for example, it may be possible to 

reduce the exergy loss or to distribute the driving forces as evenly as possible 

in the modified system. Thermodynamic analysis is presented in the next 

sections. 

THERMODYNAMIC ANALYSIS 

Efficiency in separation systems is often calculated from the first law of 

thermodynamics. However, since thermal energy cannot be converted into 
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(a) Heat pumping (b) Vapor recompression 

(c) Reboiler flashing 

Figure 3. Various distillation ~onfi~urations;~'~ B: bottom product, C: compressor, 
D: distillate, V: valve. 

work completely, the quality of thermal energy should be taken into 

As distillation systems consume about 95% of the total 

thermal energy used in separation systems in the United ~ t a t e s , ' ~ "  a consider- 

able part of this energy is dissipated into the environment. Thermodynamic 

analysis can identify the part of total energy convertible to work, and, 

hence, the possible ways of reducing the dissipated energy. It calculates the 

entropy production due to irreversibilities, which is directly proportional to 
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Figure 4. Splitting the feed in such a way that the non-heated fraction keeps the 
reflux ratio low and the heated one recovers energy from the reboi~er.~"' 

the dissipation of available energy. However, how to use the thermodynamic 

analysis to optimize a separation system has not always been clear. 

The rate of entropy production is always positive and calculated as the 

product of fluxes and thermodynamic forces operating within a  stern;^"^',^^^ 
fluxes are expressed as linear functions of all the forces when a system is not 

far from global equilibrium. The key concepts for thermodynamic analysis are: 

(i) availability (exergy), (ii) lost work (dissipation), and (iii) environmental 

cost due to thermodynamic imperfections. 

A general energy balance for a control volume with multiple streams is 

where the first term is the change in internal energy, the second is the net 

change of enthalpy, kinetic, and potential energies of flow streams within 

the control volume, Q, is the heat input rate from the surroundings at tempera- 

ture To, CQ, is the heat input rate from a reservoir at temperature T,, and 2% 

shows the work that includes mechanical shaft work. expansion or contraction 

work, and electrical work. Assuming that the kinetic and potential energy over 

the control volume are negligible, Eq. (1) becomes 
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Entropy balance for the same control volume and its surroundings is 

Here the first term is the change of entropy of the system, the second is the net 

rate of entropy flow, - Q,/T, is the rate of decrease in entropy of surrounding 

at To, and -CQ,/T, is the sum of the rates of entropy decrease of the heat 

reservoirs at various temperatures of Ti. The term @ shows the rate of 

entropy production due to irreversibility, which is zero when processes and 

heat flows between the system and its surrounding are reversible. Equation 

(3) shows that entropy is not conserved. Elimination of Q, in Eqs. ( 2 )  and 

(3) yields 

From the first and second terms we have a quantity called the availability A: 

A = H - T,S. Change in A represents the minimum work required to achieve a 

change. Availability is related to the maximum useful work a system can 

deliver when it is brought to equilibrium with the environmental conditions 

in reversible mode. 

The last term in Eq. (4) To@ is called the rate of lost work LW 

or loss of availability, or exergy destroyed. The lost work is a quantitative 

measure of the thermodynamic cost or imperfections in a system, and is 

related to availability through Eq. (4) 

Heat and work terms in Eq. (6) show transferred availabilities between a 

system and its environment. For a steady-state process the lost work can be 

related to the change in availability, heat, and work terms. and we obtain 
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The lost work has two important features: (i) it identifies and quantifies 

the power lost due to various irreversibilities, and (ii) it relates the evolution 

of a system to the environmental conditions. For a steady state and adiabatic 

system, Eq. (6) becomes 

Equation (8) shows that when availability decreases, and work is trans- 

ferred from surrounding to system then the lost work will be positive: the 

maximum work that a system can deliver would be the decrease in availability, 

while the minimum work would correspond to the increase in availability 

Only, the zero lost work has no impact on the environment. 

Reducing the cost in a separation system needs careful elaboration of the 

concept "cost." The lost work causes the inefficient use of energy (loss of 

exergy), and environmental cost due to (i) discharging lost exergy into the 

environment, and (ii) the depletion of natural resources because of inefficient 

use of fossil fuels. Hence, the lost work may affect the sustainable develop- 

ment adversely. In most of the continuous distillation system, the net avail- 

ability increases because of the heat input in the reboiler, and the difference 

between the availability of products and feed streams determines the 

minimum work required for a reversible separation 

The thermodynamic efficiency is expressed by using the lost work 

The thermodynamic efficiency of distillation systems is generally low, and the ther- 

modynamic analysis may lead to innovative systems with increased efficiency by 

decreasing the thermodynamic imperfections and, hence, the lost ~ o r k . [ ' , ~ , ~ ' ~ ~ " ~ ' ]  

Case Study: 1. Distillation of Propylene-Propane Mixture 

Propylene-propane mixture is a closed boiling mixture. A reflux ratio of 

15.9 (close to minimum) and 200 equilibrium stages are necessary. Table 1 

shows the enthalpy and entropies of the saturated feed and saturated products 
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Table I. Conventional column operation for the separation of propylene and 
propane. Thermodynamic properties are estimated by Soave-Redlich-Kwong equation 
of state.['] 

Temperature Flow rate Enthalpy Entropy 
Stream K krnol/h kJ/mol kJ/mol K 

Feed 325 272.2 13,338 - 4.1683 

Distillate 3 19.5 189.2 12,243 - 13.8068 

Bottoms 330.9 113 14.687 -2.3886 

from the simulation results with the Redlich-Soave equation of state.15' The 

reboiler and condenser duties are 8274.72 kW and 8280.82 kW, respectively. 

The reference temperature is 294 K. The lost work is obtained from Eq. (7) as 

LW = 1902.58 kW. Availability analysis yields W,,, = C,,,?zA - CinrzA = 

140.81 kW, and the thermodynamic efficiency 7 is 

The low exergetic efficiency is typical for distillation systems with close 

boiling mixtures, and when a large amount of energy is required in the reboi- 

ler. An alternative is to use reboiler-liquid flashing as shown in Fig. 3(c), 

where the feed has the pressure of 108 psia by a power-recovery turbine. 

A compressor is used to return the reboiled vapor to the bottom of the 

column. The required reboiler duty is somewhat larger than the required 

condenser duty. an auxiliary steam-heated reboiler is needed. So the power 

used in the compressor is traded off with the large reduction in the reboiler 

steam.[51 The alternative distillation system has produced the lost 

work = 501.6 kW, availability W,,,, = 38.2 kW. and the efficiency of 38.21 

(38.2 + 501.6) = 7%. The lost work, 501.6kW, is smaller compared with 

the conventional column of 1902.58 kW. yet the column efficiency is still 

very low. 

Case Study: 2. Distillation of a Five-Component Mixture 

The second column has a feed with five components of ethane, propane. 

n-butane, n-pentane, and n-hexane. Table 2 shows the configuration of the 

column and the simulation results obtained from the Aspen Plus with the 

Peng-Robinson equation of state. The column has the condenser duty of 

3395.336 kW and the reboiler duty of 3432.206 kW. The condenser and the 
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Table 2. Column configuration for a five-component distillation. Simulation 

results from Aspen Plus (Version-1 1). Thermodynamic properties are estimated by 

the Peng-Robinson equation of state. Qc = 3395.3367 kW; QR = 3432.2069 kW: 

N = 14; NF = 7 ;  RR = 8.87. 

Feed Distillate Bottom 

Flow (kmol/h) 

Pressure (Atm) 

Temperature (K) 

Vapor fraction 

Enthalpy (kJ/kmol) 

Entropy (kJ/kmol K) 

Compositions 

Ethane 

n-Propane 

n-Butane 

n-Pentane 
n-Hexane 

reboiler temperatures are 319.3 and 400.2K, respectively. The relerence 

temperature (dead state temperature), To, is assumed to be 300 K. The simu- 

lation results show the lost work = 531.37 kW, Wn,i, = 117.49 kW, and the 

efficiency from Eq. (12) as 18.1%. 

PINCH ANALYSIS 

Pinch analysis optimizes systems with their utilities using the principles 

of thermodynamics. The second law determines the direction of heat flow, 

and prevents crossovers of the hot and cold stream temperatures. Temperature- 

enthalpy diagrams called the composite curves represent the thermal charac- 

teristics of hot and cold streams (Fig. 5). Hot and cold streams can only 

exchange energy up to a minimum allowable temperature difference AT,,,. 
The temperature level at which AT,,, is observed in the system is called 

the pinch point or pinch condition, which defines the minimum driving 

force, hence. the minimum entropy production allowed in a network. Pinch 

is easy to identify by the composite curves, and approaches zero as the area 

for heat transfer equipment approaches infinity. Above the pinch, only the 

hot utility is required, while only the cold utility is required below the 

pinch. and no heat should be translerred across the pinch. For estimating 

the minimum hot and cold utilities required, Linnhoff and ~ l o ~ e r ~ ~ ~ ~ ~ ~ ~  devel- 

oped the temperature-interval method based on the work of ~ o h m a n n . ~ ~ ~ '  
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j Hot utility 

Figure 5. Hot and cold composite curves. 

Similarly, grand composite curves show the variation of heat supply 

and demand in a system. These diagrams enable engineers to identify the 

suitable utility and target appropriate loads for various utility levels by mini- 

mizing the expensive utilities and maximizing the least expensive utilities, 

network area, and number of heat exchanger units; they also provide insights 

for optimum integration of distillation columns. evaporators. condensers, 

furnaces. and heat pumps to reduce the utility requirements of the combined 

system. 

