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Abstract: Parabens are substances used in the food, pharmaceutical and cosmetic industries. Recent
studies have indicated that these substances have toxic potential, cause endocrine disruption and
can easily bioaccumulate; therefore, their physicochemical properties are of industrial, biological
and environmental interest. Due to their potential use in the development of more efficient and
cleaner processes, the design of environmental recovery strategies and more reasonable designs for
solubility in cosolvent mixtures, studies of thermodynamic analysis and mathematical modeling
are of great interest. This research studies the solubility of propylparaben in acetonitrile + water
cosolvent mixtures at nine temperatures by UV/Vis spectrophotometry, analyzing the solid phase
by differential scanning calorimetry to evaluate possible polymorphic changes. The solubility of
propylparaben is an endothermic process, where phase separation occurs at intermediate mixtures,
reaching its minimum solubility in pure water at 278.15 K and the maximum solubility in pure
acetonitrile at 315.15 K. The experimental data are well-correlated with the va not Hoff, Apelblat and
Buchowski–Ksiazaczak models. The results revealed that possible microheterogeneity of the MeCN +
W mixture can generate phase separation in intermediate mixtures, possibly due to the formation of
solvates or hydrates.

Keywords: propylparaben; solubility; water; acetonitrile; solution; thermodynamics; cosolvent
mixtures

1. Introduction

Propylparaben (PP), (C10H12O3, CAS Number: 94-13-3, Figure 1) is a propyl ester of
parahydroxybenzoic acid that is widely used in the pharmaceutical, cosmetic and food
industries due to its low toxicity and broad antibacterial and antifungal spectrum over a
wide pH range [1–4].
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Figure 1. Molecular structure of the propylparaben (propyl 4-hydroxybenzoate) [5].

Due to the low solubility of PP in water, solubility studies in organic solvents and
cosolvent mixtures are crucial lines of research. These studies aim to devise strategies to
improve PP solubility, considering the importance of this physicochemical property in
processes, such as recrystallization, purification, quality analysis, quantification, preformu-
lation studies and pharmaceutical dosage design [6–10].

Regarding environmental factors, solubility data allow for the design of more efficient
processes, which means a reduction in waste and, therefore, a reduction in environmental
impact, which is an issue that has become highly relevant and where many researchers have
focused their attention [11,12]. In addition, some environmental parameters are calculated
from the solubility data, such as Abraham parameters, which are used for the calcula-
tion of the lethal median molar concentration, bioaccumulation analysis and partitioning
processes [13,14].

Cosolvency is one of the main strategies used to increase the solubility of poorly
water-soluble drugs since the addition of an organic solvent miscible with water can favor
water destructuration. This reduces the “squeezing out” effect, in addition to reducing the
polarity of the cosolvent system, thereby, favoring non-polar interactions [15–18].

One of the most widely used cosolvent mixtures in the pharmaceutical industry is
{acetonitrile (MeCN) + water (W)} [19,20]. MeCN is an aprotic polar solvent, miscible with
water in all proportions and used to dissolve semipolar substances, which theoretically
makes it a suitable choice to develop aqueous mixtures, which are widely used in HPLC.
On the other hand, water is the green solvent par excellence, and water solubility data are
highly relevant in the development of pharmaceutical products [7].

Broadly speaking, solubility data are the baseline for many industrial processes and
the key to understanding the design of pharmaceuticals and cosmetics. Therefore, solubility
studies are essential to the industry for routine process development, quantification, quality
control and for research and development purposes. The aim of this research was to
thermodynamically analyze the solubility of PP in cosolvent mixtures {MeCN (1) + W (2)}
at nine temperatures, where one of the most relevant results was the separation of liquid
phases in intermediate cosolvent mixtures.

2. Materials and Methods
2.1. Materials

For the development of the research, propylparaben (PP) (purity > 0.990, CAS: 57-
83-0, Sigma-Aldrich, Burlington, VT, USA) was used as the study drug and defined as
compound 3; two solvents were also used, acetonitrile (MeCN) (purity > 0.998 CAS: 75-05-8,
Merck Millipore, Burlington, VT, USA) defined as compound 1 and water (W) defined as
compound 2.
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2.2. Preparation of Solvent Mixtures

Nineteen cosolvent mixtures {MeCN (1) + W (2)} from 0.05 up to 0.95 in MeCN
mass fraction were prepared in 15 mL capacity amber bottles using an analytical balance
(RADWAG AS 220.R2, Torun, Poland) of four decimal places with a sensitivity of±0.0001 g.
Three samples of approximately 10.00± 0.00 g were prepared for each of the concentrations.