An increase in AT,,, causes higher energy costs and lower capital costs 

(less heat exchanger area). For example, an increase of 5°C from a value of 

AT,,, = 10°C decreases heat exchanger area by 11% and increases the 

required minimum energy by about 9%.14'] To find the value of optimum 

AT,,,, total annual cost is plotted against AT,,, (Fig. 6). An optimum 

AT,,, exists where the total annual cost of energy and capital costs is mini- 

mized. Once the AT,,, is chosen. minimum hot and cold utility requirements 

can be evaluated from the composite curves. Since heat recovery and utility 

system constraints are considered systematically, the pinch analysis can esti- 

mate the reduced annual cost in networks by comparing the cost of fuel and the 

capital cost of a network. It is possible to obtain an accurate estimate (within 

10%- 15%) of overall heat recovery system cost without having to design the 

system.[423431 Pinch analysis has been applied widely in industry leading to 
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Figure 6. Optimum ATmi, from energy cost and capital cost changes. 

considerable savings,L413451 and it can identify energy targets, minimum 

driving forces, and capital cost targets.[461 Dhole and ~ i n n h o f f ' ~ ~ '  developed 

the vapor and liquid composite curves for representing combined heat- and 

mass transfer loss in a column system. Some of the pinch techniques con- 

sist of minimizing pressure-drop effects, water and wastewater, and plant 

 emission^.[^^-^^^ 
Pinch analysis can specify the exchanged heat and mass between hot/rich 

and cold/lean streams based on the first and second laws. According to the 

second law of thermodynamics: 

(heatlmass lost by hotlrich streams below the pinch point) 

-(heat/mass gained by cold/lean streams below the pinch point) 5 0 

(13) 

Using the state space approach to process synthesis, heat and mass exchanger 

network representation of distillation systems can be analyzed and opti- 

m i ~ e d . [ ~ ~ ~ ~ ' ]  Pinch analysis has also been extended to the integration of chemi- 

cal reactor systems with heat optimization of industrial 

ammonia plant,[531 and nitric acid For example, column grand com- 
posite curves;l19-~l.46.4~l can be used to modify the column and heat exchan- 

ger network; a possible modification is the use of heat pumps in columns by 

identifying the heat sinks and sources, leading to considerable saving and 

a shorter pay back period.[471 

Some of the advantages of the pinch analysis over conventional ones are 

the ability to set energy cost and capital cost targets for a network, update the 
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Feed 

Bottoms 

Reboiler 

Figure 7. Distillation column as a heat engine between reboiler (R) and con- 
denser ( c ) . ~ ~ ~ ]  

process Bowsheeting, and debottlenecking of distillation columns (Fig. 7). 

However, some of the modifications imposed by the pinch analysis may 

require substantial capital investments and changes in internal stage design 

of distillation columns. Also, pinch analysis may not deliver the desired 

result, unless it is applied before completion of the process design stage and 

in consultation with the process specialists. The analysis will be successful 

if target temperatures and utilities are set on the basis of process objectives 

rather than on flowsheeting. For example, a flowsheet may mix two streams 

with different temperatures to prepare a feed for a process. This causes degra- 

dation of available energy or thermodynamic driving force. To prevent this, 

the temperatures of both streams should be increased to the process operating 

temperature. Also, heat recovery from special streams like two-phase streams 

should be completed in a single heat exchanger due to phase separation and 

large pressure drops; also, the destination of process streams should be fully 

evaluated to avoid adverse effects of streams with hazardous chemicals. 

However, process integration would be more complete and meaningful if it 

targets environmental protection, emission control, and depletion of natural 

resources beside the cost of energy. It is encouraging to note that this issue 

is addressed in several extensions of the analysis.["7'"1 Moreover, the software 

developed for process integration should be able to interact with the available 

simulation software to access a wide range of design models.[491 
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Case Study: Pinch Analysis: Column Grand Composite 

Curves: T-H, or Stage-H 

For the column configuration described in Table 2, the column grand 

composite curves (T-H; Stage-fl for a five-component mixture have been 

obtained using the Aspen Plus column-targeting tool capability for thermal 

analysis. This analysis is helpful in identifying the targets for appropriate 

modifications in order to reduce utility and capital costs, improve energy effi- 

ciency. and facilitate column debottlenecking. It is based on thermodynami- 

cally reversible column operation at minimum reflux with appropriate heat 

integration. The column grand composite curves (Figs. 8a, 8b) are based on 

the practical near minimum thermodynamic condition approximation pro- 

posed by Dhole and ~innhoff,''~' and show the theoretical minimum 

heating and cooling duties within the temperature range. The stage-enthalpy 

calculations take into account the losses or inefficiencies stemming from the 

actual colun~n design, such as pressure drops, multiple-side products, etc. 

Figure 8(a) can be useful for identifying the targets for feed preparation and 

location. reflux ratio, and heat integration modifications. The column's 

grand composite curves indicate distortions as significant projections around 

feed stage location (pinch point), if the current feed stage is inappropriate. 

Figure 8b shows a distortion at the pinch point (stages 8 and 9). To compensate 

inappropriate feed stage location, extra local reflux may be needed. Beside 

that, a feed stage too high up or too low in the column will display sharp 

enthalpy changes on the condenser and on the reboiler, respectively. The 

sharp enthalpy changes on the grand composite curves indicate the need for 

adjustment of feed quality. Figure 8 shows almost equal enthalpy changes 

on both the reboiler and condenser sides of the curves. However a sharp 

enthalpy change on the reboiler side suggests that the feed is subcooled, 

and a preheater should be installed. The horizontal gap between the pinch 

point and the ordinate in Figure 8a, which is about 200 kW, indicates the pos- 

sible reduction in heat duties by reducing the reflux ratio with the expense of 

increasing number of stages to achieve the specified separation. Obviously, the 

increase in the capital cost for a taller column should be traded off with 

savings in utility costs. Figure 8a also shows that the reboiler side is relatively 

close to ideal operation while the condenser side is far from ideal operation. 

The significant area underneath the pinch suggests the need for a side conden- 

ser at an appropriate temperature level. The need for heat integration through 

side condensing or side reboiling could be quantified from the area between 

the ideal and actual enthalpy profiles after considering the capital cost increase 

due to the modification. However, external modification of feed conditioning 

is usually preferred to internal modification of heat integration. Heat 

integration by positioning the side reboilers and side condensers in a 
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column has similarities to use of hot and cold utilities in efficient heat exchan- 

ger network. 

Pinch analysis is a well-established tool in designing an efficient heat 

exchanger network. In the context of distillation, the significance of the 

pinch is that there should be no side reboiling below the pinch and no side con- 

densing above the pinch in a heat integrated column. Still, the pinch analysis is 

constantly being expanded to optimize a whole plant operation containing not 

only heat transfer, but also separation and reaction units as well. Some 

examples of such expansions with case studies are heat integrated crude oil 

distillation systems,['01 total process energy integration in retrofitting an 

ammonia plant with 44 hot and cold ~treams,"~] heat exchanger network of 

a nitric acid plant,L541 and combination of the chemical reactor network with 

the heat exchanger network.[521 

EXERGY ANALYSIS 

The quality of energy always degrades in a process. Exergy is the 

maximum available work when some form of energy is converted reversibly 

to a reference system, which is in thermodynamic equilibrium with the 

environment, and has no ability to perform work. Exergy also is a measure 

of distance of a system from global equilibrium; as the exergy is consumed 

the state variables of temperature, pressure, and composition of system 

approach those of the environmental conditions.['61 Therefore, the reference 

state is called the dead state.["] The total exergy of multicomponent 

streams is calculated from the three contributions: exergy change due to 

mixing, chemical exergy, and physical exergy,['.'5~57-661 and is expressed by 

where the subscript o indicates the enthalpy, entropy, and temperature of the 

environment. The exergy of mixing results from the isothermal and isobaric 

mixing of streams at actual process conditions. The chemical exergy is the 

difference in chemical potentials between the process components and the 

reference components in their environmental concentration, temperature, 

and pressure. The physical exergy is the maximum obtainable amount of 

shaft work (electrical energy) when a stream is brought from process condition 

(T,  P) to equilibrium at ambient temperature by a reversible heat exchange. 

Exergy relates the evolution of a process to the environmental conditions, 

and consequently to the ecological impact. This brings a distinctive feature 

to the optimization of systems. 

Exergy analysis identifies and quantifies unused parts of available energy 

and determines the thermodynamic efficiency of distillation systems. 
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Traditionally, exergy analysis is based on the overall thermodynamic 

efficiency that is the ratio of the lost work to the ideal work required for 

~ e ~ a r a t i o n . ~ ~ ~ - ~ ~ ]  The overall exergy efficiency for distillation is the product 

of external and internal exergy efficiencies. The external efficiency depends 

on thermal integration among units, coproduction, and recompression of over- 

head vapor to be used in the reboiler, while the internal exergy depends on the 

column internal design, feed composition and state, number of stages, and 

utility requirements. The exergy efficiency for distillation systems is low; 

many operate with about 20%-25% exergetic efficiency, which could be 

increased to around 60% with certain  modification^.'^] To separate a 

component with low composition by distillation is highly inefficient, and 

integration of several functions into single equipment, such as an exchan- 

ger-dephlegmator or reactive distillation and absorption may increase the 

efficiency and the investments required. Feed conditions and feed plate location 

affect irreversibility, and, hence, the efficiency of separation systems.[601 

It is a common approach to assume that the mass transfer (evaporation 

or condensation) is controlled by the vapor phase. With this assumption, the 

exergy analysis mainly uses a graphical tool called the exergy loss profiles or 

the exergy-utilization diagrams.[61-641 Every process accepts or donates energy 

in equal amounts: AHd + AH, = 0, while exergy loss or entropy change is 

not conserved: ASd + AS, 1 0. The exergy changes of energy donor AXd and 

acceptor AX, based on a reference temperature To are expressed by 

AX, = AH, - TOAS, = AH,x, (1 5b) 

where xu and xd are the energy levels, which show the ratio of available energy 

(exergy) to total energy, and expressed by xd = 1 - ToASd/AHd and 

xu = 1 - T,AS,/AH,. Then, the exergy loss XI, between an energy donor and 

an energy acceptor is expressed by 

Therefore, the energy level of the donor process must be greater than or equal to 

that of the energy level of the acceptor process, and the value of XL is positive as 

AH, > 0. The abscissa of the exergy-utilization diagram displays the amount of 

accepted energy, A H,, while the ordinate shows the energy levels of xd and xu; 

therefore, the area displays the exergy loss.L641 

Stage-exergy losses occur due to heat exchanged and mixing between the 

phases on stages causing cooling, heating, condensation, evaporation, and 

mixing.[641 
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For cooling of the vapor phase, the energy levels at stage i are 
expressed by 

where 

For heating of the liquid phase the energy levels are: 

where 

The exergy loss at stage i is expressed by Eq. (16): 

Exergy losses due to evaporation and condensation are expressed by 

where AHQ shows the heat supplied at the energy level rc? Condensation takes 

place at the liquid phase temperature 

The vapor flow from the stage i + 1 mixes with the vapor phase on stage i, 

and the exergy loss is expressed by 

XLrn.~.i = -RToVi+~X[~i+l,;(lnyi,j - lnyi+~.;) - (~1 . j  - ~ i+ , . ; ) l  (26) 
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The liquid flow from stage i-l mixes with the liquid phase on stage i, and 

the exergy loss is given by 

In distillation columns using side heating and cooling, energy utilization 

diagrams can describe the relation between exergy loss in the column and 

separation performance. 

Mass transfer in separation systems, such as rectification, absorption, 

desorption, and membrane separation, is optimum when the conditions 

on the concentration profiles provide the minimal irreversibility.[671 Analysis 

in sieve tray distillation columns reveals that the irreversibility on a tray is 

mostly due to the bubble-liquid interaction, and the exergy loss could be 

reduced considerably for the same operating conditions with moderate invest- 

m e n t ~ . ~ ~ ~ - ~ ~ ~  The optimal concentration and temperature profiles can be 

derived by minimizing the entropy production rate for specified heat and 

mass fluxes, which can be expressed by linear flux-force relations if the trans- 

port system is not far from global equilibrium.[233'.711 

There has been hesitation and delay for the simulation packages to incor- 

porate the exergy analysis in property calculations and process analysis. 

However, for the last 10 years, exergy analysis in simulation has become 
popular,L65.66.71 -741 In 1996, Hinderink et a1.[65.661 integrated the subroutines 

of exergy calculations with the flowsheeting simulator of Aspen Plus and 

applied the codes to synthesis gas production from natural gas. These subrou- 

tines were developed by Exercom licensed by Stork Comprimo. Amsterdam, 

the Netherlands for applying exergy analysis as a diagnostic tool in process 

development and design.17jJ Exergy analysis within a flowsheeting can 

display the process inefficiencies. Such an analysis, performed for a part of 

a refinery, has revealed that 70% of exergy losses can be prevented. cor- 

responding to 40% reduction of primary fuel consumption for the crude oil 

distillation column. In the same refinery, splitting the feed stream has 

reduced the fuel consumption by 10%.L551 For the optimization of feed con- 

ditions and reflux, exergy analysis can be helpf~1.[76-7S1 A complete exergy 

analysis, however, should include the exergy losses related to economical 

cost and environmental cost, as well as suggestions of modifications to 

reduce the Unless that is accomplished, the analysis is mainly inter- 

preted as theoretical calculations if system engineers are not trained adequately 

to implement the results. Consequently, this may undermine the effectiveness 

of the exergy analysis. 

The computer tools such as Aspen Plus, Hysys. Mathcad, and Pro I1 may 

be useful in analyzing distillation column systems to improve recovery, sepa- 

ration capacity, and decrease the rate of entropy production. A recent simulation 



studyL7" suggests that if the positioning of side stream withdrawals and returns is 

optimized (for example, liquid stream returning as vapor enters at a position 

where the vapor phase has similar composition), heat integration improves the 

recovery and the separation capacity and decreases the exergy loss, but it 

increases the number of stages required for a given separation. 

Synthesis strategies of simple and complex distillation systems are 

based on heuristics and algorithmic analysis.L61 Also, thermodynamic 

optimum structure for the synthesis is often separation 

trains may result through successive modification of thermodynamically 

optimum but economically unaffordable flow sheets. The thermodynamic 

approach can be used for analyzing the structural stability of multicompo- 

nent flash and distillation operation.1851 However, thermodynamic consider- 

ation is often a complimentary design support and may not be a final 

selection tool.[41 

The design of a subambient system involves distillation, heat exchanger 

network, and refrigeration, which are interdependent. The thermodynamic analyti- 

cal strength of exergy analysis with practical targeting capability of pinch analysis 

can be combined to calculate exergy grand composite curves for subambient 

processes; for example, ethylene and liquefied natural gas process designs have 

yielded an average shaft work savings of 15% over the results obtained from 

normal pinch analysis.[451 In an another industrial application.~861 the exergy 

analysis has been applied to cryogenic air distillation plant using Aspen Plus to 

quantify the exergy loss in various sections; compressors are the source of a 

large exergy loss that can be reduced by half by using better compressors, 

while the total exergy loss can be reduced by 2570.[~'~"' Some software tools, 

such as Super Target of Linnhoff March Ltd. Aspen Pinch, and Sprint use 

pinch analysis;[521 obviously, the pinch analysis should be integrated with an econ- 

omic analyzer for the thermodynamic optimum and the economic optimum. 

Exergy analysis for adiabatic and diabatic distillation systems for 

separating ethanol from water shows that the largest exergy loss occurs 

on a stage with the largest composition differences, and the total exergy 

losses are 433.8 kJ/kg in an adiabatic distillation and 248.41 kJ/kg in a dia- 

batic operation corresponding to a 42% decrease.1561 For a specified number 

of stages, minimum distance between the operating and equilibrium curve 

corresponds to optimum exergy usage.LS71 Analysis of a heat-integrated dis- 

tillation column utilizing the heat pump principle revealed that the exergy 

loss is considerably lower than that of a conventional c o l ~ r n n . [ ~ ~ - ~ ~ ~  The 

exergy loss profiles may lead to successful design modifications, which 

are outlined for deethanizer column and distillation of ammonia 

For example, through tray design parameters associated with 

the entropy production, an optimal operation and energy saving in distilla- 

tion systems could be possible.[9"931 
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Case Study: 1. Exergy Loss Profiles for a Five-Component 

Distillation Column 

The Aspen Plus thermal analysis tool estimates the stage exergy loss profiles 

consisting of temperature-exergy, stage-exergy, and Carnot factor (1 - To/ 

T,,,,)-exergy profiles. Figure 9 shows the vapor phase composition profiles 

and the exergy loss profiles for the column configuration given in Table 2. 

The vapor phase composition profiles (Fig. Ya) can display the levels of 

maximum and minimum concentrations of the key components, and the sharp 

concentration changes around the feed stage. The stage-exergy loss profiles 

(Fig. Yb) show the degradation of available work at each stage due to irreversi- 

bility sources of momentum loss, thermal loss, and chemical potential loss. 

Figure Yb clearly identifies the excessive loss of exergy on and below the feed 

stage, and suggests heat integration through a side condenser should be con- 

sidered to reduce the excessive loss of exergy. The combined exergy and 

pinch analysis would be a rigorous and effective tool to optimize individual 

process or integrated processes. 

Distillation column system optimization starts by identifying the regions 

with the largest exergy losses using the stage-exergy profiles of a converged 

simulation. Following this, column modification such as feed condition, 

feed stage location, and possible heat integration based on the more uniform dis- 

tribution of exergy loss would be c o n ~ i d e r e d . [ ~ ~ - ~ ' . ~ ~ ~  Th e best modifications, 

which are friendly with the environment and compatible with the rest of oper- 

ation should be chosen. Obviously, at the same time, entropy production rate 

minimization should be s o ~ ~ h t . ~ ~ ~ , ~ ' . ~ ~ ~  For example, heat integration with the 

combined advantages of direct vapor recompression and diabatic operation at 

half of the normal column height may be one of the best modifications for 

close boiling mixture separation.[51 Another diabatic option is the use of two 

heat exchangers integrated in the column replacing the reboiler and condenser 

where large exergy losses occur frequently.[911 Also, changing the feed stage 

or splitting the feed can reduce exergy loss in a column section;L30~78~981 when 

the excessive exergy loss due to mixing at the feed stage is identified, the 

design engineer may use the prefractionator to reduce the losses. 

Case Study: 2. Single- and Two-Stage Crude 

Oil Distillation 

A1 Muslim et a1.[22J performed the exergy analysis of single- and two-stage 

crude oil distillation. The single-stage system consists of a crude heating furnace 

and a 27-tray atmospheric distillation column. The feed is introduced in tray 23. 

The two-stage system consists of a furnace, a 13-tray atmospheric distillation 
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Exergy Loss, (kWj 

Figure 9. (a) Vapor phase composition profiles obtained from the simulations 

with the Aspen Plus Radfrac block using the Peng-Robinson equation of state. The 

column configuration is given in Table 2. (b) Stage exergy loss profiles obtained 

from the Aspen Plus thermal analysis tool. 
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Table 3. Exergy analysis for single-stage and two-stage crude oil distillation 
systems.''21 

Overall Overall Column 
Exergy Exergy exergy exergy exergy 
input output loss efficiency losses 

System (Mw) (Mw) (Mw) (Mw) 

Single-stage 498.8 69.8 429.0 14.0 137.2 

Two-stage 352.0 110.9 241.1 31.5 121.6 

% Difference 29.4 58.8 43.8 125 11.4 

(Reproduced with permission.) 

column, another furnace to heat the bottom product of the first unit, and a second 

distillation column with 14 trays. The feed is introduced in tray 12. Table 3 com- 

pares the exergy analysis of the systems, and shows considerable reduction in 

exergy losses. The exergy efficiency ist2'] 

Case Study: 3. Refinery Operation Optimization by 

Exergy Analysis 

~ i v e r o [ ~ ~ '  reported exergy analysis for an existing refinery operation 

using the general definition of exergy from Eq. (14). Table 4 shows the 

considerable economical gains due to the reduction in exergy losses after 

the optimization studies. 