2.3. Solubility Determination

The determination of PP solubility in mixtures {MeCN (1) + W (2)} was performed
following the protocol of the shake-flask method proposed by Higuchi and Connors [21–23].
The method was developed in three steps:

1. Sample saturation: PP was added to each of the cosolvent mixtures {MeCN (1) + W (2)}
until a saturated solution in equilibrium with the solid phase was obtained. The sam-
ples were subjected to ultrasound for 30 min and then placed in a recirculating water
bath (thermostat) at each of the study temperatures (278.15, 283.15, 288.15, 293.15,
298.15, 303.15, 308.15, 313.15 and 318.15 K) for a period of 72 h (a constant concentra-
tion was verified).

2. Phase separation: The filtration method was employed using membranes with a pore
diameter of 0.45 µm (Millipore Corp. Swinnex, Burlington, VT, USA). Using a syringe
previously thermostatted to the study temperature, an aliquot of the supernatant was
taken and then poured through the membrane. In order to reduce the possible effects
of solute sorption on the filter membrane, the first drops of the filtrate were discarded.

3. Saturated solution and solid phase analysis: The concentration of PP in each of the
samples was determined by UV/Vis spectrophotometry. From the filtered aliquot,
gravimetric dilutions were performed with NaOH 0.1 N (NaOH 0.1 N was used since
mixing the saturated solution with the NaOH solution forms the sodium salt of PP,
and as the salt is very soluble in aqueous media, the probability of PP precipitation
decreases). After dilution, the samples were analyzed in a UV/Vis spectrophotometer
UV/Vis (UV/VIS EMC-11- UV spectrophotometer, Dresden, Germany) at 256 nm
(the wavelength of maximum absorbance) for the prior construction of the calibration
curve. In order to identify possible polymorphic changes, solid samples in equilib-
rium were analyzed using differential scanning calorimetry (DSC) and X-ray powder
diffraction (XRPD).

3. Results and Discussion
3.1. Solubility (x3) of Propylparaben (3) in 10 Cosolvent Mixtures {Acetonitrile (1) + Water (2)}

Table 1 shows the solubility of PP (3) in cosolvent mixtures {MeCN (1) + W (2)}
(Figure 2). In each case, the solubility of PP increases with increasing temperature suggest-
ing an endothermic process. Furthermore, as the concentration of MeCN in the system
increases from pure water to w1 = 0.20, the solubility of PP increases, and from w1 = 0.20
up to w1 = 0.80, a separation of liquid phases is observed. The latter is possibly due to a
higher affinity of PP for one of the solvents in the mixture (MeCN or W), which would dis-
favor the solvent–solvent interaction generating phase separation. Moreover, the mixture
{MeCN (1) + W (2)} exhibits microheterogeneity in intermediate mixtures [24,25], which
could be an additional factor contributing to phase separation.

This phenomenon has also been reported by other authors in solubility studies of
parabens in the same cosolvent system. Romero-Nieto et al. reports phase separation in
solubility studies of methylparabens [19] and ethylparabens [20] in cosolvent mixtures
{MeCN (1) + W (2)}. Paruta et al. and Yang and Rasmuson also reported phase separation
in solubility studies of parabens in cosolvent mixtures {dioxane (1) + water (2)} [26] and
{ethanol (1) + water (2)} [3]; and Peña et al. and Paruta et al. have also reported this
in solubility studies of other drugs, such as benzocaine, salicylic acid and xanthines in
mixtures {dioxane (1) + water (2)} [27,28].

Within w1 = 0.80 to w1 = 1.0 cosolvent concentration range, the PP solubility increases
from w1 = 0.80 up to w1 = 0.90, where the maximum solubility is reached; and from
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w1 = 0.90 to pure MeCN, the PP solubility decreases indicating a negative cosolvent effect
of MeCN within this range of concentration. According to Hildebrand, the maximum
solubility is reached in cosolvent mixtures where the solubility parameter of the drug is
similar to that of the cosolvent system [29].

In this case, the solubility parameter of PP is 25.4 MPa1/2 [4], and that of the cosolvent
mixture (w1 = 0.9) is 28.99 MPa1/2 [20], thus, showing the utility of Hildebrand’s theory
when choosing solvents or cosolvent mixtures to improve the solubility of a substance.