EQUIPARTITION PRINCIPLE 

The rate of entropy production described by the linear nonequilibrium ther- 

modynamics approach gives a detailed mathematical formulation of the dissi- 

pated power (work) in a system at local thermodynamic equilibrium.L'.71.943951 

Nonequilibrium molecular dynamics simulations show that the assumption of 

local equilibrium in a column system is acceptable.1701 For steady state linear 

flux-force relations, constant transport coefficients, and local equilibrium, separ- 

ation systems with uniform driving forces in space and in time will dissipate less 

of the available energy, and, hence. are thermodynamically optimum.[361 For 

example, for a given flux, a column with uniform driving forces is smaller in 

size, alternatively, it requires less contact time for a given size, and thus a 
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Table 4. Exergy analysis and loss reduction in a modified refinery.'561 

Exergy loss Exergy loss 

before after Proposal Payback NPV' 10 

optimization optimization investments time years of 

Unit ( % 7 0 )  ($1000) (Months) investments 

Combined 

distillation 

unit 

Naphtha 

HDS unit 

Naphtha 

reforming 

unit 

HDSa unit 

Catalytic 

cracking 

unit 

Visbreaking 

unit 

Utilities plant 

Total 

"HDS: Hydrodesulphurization. 

'NPV: Net present value (only operating cost is taken into account). 

(Reproduced with permission.) 

higher throughput. One way of achieving uniform driving forces in a distillation 

system may be the heat integrati~n. '~ '~~']  

The rate of volumetric entropy production due to heat and mass transfer @ 

for a binary mixture is expressed by[70.71.941 

where the J, is the heat flux, Ji is the mass flux for component i, and X is the 

thermodynamic force. When the pressure is constant, we have Vpi,? = VpC, 

which is the concentration dependent part of the chemical potential gradient. 

The linear phenomenological equations that follow from Eq. (29) are 
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where Jd (in m3 m-'h-') is the relative mass flux between heavy and light 

components across the interface (Jd = Jl/y, - Jh/y,,), Jh and Jl are the mass 

fluxes of heavy and light components, respectively, yh and yl are the 

compositions of heavy and light components, respectively, and the con- 

stant parameters, Lji, are the local phenomenological transport coefficient, 

which can be determined from experiments. For isothermal conditions, the 

phenomenological coefficients for mass transfer are 

Using the chemical force for the mass transfer 

the heat flow becomes 

On the other hand, Fourier's law of heat conduction without mass transfer is 

(Jq)Jd=o = -kVT (35) 

Therefore, the thermal conductivity, k,  is defined in terms of the phenomeno- 

logical coefficients 

Diffusion of the light component is defined by Fick's law for the gas phase 

where D is the diffusion coefficient of the light component and Ac, is the con- 

centration difference of light component across the distance Az. The concen- 

tration difference in the gas phase in terms of the total pressure PT is 

where the mole fraction y; is the inlet composition in the liquid. By introducing 
Eq. (36) into Eq. (34), and with the assumptions of constant driving forces, the 

average phenomenological coefficient of mass transfer Ll,is obtained asL7'] 



3924 Demirel 

where AHl, and AH, are the heat of vaporizations for the heavy and light com- 

ponents, respectively. The phenomenological coefficients may vary consider- 

ably from enriching section to stripping section, and this should be taken into 

account in the optimization criterion. In a recent study, the rate of entropy 

production was calculated at every stage with the coupling between the heat 

and the mass transport, and verified with experimental data of ethanol-water 

d i ~ t i l l a t i o n . ' ~ ~ , ~ ~ '  

The thermal efficiency based on the second law of thermodynamics may 

be defined as in Eq. (12) 

A maximum in the second law efficiency may be obtained by minimizing 

the entropy production rate with respect to one of the forces. For example, 

assuming that the contribution due to the difference in chemical potential is 

dominant, the change of the entropy production with respect to the chemical 

force can be studied. 

From Eqs. (29)-(31) the amount of separation Jd,; and the corresponding 

rate of entropy generation at stage iQi are obtained as 

where Xi shows the chemical force at stage i. As the level of separation is 

fixed, the boundary conditions for the forces are specified: and an increase 

in the force in one stage must lead to a reduction in another stage. It is 

desired to have an increase in the flow for a given entropy production rate, 

and a reduction in the entropy production rate for a specified separation; the 

yield Y is defined as the benefit-cost ratio in an economic sense, and given by 

When the derivative of Y with respect to X, is higher in one stage than in 

another, increasing or reducing the driving force adjusts the rate of entropy 

production. We  can maximize the separation output, by redistributing of 

forces between the stages. The distribution is obtained with the differentia- 

tion d(l/Xl)/dXI = d(l/X2)/dX2, which leads to XI = X2. The equality 

of forces is independent of the individual values of the phenomenological 

coefficients. The reversible operation is a limit case, and is achieved when 

XI and X2 approach zero and Y increases toward infinity. Therefore, the 
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practical improvement of the second-law efficiency is to apply the relationship 

between dX1 and dX2. For example, the following relationship at constant Jd 

relates the driving forces at two stages. By knowing  l la cross the column, we 

can determine the possible locations for modifications. A uniform entropy pro- 

duction rate corresponds to either minimum energy costs for a required sepa- 

ration and area investment, or minimum investment for a specified energy 

cost, and leads to thermodynamically optimum design.[701 

Stage exergy calculations are used to prepare exergy profiles throughout 

column. Such profiles firstly show the current level of utilization of available 

energy, and secondly the effects of operating conditions and design parameters 

on the efficiency of operation. Most of the researchers are focusing on how to 

use the exergy loss profiles, which are becoming straightforward and part of 
flowsheeting. For example, Ishida and ~ h n o [ ~ l ]  and Ishida and ~ a ~ r a ~ [ ~ ~ , ~ ~ ~  

prepared the exergy utilization diagram to show the transformed energy 

level, and unit height of the column, and, hence, help to identify the targets 

for reducing energy and exergy consumptions.~971 Based on the exergy loss 

profiles, modifications on the feed stage location, feed condition, and the 

use of intermediate exchangers can be considered. For example, exergy loss 

due to the mixing at the feed stage can be identified and reduced using an 

external modification of the prefractionator.L981 Beside that, the profiles 

recently were used to prove that a uniform distribution of driving forces 

leads to a higher thermodynamic e f f i c i e n ~ ~ ; [ " ~ ~ ~ '  locating the heat exchan- 

gers in the regions where the largest deviations from isoforce exist, may 

lead to the uniform driving forces over the internal stages for a binary distilla- 

tion system. The results of isoforce operation should be proportional to the 

variation in the primary phenomenological coefficient.[991 An isoforce oper- 

ation of a diabatic column is consistent with a minimum exergy loss in a 

section where large reflux ratios are avoided.11001 

Assuming that a column is a reversible heat engine (Fig. 7), work 

available from the thermal energy is expressed by 

where To is the ambient temperature, and TR and Tc are the temperatures for 

reboiler and condenser, respectively. The temperature corrections (Carnot efi-  

ciencies) describe the maximum fraction of theoretical work extracted from 

thermal energy at a particular ambient temperature.[35"01.'0'1 0 n the other 



hand minimum separation work, W,, required for a separation is the net change 

in availability 

The change of availability of separation is the difference between the work 

supplied by the heat and the total work required for separation W,, 

AAs = Wheat - Wts 

Energy use can be reduced by minimizing the pressure drop; lost work due to 

high-pressure drop (as high as 10 psi) is considerable at the condenser and 

reboiler systems, and is relatively less through the trays (0.1 psi or less). 

Change of pressure affects the distance from equilibrium, causes the large 

temperature difference, and, hence, utility costs between the condenser and 

reboiler of distillation column. 

Feed tray location may also be adjusted to reduce the lost work. Com- 

monly, the feed location is determined at the minimum utility loads and 

tray count or simply by taking into account light-key and heavy-key com- 

ponent compositions. The relative cost of the heating and cooling media 

will also influence the location of the feed stage. The basic trend of improving 

thermodynamic efficiency leads to taller and more slender columns. 

Case Study: Distillation Systems with Isoforce Operation 

Adiabatic columns are highly irreversible and often the irreversibility is 

not evenly distributed. The stage-exergy loss profiles indicate the distribution 

of stage irreversibility. and hence the distribution of driving forces in a column 

operation. Figure 9b shows clearly that the operation is far from isoforce oper- 

ation, especially on and below the feed stage; and a heat integration modifi- 

cation through a side condenser should be considered. Nonequilibrium 

thermodynamic approach may be used to detennine how to position the 

heat integration in the column.'991 This will reduce the excessive loss of 

exergy and bring the distillation column relatively close to isoforce operation. 