Table 1. Experimental solubility of propylparaben (3) in {acetonitrile (1) + water (2)} cosolvent
mixtures expressed as a mole fraction (104x3) at different temperatures and p = 96 kPa ac.

w1
b

Temperatures

278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15

0.00 0.1468 0.1873 0.2176 0.2804 0.3422 0.4265 0.5617 0.7132 0.842
0.05 0.1498 0.1995 0.2502 0.3121 0.3849 0.4743 0.5856 0.7717 0.8939
0.10 0.1603 0.2013 0.2543 0.343 0.4307 0.533 0.6699 0.8298 1.0109
0.15 0.1771 0.2149 0.2625 0.365 0.4679 0.5712 0.698 0.8956 1.1508
0.20 0.2053 0.2819 0.3545 0.4612 0.6085 0.7737 0.9582 1.2116 1.5053
0.80 387.3 502.2 631.8 813.6 959.2 1224.4 1527.4 1934.9 2238.3
0.85 419.9 576.8 741.8 1053.1 1342.9 1723.9 2322.8 3019.9 3642.3
0.90 438.0 613.2 795.4 1118.4 1477.2 1925.1 2535.5 3365.1 4148.8
0.95 429.5 572.0 786.6 1019.1 1364.4 1765.4 2363.6 2966.9 3804.4
1.00 403.2 516.1 693.4 817.8 1058.8 1373.0 1877.7 2115.1 2834.2

a The atmospheric pressure in Neiva, Colombia. b The mass fraction of acetonitrile (1) in the acetonitrile (1) +
water (2) mixtures free of propylparaben (3). c The standard uncertainty in p is u(p) = 3.0 kPa. The average
relative standard uncertainty in w1 is ur(w1) = 0.0008. The standard uncertainty in T is u(T) = 0.10 K. The average
relative standard uncertainties in x3 is ur(x3(1+2)) = 0.025.

0.2 0.4 0.6 0.8 1.0
0

800

1600

2400

3200

4000

w1

10
4
x
3

0 0.05 0.1 0.15 0.2
0

0.4

0.8

1.2

1.6

w1

10
4
x
3

Figure 2. Solubility of propylparaben(3) (104x3) in MeCN (1) + W (2) cosolvent mixtures vs. the
mass fraction of MeCN at nine temperatures (�: n278.15 K; �: 283.15 K; ◦: 288.15 K; •: 293.15 K; N:
298.15 K;4: 303.15 K; �: 308.15 K; ♦: 313.15 K; and +: 318.15 K).

When comparing the solubility data in water with those reported by other authors,
a good match is observed with the data given by Alexander et al. [30], which present relative
deviations between 2% and 8% (RD = |100(x3 − xR

3 )/x3|, where x3 is the data reported in
this paper, and xR

3 is that reported in the literature). Furthermore, when comparing with
the data reported by Prankerd [31], the most significant differences were found at 313.15
and 318.15 K, with RDs of 19% and 12%, respectively. At other temperatures, the RDs were
between 2% and 8%. Regarding the data reported by Yang and Rasmuson [32], at 313.15 K,
there is a significant difference with an RD of 42.9%.

Finally, the MeCN solubility data were compared with those reported by Ouyang
et al. [33], and RDs between 23% and 31% were observed. These differences may be due to
different equilibrium times, PP water content when preparing the sample, among other
experimental factors. An important factor in drug solubility studies is the analysis of
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the solid phase in equilibrium with different cosolvent compositions in order to identify
possible polymorphic changes.

Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) anal-
yses of the commercial sample and three samples of solid phases in equilibrium with
water (w1 = 0.80) and MeCN are presented in Figures 3 and 4. According to the DSC
analysis (Table 2), PP does not show polymorphic transitions, since in each case, both the
temperature and enthalpy of melting are similar. When comparing the DSC analysis results
with the data reported in the literature, good similarity between the data is observed.

In order to verify the calorimetric analysis results, an XRPD analysis was performed
(Figure 4), where for each of the four samples, six well-defined peaks at 10, 11, 16, 24, 25
and 33 2θ degrees were found, indicating that there were no polymorphic changes. This
is consistent with the results reported by Rudyanto et al. [5] and Yang et al. [34], and it
can be observed that the patterns match in the number of peaks. However, the relative
intensity varies, possibly due to the way the sample was prepared—in particular, the
homogenization process.

Table 2. The thermophysical properties of propylparaben obtained by DSC.

Sample Enthalpy of Melting,
∆mH/kJ·mol−1 Melting Point Tm/K

Original sample 27.0 ± 0.5 369.6 ± 0.5
26.150 a 369.7 a

27.9 ± b 369.5 ± 0.5 b

28.4 ± 0.6 c 369.4 ± 0.5 c

27.2 ± 0.8 d 369.4 ± 0.5 d

28.0 e 369.65 e

26.51 f 369.6 f

24.75 g 370.92 g

Water 26.8 ± 0.5 369.4 ± 0.5
w0.80 27.1 ± 0.5 369.9 ± 0.5
Acetonitrile 26.9 ± 0.5 370.1 ± 0.5

a Martin and Carstensen [35]. b Ouyang et al. [33]. c Cárdenas et al. [4]. d Perlovich et al. [36]. e Prankerd [31].
f Giordano et al. [37]. g Rudyanto et al. [5].
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Figure 3. DSC of the equilibrium solid phase of propylparaben (blue: MeCN; green: w1 = 0.80; red:
W; and black: original sample).
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Figure 4. XRPD patterns of propylparaben samples (blue: MeCN; green: w1 = 0.80; red: W; and black:
original sample).

3.2. Thermodynamic Functions of Solution

The solution thermodynamic functions were calculated from the experimental solubil-
ity data (Table 1) by the Gibbs–va not Hoff–Krug Equations [38,39] (Equations (1)–(3)).

∆solnH◦ = −R

 ∂ ln x3

∂
(

T−1 − T−1
hm

)


p

(1)

∆solnG◦ = −RThm · intercept (2)

∆solnS◦ = (∆solnH◦ − ∆solnG◦)T−1
hm (3)

Thm =
n

n

∑
i=1

(
1
T

) (4)

ζH =
|∆solnH◦|

|∆solnH◦|+ |T∆solnS◦| (5)
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ζTS = 1− ζH (6)

where ∆solnH◦, ∆solnG◦ and ∆solnS◦ are the thermodynamic functions of enthalpy, the
Gibbs energy and entropy of solution (in kJ mol−1), x3 is the solubility as a mole fraction, T
is the temperature (in K), Thm is the harmonic mean for n study temperatures (in K), R is
the molar gas constant (in J K−1 mol−1), “intercept” is the intercept of each equation in the
va not Hoff plot, and ζH and ζTS are the relative contributions of the enthalpy and entropy
of solution to the Gibbs energy.

Following the va not Hoff–Krug model, the enthalpy (Equation (1)) and Gibbs energy
(Equation (2)) of solution were calculated from the slope and the intercept of the equation
that describes the behavior of the logarithm of solubility as a function of the inverse of
temperature (T−1 − T−1

hm).
As shown in Table 3, the Gibbs energy is positive for each case and decreases from

pure water to the w1 = 0.2 mixture. Within the w1 = 0.2 up to the w1 = 0.8 cosolvent
concentration range, no values were reported due to the liquid phase separation. Be-
tween w1 = 0.8 and w1 = 0.9, the ∆solnG◦ continuously decreases as a consequence of the
increasing solubility; and from w1 = 0.9 up to pure MeCN, there is an increase due to a
solubility decrease as a consequence of adding MeCN to the mixture.

Table 3. Thermodynamic functions of propylparaben solution process (3) in {acetonitrile (1) +
water (2)} cosolvent mixtures at Thm = 297.6 K a.

w1
b ∆solnG◦/ ∆solnH◦ ∆solnS◦ Thm∆solnS◦

ζH
c ζTS

c
(kJ·mol−1) (kJ·mol−1) (J·mol−1·K−1) (kJ·mol−1)

0.00 25.37 32.62 24.35 7.25 0.818 0.182
0.05 25.17 32.70 25.30 7.53 0.813 0.187
0.10 24.97 34.36 31.57 9.40 0.785 0.215
0.15 24.79 34.76 33.51 9.97 0.777 0.223
0.20 24.12 36.47 41.48 12.34 0.747 0.253
0.80 5.77 32.50 89.83 26.73 0.549 0.451
0.85 5.03 40.23 118.28 35.2 0.533 0.467
0.90 4.82 41.65 123.76 36.83 0.531 0.469
0.95 5.00 40.29 118.60 35.29 0.533 0.467
1.00 5.52 35.67 101.32 30.15 0.542 0.458

a The average relative standard uncertainty in w1 is ur(w1) = 0.0008. The standard uncertainty in T is
u(T) = 0.10 K. The average relative standard uncertainty in apparent thermodynamic quantities of real
dissolution processes are ur(∆solnG◦) = 0.017, ur(∆soln H◦) = 0.020, ur (∆solnS◦) = 0.022, and ur(T∆solnS◦) = 0.022.
b w1 is the mass fraction of acetonitrile (1) in the {acetonitrile (1) + 1-propanol (2)} mixtures free of propylparaben
(3). c ζH and ζTS are the relative contributions by enthalpy and entropy toward the apparent Gibbs energy
of dissolution.