Distillation columns operating with close to unifonn thennodynamic forces 

are analyzed for separating n-pentane from n-heptane189.99J (Table 5) ,  and 

ethanol from water (Table 6).L1001 Equation (31) shows that chemical separ- 

ation force is y,Vp,/T, and should be unifonn throughout the column. For 

the top and bottom parts of the column for ethanol-water separation, a conven- 

tional McCabe-Thiele diagram has small distances between the operating 

lines and equilibrium curve; in the top, azeotrope exist, and in the bottom 

part compositions are close to pure components. In the middle part of the 

McCabe-Thiele diagram an operating line may be plotted using T,,,,,, = kx, ,, 
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Table 5. Reboiler and condenser duties and entropy production change for the 

adiabatic, heat integrated and operating with isoforce and a near-optimum column 

for n-pentane and n-heptane.1991 

Reduction in entropy 

Operation QR M w  Qc MW production (%) 

Adiabatic 2.37 0.704 

Isoforce 1.89 0.732 

Near optimum 1.90 0.797 

(Reproduced with permission.) 

exp(- C/Rkxi,,,), where C is a chosen constant driving force, k is Henry's 

laws' constant, and indices n is the stage number; using this middle operating 

line, isoforce lines in ethanol-water separation are plotted and used in the 

column analysis.[1001 This analysis leads to more than one isoforce operating 

line based on the chosen value of C and may be confusing. Table 5 indicates 

clearly that a thermodynamically optimum distillation column should operate 

with a uniform or close to uniform driving force in separation. This is in 

line with the operation in which exergy loss is distributed evenly within the 

column. However, in minimizing the exergy loss or the rate of entropy pro- 

duction, one should avoid operation with too small driving forces (pinch in 

separation) at any stage. 

One has to note that the equipartition principle is mainly investigated for 

binary separations by distillation, and should be extended to multicompo- 

nent separations with nonideal mixtures and by accounting for the coupling 

between driving forces. However, the general principle is not restricted to 

binary systems only.L361 For example, Zemp et al.[981 used the exergy loss 

profile to determine the distribution of driving forces in a five-component 

distillation column. Still, one has to keep in mind that the treatment of multi- 

component diffusion as opposed to binary diffusion is fundamentally different 

Table 6. Comparison of the performance of a diabatic column with a isoforce column 

operation for separation of ethanol-water mixture.['001 

Total exergy Distillate flow Distillate 

Operation losses U / h  rate kg/h composition (%) 

Adiabatic 44.23 

Isoforce 14.24 

Diabatic 15.89 

(Reproduced with permission.) 
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and is essentially incompatible with the Fick law, which is not capable of account- 

ing for coupling between diffusive fluxes of various species.'2.3"71*94395.1031 

Multicomponent diffusion is much more appropriately treated by means 

of the Stefan-Maxwell equations, which involve setting up equations rela- 

ting the corresponding thermodynamic forces to mass fluxes of all the 

components.L95.104.1051 

THERMOECONOMICS 

The US Department of Energy Web site, "Energy Savers for Industry 

Plant Managers and ~ n g i n e e r s , " " ~ ~ '  offers a wide variety of energy saving 

possibilities. such as an energy management action plan. Energy is conserved 

in all processes. However, the available part of energy that is exergy is not 

conserved. The process engineer should minimize the input cost of a process 

by reducing exergy loss due to thermodynamic imperfections. Within this 

context, thermodynamic analysis simultaneously considers the interrelations 

among the use of energy, economy, and ecology.[561 Such considerations 

may have positive impact on sustainable developn~ent. For example, thermo- 

dynamic analysis of a solar desalination unit shows that thermoeconomic 

evaluation of the system is closely related to a complete economic analysis 

of the possible improvements leading to a less irreversible unit.[lo7] 

Optimizing a plant is complex, since the whole plant should be cost effec- 

t i ~ e . [ " ~ -  lo]  Separation systems should be optimized considering both capital 

cost and operating (energy) cost.[' ' ' I  The heuristics of using a reflux ratio of 

1.03-1.3 times the minimum reflux ratio is in line with both the capital cost 

and operating cost for binary distillation systems.ll - '  19] 

The concept of thermodynamics cost relates the thermodynamic limits of 

separation systems to finite rate processes1120-1221 and considers the environ- 

mental impact through the depletion of natural resources within the exergy 

loss c ~ n c e ~ t . [ ~ ' ~ ~ ]  Still, economic analysis and thermodynamic analysis per- 

ceptions may not be in parallel. For example, it is estimated that a diabatic 

column has a lower exergy loss (39%)L12'1 than does an adiabatic distillation; 

however, this may not lead to a gain in an economic sense, yet it is certainly a 

gain in the thermodynamics sense. That is why the thermodynamic analysis 

needs careful interpretations and applications of its results. Thermodynamic 

analysis is also capable of quantification of coupling in transport pro- 
cesses.L2.;2.71 .94'122] Especially in diabatic columns, heat and mass transfer 

coupling may be considerable and should not be neglected.["1.1221 The 

results of thermodynamic analysis may be in line with those of economic 

analyses when the thermodynamic cost optimum not the maximum thermo- 

dynamic efficiency is considered with process specifications.[1231 
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Although this review emphasizes distillation systems, the use of thermo- 

dynamic analysis is also becoming popular for other separation systems, like 

super critical extraction,L1241 desalination processes,L1'51 hybrid vapor per- 

meation-distillation,[71 and croyogenic air separation.'3"861 For example, 

energy requirement analysis of common cycles used in supercritical extraction 

has utilized exergy losses, and an optimum extraction pressure, which pro- 

duces a minimum in exergy loss for specified temperature and separation 

pressure.['241 Thermodynamic analysis also has been used for the economics 

of desalination technologies by membranes and distillation['251 five main 

desalination systems considered are: reverse osmosis, electrodialysis, vapor 

compression, boiling evaporation, and flash evaporation. 

Exergoeconomics is highly popular for analysis and optimization in 

thermal energy systems, yet it is far from a breakthrough methodology for 

separation processes mainly due to their characteristics and complexity. 

The objective of exergoeconomics should be chosen with care; for example, 

the optimization should target both capacity expansion and exergy loss in 

separation systems.[126.1271 

The minimization of entropy production is not always an economic cri- 

terion; sometimes, existing separation equipment may be modified for an 

even distribution of forces or even distribution of entropy production. For 

example, to determine an economic optimum for an extraction we assume 

that the operating costs are a linear function of the entropy production, and 

the investment costs are linear function of the space and time of the 

process. Then the total cost CT is expressed as[361 

where r is the amortization rate and a,  b, and c are the constants related to the 

costs, V is the volume or size, t is the time, L is the transport coefficient, X is 

the driving force, and @ is the rate of entropy production. Integral in Eq. (48) 

is subject to the constraint of a specified flux given by 

The variational technique can be used to minimize the total cost, and the Euler 

equation for the variable X is given by 



where h is a Lagrange multiplier. Eq. (50) yields 

h 
X = - - = constant 

2a 
(52) 

Equation (52) shows that the distribution of the thermodynamic force, X, is 

uniform when the total cost subject to the specified flux. J, is minimum. 

Consider a steady-state operation in which the forces are uniformly dis- 

tributed; the investment cost, c;, of a transfer unit is assumed to be linearly 

related to the size, V,  and the operating costs, C,, are linearly related to the 

exergy consumption 

where C$is a fixed investment cost and COfis a fixed operating cost, andA and 

B are the cost parameters. Exergy loss AXc is expressed as 

Here To is a reference temperature (dead state), and AX,,, is a thermodynamic 

minimum value. The total flow J = Lm,,. can be written by using Eq. (53) 

where C, is the variable part of the investment cost. Eliminating the constant 

(average) force X,, between Eq. (55) and the total entropy production @,,, = 

JAX,,, we obtain[361 

Substituting Eq. (57) into Eq. (53) and the latter into Eq. (54), a relationship 

between the operating and investment costs is obtained 

ABT,,J' 
c, =- 

LC, 
+ c d + B A X l n  

The optimal size is obtained by minimizing the total cost of operating 

and investments costs, which is linearly amortized with the amortization 
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rate T. CT (Ci) = TC; + Co. The minimum of CT is obtained as d c ~ / d C ;  = 0,  

and we have 

According to Eq. (59), the quantities BT,@,,, which are related to irreversible 

dissipation and TV~,~,  should be equal in any transfer unit. Generally, operat- 

ing costs are linearly related to dissipation, while investment costs are linearly 

related to the size of equipment. The optimum size distribution of the transfer 

units is obtained when amortization cost is equal to the cost of lost energy due 

to irreversibility. The cost parameters A and B may be different from one trans- 

fer unit to another; when A = B, then Qav/Vo,, is a constant, and the optimal 

size distribution reduces to equipartition of the local rate of entropy pro- 

duction.'"] The optimal size of a transfer unit can be obtained from Eq. (53) 

By distributing the entropy production as evenly as possible along the space 

and time line, an economical separation process would be designed and 

operated.["] Later it was argued that the equipartition of a driving force 

rather than equipartition of entropy production rates should be adapted in a 

binary distillation.[1001 Dissipation equations show that both the driving 

forces and fluxes play the same role in quantifying the rate of entropy pro- 

d ~ c t i o n . ' ~ ~ ' ~ ]  Therefore, equipartition of entropy production principle may 

point out that the uniform distribution of driving forces is identical with the 

uniform distribution of fluxes. 

One major trend that appears is that of pinch analysis, exergy analysis, 

and equipartition principles being combined to analyze process and energy 
systems.L100.126- 1281 This will enable the scientists to modify existing 

systems or design new systems with complete objectives and targets including 

the environmental concerns and the natural resources. 

Thermoeconomics is not a new concept; however, it has been formulated 

in a more systematic way, mainly during the last 20 years. From an exergetic 

point of view, cost analysis is performed by using (a) cost accounting methods 

that use average costs as a basis for a rational price assessment and (b) optimi- 

zation methods that employ marginal costs in order to minimize the costs of 

the products of a system or a ~ o m ~ o n e n t . ~ ' ~ ' - ~ " ~  To account for the environ- 

mental impact in a more systematic way, a resource-based quantifier, called 
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"extended exergy," is employed to calculate the resource-based value of 

a commodity.['"1 Consider a separation process with outputs containing hot 

streams with various chemicals having the conditions considerably different 

from those environmental temperatures and concentrations. To achieve a 

zero environmental impact, these streams must be brought to both thermal 

and chemical equilibrium with the surroundings: thus, the real (exergetic) 

cost of the zero-impact would correspond to the extended exergy ideally 

required to bring the conditions of effluents to equilibrium conditions with 

the s u r r ~ u n d i n g s . [ " ~ . ' ~ ~ ~  If an acceptable level of pollutant or the "tolerable 

environmental impact limit" for a certain pollutant would be specified, then 

the environmental cost may be quantified. Despite all the systematic efforts 

on formulating the thermoeconomics, its use in design and economic evalu- 

ations is still limited. 

CONCLUSIONS 

Energy saving in separation systems, particularly in distillation systems, 

is a research field that has attracted considerable innovative approaches. A dis- 

tillation system is an essential separation process yet it is inefficient in using 

thermal energy. and may operate with adverse environmental impact as it dis- 

charges a large amount of thermal energy into the environment. Innovative 

research incorporating the principles of thermodynamics for energy efficient 

distillation systems is in an advanced stage through pinch analysis, exergy 

analysis, and equipartition principle. Thermodynamic analysis simultaneously 

considers the critical interrelations among energy cost, thermodynamic cost, 

and ecological cost. The task of a process engineer is to decide the target 

cost or the costs to be optimized using the thermodynamic analysis. The ther- 

modynamic analysis is still not widely used. However, with the current level 

of research efforts, engineers and scientists should use the analysis in design. 

retrofits, economic analysis, and environmental problems. 

NOMENCLATURE 

a,b,c cost constant in Eq. (48) 

A availability (J mol-'), area (mP2) 

B Bottom product (kmol h-') 

A, B cost parameters 
C concentration (mol L ' ) ,  cost 

cif fixed investment 
D diffusion coefficient (m's-'), Distillate. (kmol h-') 
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gravitational acceleration 

enthalpy 

heat flux 

separation flux (mol m-' s-') 

mass flux for component i (molm-' s-') 

thermal conductivity (J m '  s-' K) 

phenomenological coefficient 

lost work (J mol-') 

molar mass (mol) 

pressure (kPa) 

heat flux (J mol- ' m-') 

condenser duty (kW) 

reboiler duty (kW) 

universal gas constant (J mol- K- I )  

Reflux ratio 

entropy ( ~ m o l - '  K-I) 
time (s) 

temperature (K) 

average velocity (m s-l) 

internal energy (J) 

elevation, gas film thickness (m) 

liquid mole fraction, distance 

thermodynamic driving force 

mol fraction 

volume (m3) 

yield 

work (J) 

Greek Symbols 

efficiency 

Lagrance multiplier 

chemical potential (J mol- ' )  

amortization rate 

entropy production rate (J K '  sp') 

Subscripts 

acceptor 

cooling. condenser 

cooling water 
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d 

evap 

fs 

G 

h 

1 
L 

m 

min 

max 

0 

prod 

R 

S 

SYS 

t 

donor 

evaporation 

flow stream 

gas 
heating, heavy 

light 

liquid 

mixing 

minimization 

maximization 

environmental 

production 

reboiler 

separation 

system 

total 

REFERENCES 

1. Humphrey, J.L.; Siebert, A.F. Separation technologies: An opportunity 

for energy savings. Chem. Eng. Prog. 1992 (March), 92. 

2. Demirel, Y. Nonequilibrium Tlzer~nodynamics Transport and Rate 

Processes in PI7ysical and Biological Processes: Elsevier: Amsterdam. 

2002. 

3. Freswater. D.C.; Ziogou, E. Reducing energy requirements in unit oper- 

ations. Chem. Thermal Eng. 1976. 11, 215. 

4. Koehler, J.; Aguirre, P.; Blass, E. Evalutionary thermodynamic synthesis 

of zeotropic distillation sequences. Gas Sep. Purif. 1992, 6, 153. 

5. Seider, W.D.; Seader, J.D.; Lewin, D.R. Product & Process Desigiz 

Principles, 2nd Edn.; Wiley: New York, 2004. 

6. Porter, K.E.; Momoh, S.O. Finding the optimum sequence of distillation 

columns-an equation to replace the rules of thumb' (heuristics). Chem. 

Eng. 1991, 46, 97. 

7. Fahmy, A.; Mewes, D.; Ebert, K. Design methodology for the optimi- 

zation of membrane separation for hybrid vapor permeation-distillation 

processes. Sep. Sci. Technol. 2001, 36, 3287. 

8. Liu, X.G.; Qian, J.X. Modeling. control, and optimization of ideal 

internally coupled distillation columns. Chem. Eng. Technol. 2000, 

23, 235. 

9. Jones, V.E.; Vais, A.M.; Wilson, J.A. Getting the maximum benefit from 

a side-reboiler. Chem. Eng. Comm. 1999, 171, 195. 



Thermodynamic Analysis of Separation Systems 3935 

10. Christodoulou, P.A. Energy economy optimization in separation pro- 

cesses-Optimizing the separation of sucrose/water and non-sugars. 

Int. Sugar J. 1996, 98, 419. 

11. Pradubsripetch, D.; Naka. Y.; Fan, Z. Analysis of heat demand and 

supply in multicomponent distillation systems. J. Chem. Eng. Japan 

1994, 27, 188. 

12. Fraga, E.S.; Zlinkas, A. Evaluation of hybrid optimization method for 

the optimal design of heat integrated distillation sequences. Adv. Eng. 

Software 2003, 34, 73. 

13. Gadalla, M.; Jobson, M.; Smith, R. Increase capacity and decrease 

energy in existing refinery distillation columns. Chem. Eng. Process 

2003 (April), 44. 

14. Ito, A.; Asano, K. Thermal effects in non-adiabatic binary distillation 

effects of partial condensation of mixed vapors on the rates of heat 

and mass transfer and prediction of H.T.U. Chem. Eng. Sci. 1982, 

37, 1007. 

15. Budiman, A.; Ishida, M. Optimal side heating and cooling in a distilla- 

tion column. Energy 1998, 23, 365. 

16. Harbert, W.D. Preflash saves energy in crude units. Hydrocarbon Proc. 

1978, 57, 23. 

17. Rivero, R.; Anaya, A. Exergy analysis of a distillation tower for crude oil 

fractionation, and computer aided energy systems analysis, Proc. of 

Winter Annual Meeting of ASME 1, 25 and 55. Dallas, TX, 1990. 

18. Frazer, A.C.; Sloley, A.W. Consider modeling tools to revamp existing 

process units. Hydrocarbon Proc. 2000, 79, 57. 

19. Dhole, V.; Buckingham, P. Refinery column integration for de- 

bottlenecking and energy saving, ESCAPE IV Conf, Dublin Ireland 

IChemE, Rugby, UK, 1994. 

20. Gadalla, M. Retrofit design of heat integrated crude oil distillation 

systems. UMIST: Manchester, UK, 2003; Ph.D. thesis. 

21. Bagajewicz, M.J. Energy savings horizons for the retrofit of chemical 

processes. Application to crude fractionation units. Comp. Chem. Eng. 

1998, 23, 1. 

22. Al-Muslim, H.; Dincer, I.; Zubair, S.M. Exergy analysis of single-and 

two-stage crude oil distillation units. J. Energy Resource. Tech. 2003, 

125, 199. 

23. Annakou, 0 . ;  Mizsey, P. Rigorous investigation of heat pump assisted 

distillation. Heat Recov. Sys. & CHP. 1995, 15, 241. 

24. Gopichand, S.; Omideyi, T.O.; Kasprzycki, J.; Devotta, S. The econo- 

mics of heat pump assisted distillation systems-11. Analysis of 

ethanol-water mixtures. J. Heat Recovery Sys. 1984, 4,  271. 



3936 Demirel 

25. Fonyo. Z.; Benko, N. Enhancement of process integration by heat 

pumping. Comp. Chem. Eng. 1996,20, S85. 

26. Gopichand, S.; Omideyi, T.O.; Kasprzycki, J.; Devotta, S. The econo- 

mics of heat pump assisted distillation systems-I. A design and 

economic model. J. Heat Recover. Sys. 1984, 4, 187. 

27. Kauchali, S.; McGregor, C.; Hildebrandt, D. The attainable region for 

simple binary distillation. The annual AIChE meeting, Dallas, TX, 
Oct. 31-Nov. 5, 1999. 

28. Kauchali, S.; McGregor, C.; Hildebrandt, D. Binary distillation re-visited 

using the attainable region theory. Comp. Chem. Eng. 2000,24, 23 1. 

29. Kohler, J.; Kuen, T.; Blass, E. Minimum energy demand for distillations 

with distributed components and side-product withdrawals. Chem. Eng. 

Sci. 1994, 49, 3325. 

30. Soave, G.; Feliu, J.A. Saving energy in distillation towers by feed split- 
ting. Appl. Thermal Eng. 2002, 22, 889. 

31. Cornelissen, R.L.; Hirs, G.G. Exergy analysis of cryogenic air separ- 
ation. Energy Convers. Mgmt. 1998, 1821. 

32. Demirel, Y.; Sandler, S.I. h~eversible thermodynamics in engineering 

and science. J. Phy s. Chem. B 2004, 108, 31. 

33. Moran, M.J.; Shapiro, H.N. Fundamentals of Engineering Thermody- 

namics, 4th Edn.; Wiley: New York, 2000. 

34. Assessment of Potential Energy Savings in Fluid Separation Techno- 

logies: Technology Review and Recommended Research Areas; U.S. 

Dept. of Energy Office of Industrial Programs: Washington, DC. 
Document No. DOE/ID [24763-11 (Dec. 1984). 

35. Ognisty, T.P. Analyze distillation columns with thermodynamics. Chem. 

Eng. Prog. 1995 (February), 40. 

36. Tondeur, D.; Kvaalen, E. Equipartition of entropy production. An opti- 
mality criterion for transfer and separation processes. Ind. Eng. Chem. 

Res. 1987, 26, 50. 

37. Sauar, E.; Rivero, R.; Kjelstrup, S.; Lien, K.M. Diabatic column optimi- 

zation-compared to isoforce columns. Energy Convers. Mgmt. 1997, 

38, 1777. 

38. Linnhoff, B.; Flower, J.R. Synthesis of heat exchanger networks I. Sys- 

tematic generation of energy optimal networks. AIChE J. 1978a, 24, 633. 

39. Linnhoff. B.; Flower, J.R. Synthesis of heat exchanger networks 11. 
Evolutionary generation of networks with various criteria of optimality. 

AIChE J. 1978b,24, 642. 

40. Hohmann, E.C. Optimum networks for heat exchange. Univ. Southern 
California: Los Angeles, 1971; Ph.D. dissertation. 

41. Serna, M.; Jimenez, A. An area-targeting algorithm for the synthesis of 

heat exchanger networks. Chem. Eng. Sci. 2004, 59, 2517. 



Thermodynamic Analysis of Separation Systems 3937 

42. Spank, B. The Chemical Engineer's Resource page. http://www. 

cheresourcess.com/pinchtech2.shtml, 2004. 

43. The Environmental Technology. http://www.envirotechnet.com/ 

pinchtechnology.com/pinch~home.htm, 2004. 

44. Al-Kawari, M.A. Pinch technology: an efficient tool for chemical plant 

energy and capital-cost saving. Appl. Energy 2000, 65, 45. 

45. Dhole, V.R.; Linnhoff, B. Overall design of low temperature processes. 

Comp. Chem. Eng. 1994, 13, S105. 

46. Dhole, V.R.; Linnhoff, B. Distillation column targets. Comp. Chem. 

Eng. 1993, 17, 549. 

47. Ficarella. A.; Laforgia, D. Energy conservation in alcohol distillery with the 

application of pinch technology. Energy Convers. Mgmt. 1999,40, 1495. 

48. Briones, V.; Perez, A.L.; Chavez, L.M.; Mancilla, R.: Garfias, M.; 

Del Rosal, R.; Ramirez, N. Pinch analysis used in retrofit design of 

distillation units. Oil & Gas J. 1999, 97, 41. 

49. Smith, R. State of the art in process integration. Appl. Thermal Eng. 

2000,20, 1337. 

50. Bagajewicz, M.J.; Pham. R.; Manousiouthakis, V. On the state space 

approach to mass/heat exchanger network design. Chem. Eng. Sci. 

1998, 53, 2595. 

5 1. Bagajewicz, M.J.; Manousiouthakis, V. Mass heat-exchange network 

representation of distillation networks. AIChE J. 1992, 38, 1769. 

52. Wang, Y.; Du, J.; Wu, J.; He, G.: Kuang, G.; Fan, X.; Yao, P.; Lu, S.; 

Li. P.; Tao, J.; Wan, Y.; Kuang. Z.; Tian, Y. Application of total 

process energy-integration in retrofitting an ammonia plant. Appl. 

Energy 2003, 76,467. 

53. Lavric, V.; Bactens, D.; Plesu, V.; De Ruyck, J. Entropy generation 

reduction through chemical pinch analysis. Applied Thermal Eng. 

2003,23, 1837. 

54. Matijasevia, L.; Othmaeia, H. Energy recovery by pinch technology. 

Appl. Thermal Eng. 2002, 22, 477. 

55. Doldersum, A. Exergy analysis proves viability of process modifi- 

cations. Energy. Convers. Mgmt. 1998, 39, 1781. 

56. Rivero, R. Application of the exergy concept in the petroleum refining 

and petrochemical industry. Energy Convers. Mgmt. 2002, 43, 1199. 

57. Petlyuk, F.B.; Platonov, V.M.; Slavinskii, D.M. Thermodynamically 

optimum method for separating multicomponent mixtures. Int. Chem. 

Eng. 1965, 12, 555. 

58. Fonyo, Z. Thermodynamic analysis of rectification: I. Reversible model 

of rectification. Chem. Eng. 1974, 14, 18. 



3938 Dernirel 

59. Petlyuk, F.B. Thermodynamically reversible fractionation process of 

multicomponent azeotropic mixtures. Theor. Found. Chem. Eng. 1978, 

12, 270. 

60. Bandyopadhyay, S. Effect of feed on optimal thermodynamic perfor- 

mance of a distillation column. Chem. Eng. J. 2002, 88, 175. 

61. Ishida, M.; Ohno, T. Application of energy-direction factor diagram for 

exergy analysis of distillation columns. J Chem. Eng. Japan 1983. 16, 

281. 
62. Ishida, M.; Taprap, R. Application of energy-utilization diagram 

for graphic exergy analysis of multicomponent distillation column. 

J. Chem. Eng. Japan 1992,25, 396. 
63. Ishida, M.; Taprap, R. Introduction of individual energy level for exergy 

analysis of process systems with multiple components. J. Chem. Eng. 

Japan 1993,26. 437. 

64. Taprap, R.; Ishida. M. Graphic exergy analysis of processes in 

distillation column by energy-utilization diagrams. AIChE J. 

1996, 42, 1623. 

65. Hinderink, A.P.; Kerkhof, F.P.J.M.; Lie, A.B.K.; De Swaan Aron, J.D.; 

Van der Koo, H.J. Exergy analysis with a flowsheeting simulator-I. 

Theory: calculating exergies of material streams. Chem. Eng. Sci. 

1996, 51,4693. 

66. Hinderink, A.P.; Kerkhof, F.P.J.M.; Lie, A.B.K.; De Swaan Aron, J.D.; 

Van der Koo. H.J. Exergy analysis with a flowsheeting simulator-11. 

Application; synthesis gas production from natural gas. Chem. Eng. 

Sci. 1996, 51, 4701. 

67. Tsirlin. A.M.; Kazakov, V.A.; Berry, S. Finite-time thermodynamics: 

Limiting performance of rectification and minimal entropy production 

in mass transfer. J. Phys. Chem. 1998, 98. 3330. 

68. Ray, S.; Sengupta, S.P. Irreversibility analysis of a sieve tray in a distil- 

lation column. Int. J. Heat Mass Transfer 1996, 39, 1535. 

69. Ray, S.; Panja, A.K.; Sengupta, S.P. Irreversibility analysis of a separa- 

tion system using sieve tray distillation column. Chem. Eng. Sci. 1994. 

49, 1472. 
70. Ratkje, S.K.; Sauar, E.; Hansen, E.M.; Lien, K.M. Analysis of entropy 

production rates for design of distillation columns. Ind. Eng. Chem. 

Res. 1995, 34, 3001. 
71. Demirel, Y.; Sandler, S.I. Linear nonequilibrium thermodynamics 

theory for coupled heat and mass transport. Int. J. Heat Mass Transfer 

2001.44. 2439. 

72. Rosen. M.A.; Barry, G.F. The enhancement of the SALT-simulation 

and analysis code for first and second law analysis. In Thernzodynamic 

A17al>,sis and Im1>rovemenr of Ellei-gy Systems (TAIES '89), Proceedings 



Thermodynamic Analysis of Separation Systems 3939 

by the International Symposium, Beijing, (China); Ruixian, C., 

Moran, M.J., Eds.; Int. Academic Publishers, Pergamon Press: Oxford, 

1989,472-480. 

73. Rosen, M.A.; Scott, D.S. The enhancement of a process simulator for 

complete energy-exergy analysis. In Anah~sis of Energy Systems- 

Design and Operation; Gaggioli, R.A., Ed.; AES-1, ASME: New York, 

1985, 71-80. 
74. Yang, Y.; Yang, J.; Zhu, X.: Ling, W. Enhancement and application of 

a flowsheeting simulator for second law analysis, ECOS '92, Inter- 

national Symposium on Efficiency, Cost, Optimization and Simulation, 

Zaragoza, (Spain), ASME: New York, 1992; 85-91. 

75. Lie, A.B.K.; Eigeman, P.M. ExerCom: calculating exergies in Aspen 

Plus (PC-bersion) user manual, Stork Comprino report 61285-0037- 

303-01. 1994. 

76. Maia. M.L.O.; Zemp, R.J. Thermodynamic analysis of multicomponent 

distillation column: Identifying optimal feed conditions. Brazilian J. 

Chem. Eng. 2000, 17, 751. 

77. Yong, P.S.; Moon, H.M.; Yi, S.C. Exergy analysis of cryogenic air 

separation process for generating nitrogen. J. Ind. Eng. Chem. 2002, 

8, 499. 

78. Fonyo, Z.; Rev, E.; Szitkai, Z.; Emtir, M.; Mizsey, P. Energy savings of 

integrated and coupled distillation systems. Comput. Chem. Eng. 1999. 

23, 241. 

79. Bjorn, I.N.; Gren. U.; Sbenson, F. Simulation and experimental study of 

intermediate heat exchange in a sieve tray distillation column. Comp. 

Chem. Eng., 2002, 26,499. 

80. Andersen, T.R.; Siragusa, G.; Andresen, B.; Salamon. P.; 
Joergensen, S.B. Energy efficient distillation by optimal distribution of 

heating and cooling requirements. ESCAPE 1999, 10. 709. 

81. Lynd, L.R.; Grethlein, H.E. Distillation with intermediate heat pumps 

and optimal sidestream return. AIChE J. 1986, 32, 1347. 

82. Mullins, O.C.; Berry, R.S. Minimization of entropy production in distil- 

lation. J. Phys. Chem. 1984, 88, 723. 

83. Ratkje. S.; Kjelstrup, S.; De Swaan, A.J. Denbigh revisited: reducing lost 

work in chemical processes. Chem. Eng. Sci. 1995, 50, 151. 

84. Rivero, R.; Cachot, T.; Ramadane, A.; LeGoff, P.L. Diabatic or quasi 

reversible rectification. Int. Chem. Eng. 1994, 43, 240. 

85. Hangos, K.M.; Alonso, A.A.; Perkins, J.D.: Ydstie, B.E. Thermody- 

namic approach to the structural stability of process plants. AIChE J. 

1999, 45, 802. 

86. Yong, P.S.; Moon, H.M.; Yi, S.C. Exergy and cryogenic air separation 

process for generating nitrogen. J. Ind. Eng. Chem. 2002, 8. 499. 



3940 Demirel 

87. Rivero, R. Exergy simulation and optimization of adiabatic and diabatic 

binary distillation. Energy 2001, 26, 561. 

88. Nakaiwa, M.; Huang, C.; Owa, M.; Akiya, T.; Nakam, T.; Sato, M.; 

Takamatsu, T.; Yashitome, H. Potential energy savings in ideal heat- 

integrated distillation column. Appl. Thermal Eng. 1998, 18, 1077. 

89. De Koeijer, G.M.; Kjelstrup, S.; Salamon, P.; Siragusa, G.; Schaller, M.; 

Hoffmann, K.H. Comparison of entropy production rate minimization 

methods for binary diabatic distillation. Ind. & Eng. Chem. Res. 2003, 

41, 5826. 

90. Chang, H.S.; Chuang, S.C. The intrinsic and extrinsic exergy losses of 

distillation columns. J. Chinese Inst. Chem. Eng. 2001, 32, 469. 

91. LeGoff, P.; Cachot, T.; Rivero, R. Exergy analysis of distillation pro- 

cesses. Chem. Eng. Technol. 1996, 19, 478. 

92. Liu, Q.L.; Li, P.; Zhang, Z.B. Energy-saving nonequilibrium thermody- 

namic analysis for distillation-mathematical model development. Chem. 

J. Chinese Univ. 2001, 22, 1209. 

93. Kjelstrup, S.; Hafskjold, B. Nonequilibrium molecular dynamics simu- 

lation of steady-state heat and mass transport in distillation. Ind. & 

Eng. Chem. Res. 1996,35, 4203. 

94. De Groot, S.R.; Mazur, P. Nonequilibrium Thermodynamics; North 

Holland: Amsterdam, 1962. 

95. Kuiken, G.D.C. Thermodynamics of Irreversible Processes: Applications 

to Diffusion and Rheology; Wiley: Chichester, 1994. 

96. Kjelstrup, S.; de Koeijer, G.M. Transport equations for distillation 

of ethanol and water from the entropy production rate. Chem. Eng. 

Sci. 2003, 58, 1147. 

97. Budiman, A.; Ishida, M. Three-dimensional graphical exergy analysis of 

a distillation column. J. Chem. Eng. Japan 1996, 29, 662. 

98. Zemp, R.J.; deFaria, S.H.B.; Maria, MDLO. Driving force distribution 

and exergy loss in the thermodynamic analysis of distillation column. 

Comp. Chem. Eng. 1997, 21, S523. 

99. De Koeijer, G.M.; Kjelstrup, S.; van der Kooi, H.J.; GroR, B.; 

Knocke, K.F.; Andersen, T.R. Positioning heat exchangers in binary 

tray distillation using isoforce operation. Energy Convers. Mgmt. 

2002,43, 157 1. 

100. Sauar, E.; Rivero, R.; Kjelstrup, S.; Lien, K.M. Diabatic column 

optimization compared to isoforce columns. Energy Convers. Mgmt. 

1997, 38, 1777. 

101. Naka, Y.; Terashita, M.; Hayashiguchi, S.; Takamatsu, T. An inter- 

mediate heating and cooling method for a distillation column. J. Chem. 

Eng. Japan 1980,13, 123. 



Thermodynamic Analysis of Separation Systems 3941 

102. Rivero, R.; Cachot, T.; Ramadane. A.; Le Goff, P. Diabatic or quasi- 

reversible distillation: exergy analysis-industrial application. analysis 

of thermal and energy systems. Proc. of Int. Conf., Athens, Greece, 

1991. 

103. Kolev, S.D. Coupled diffusion of multiple ionic species in ion-exchange 

membranes with fixed ionic groups. Sep. Sci. Technol. 2003, 38. 237. 

104. Demirel, Y. On the multicomponent diffusion calculations by means of 

the Maxwell-Stefan equations, Chim. Acta Turc. 1986, 13, 114. 

105. Krishna, R.; Wesseling, J.A. The Maxwell-Stefan approach to mass 

transfer. Chem. Eng. Sci., 1997, 52, 861. 

106. The U.S. Department of Energy. Energy Savers for Industry Plant 

Managers and Engineers, www.energysavers.gov/industry 2003. 

107. Arcia-Rodriguez, L.; Gomez-Camacho, C. Exergy analysis of the SOL- 

14 plant. Desalination, 2001. 137, 25 1. 

108. Kokossis, A.C.; Floudas, C.A. Synthesis of isothermal reactor separator- 

recycle systems. Chem. Eng. Sci. 1991, 46, 1361. 

109. Linhoff, B.; Dundorf, H.; Smith, R. Heat integration of distillation 

column into overall processes. Chem. Eng. Sci. 1983, 38, 1175. 

110. Andrecovich, M.J.; Westerberg, A.W. A MILP forn~ulation for heat- 

integrated distillation sequence synthesis. AIChE J. 1985, 31, 1461. 

11 1. Jobson. M.; Hildebrandt, D.; Glasser, D. Variables indicating the cost of 

vapor-liquid equilibrium separation processes. Chem. Eng. Sci. 1996, 

51, 4749. 

112. Koehler, J.; Aguil~e, P.: Biass. E. Minimum reflux calculations for non- 

ideal mixtures using the reversible distillation model. Chem. Eng. Sci. 

1991,46, 3007. 

113. Shultz, M.A.; Stewart. D.G.; Hanis, J.M.; Rosenblum, S.P.; 

Shakur, M.S.; O'Brien. D.C. reduce cost with dividing-wall columns. 

Chem. Eng. Progress 2002 (May), 64. 

114. Rev. E.; Emtir, M.; Szitkai, Z.; Mizsey, P.; Fonyo, Z. Energy savings 

of integrated and coupled distillation systems. Comp. Chem. Eng. 

2001, 25, 11 9. 

115. Ricterova, V. Application of heat pump in rectification decreases 

energy consumption in the chemical industry. Energy Convers. Mgmt. 

1991, 32, 519. 

116. Olujic, Z.; Fakhri. F.; de Rijke, A.; de Graauw, J.; Jansen, P.J. Internal 

heat integration-the key to an energy-conserving distillation column. 

J. Chem. Technol. Biotechnol. 2003, 78, 241. 

117. Finn. A.J. Rapid assessment of thermally coupled side columns. Gas 

Sep. Purif. 1996. 10, 169. 



3942 Demirel 

118. Schuller, M.; Hoffmann. K.H.; Siragusa. G.; Salamon, P.; Andresen, B. 

Numerically optimized performance of diabatic distillation columns. 

Comp. Chem. Eng. 2001,25, 1537. 

119. Nilsson, K.; Sunden. B. Optimizing a refinery using the pinch 

technology and the mind method. Heat Recovery. Sys. & CHP. 1994, 

14. 211. 

120. Kaibel, G.; Biass, E.; Kohler. J. Thermodynamics-Guideline for the 

development of distillation column arrangements. Gas. Sep. Purif. 

1990. 4, 109. 

121. De Koijer, G.; Rivero, R. Entropy production and exergy loss in experi- 

mental distillation columns. Chem. Eng. Sci. 2003, 58, 1587. 

122. Demirel, Y.; Sandler, S.I. Effects of concentration and temperature on 

the coupled heat and mass transport in liquid mixtures. Int. J. of Heat 

Mass Transfer 2002, 45. 75. 

123. Sieniutycz, S.; Shiner, J.S. Thermodynamics of irreversible-processes 

and its relation to chemical-Engineerin-d law analysis and finite- 

time thermodynamics. J. Non-Equilib. Thermodyn. 1994, 19, 303. 

124. Smith, R.L.; Inomata, H.; Kanno, M.; Arai, K. Exergy analysis of super- 

critical carbon dioxide extraction processes. J. Supercrit, Fluids 1999, 

15, 145. 

125. Spiegler, K.S.; El-Sayed, Y.M. The energetics of desalination pi-ocesses. 

Desalination 2001, 134, 109. 

126. Zhang, G.: Hua, B.; Chen, Q. Exergoeconomic methodology for 

analysis and optimization of process syslems. Comp. Chem. Eng. 

2000. 21. 6 13. 

127. Chen, Q.L.; Yin. Q.H.; Hua, B. An exergoeconomic approach for retrofit 

of fractionating. Energy 2002, 27, 65. 

128. Sorin, M.; Paris, J. Combined exergy and pinch approach to process 

analysis. Comp. Chem Eng. 1997, 21, S23. 

129. Bejan, A.; Tsatsaronis, G.; Moran, M.J. Tl~ernzal Desigrz arzd Optimiz- 

ation: Wiley: New York, 1996. 

130. Sciubba. E. Cost analysis of energy conservation systems via a novel 

resource-based quantifier. Energy 2003, 28, 457. 

131. Erlach, B.; Serra, L.; Valero, A. Structural theory as standard for thermo- 

ecnomics. Energy Convers. Mgmt. 1999, 40, 1627. 

132. Ayres. R.U. Eco-thermodynamics: economics and the second law. Ecol. 

Economics 1998,26, 180. 


	Thermodynamic Analysis Of Separation Systems
	

	tmp.1165860997.pdf.xsIxU