The ∆solnH◦ increases from pure water up to w1 = 0.2. Generally, in hydroalcoholic
mixtures, this increase in water-rich mixtures is due to the water molecules destructuring
around the non-polar groups of the drug [40]. However, in {MeCN (1) + W (2)} mixtures,
MeCN works as a structuring agent for water molecules; thus, in this case, the enthalpy
increase is possibly due to a breakdown in PP molecules.

From w1 = 0.8 up to w1 = 0.9, the solution enthalpy increases and then decreases
from w1 = 0.9 up to pure MeCN. When analyzing the behavior of ∆solnS◦, it is positive in
all cases, thus, favoring the PP solution process. The solution entropy increases from pure
water up to w1 = 0.2 and from w1 = 0.8 up to w1 = 0.9, indicating a positive cosolvent
effect of MeCN. From w1 = 0.9 up to pure MeCN, the ∆solnS◦ decreases, thereby, reducing
the entropic benefit.

Finally, by using the results obtained from Equations (5) and (6), the relative contribu-
tions of enthalpy (energy factor) and entropy (organizational factor) were identified. Accord-
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ing to the values shown in Table 3, ζH presents values higher than 0.5 in each case, indicating
that the solution enthalpy contributes in a high proportion to the PP solution process.

3.3. Thermodynamic Functions of Mixing

The solution process involves breaking and forming bonds (Figure 5). Initially, the so-
lute and solvent molecules must disperse, then the solute must change state, and finally
the solvent molecules must restructure to form the cavity that will host the solute molecule.
In both cases, energy must be supplied, and thus these sub-processes are highly endother-
mic and, therefore, energetically unfavorable for the solution process. Once both solute
and solvent molecules are dispersed, the mixing process takes place, and the solution is
formed [41].

Liquid Solvent

Solute Crystal

Cavity

Spread out solvent

Spread out solute Solution

P
ro
ce
ss

of
m
ix
tu
re

Fusion process

Figure 5. Diagram of the solution processes.

Mathematically, the solution process can be expressed as follows [42]:

∆soln f ◦ = ∆m f ◦ + ∆mix f ◦ (7)

where f stands for thermodynamic functions (Gibbs energy, enthalpy or entropy), and the
subscripts m and mix refer to the melting and mixing processes, respectively.

From Equation (7), ∆mix f ◦ is solved, obtaining Equation (8).

∆mix f ◦ = ∆soln f ◦ − ∆m f ◦ (8)

In this work, the thermodynamic melting functions were replaced by the ideal process
thermodynamic functions, calculated from the ideal solubility (Table 4) by Equation (9).

ln xid
3 = −∆mH

R

(
Tm − T

TmT

)
+

∆Cp

R

(
Tm − T

T

)
− ∆Cp

R
ln
(

Tm

T

)
(9)

where T and Tm are the study temperature and the melting temperature, respectively
(in K), ∆mH is the melting enthalpy (in kJ mol−1) of the solute, R is the gas constant (in
kJ mol−1K−1), and ∆Cp is the differential heat capacity of melting (in kJ K−1mol−1) [43].
Some researchers, such as Hildebrand [29], Neau and Flynn [44], Neau et al. [45] and
Opperhuizen et al. [46], assume ∆Cp as the entropy of melting (∆mS), which is calculated
as ∆mH/Tm.

According to the thermodynamic functions shown in Table 5, in water-rich mixtures
(from pure water up to w1 = 0.2), the Gibbs energy is positive and decreases as the
MeCN concentration increases, thereby, indicating a lower energy requirement for cavity
formation [47]. Within this cosolvent concentration range, enthalpic (+) and entropic (−)
disfavor is observed.
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Table 4. Solubility and thermodynamic functions of the PP ideal solution process.

Variable
Temperatures

278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15 318.15

IS a 0.1468 0.1873 0.2176 0.2804 0.3422 0.4265 0.5617 0.7132 0.842

∆SolnGId b
4.84 kJ·mol−1

∆SolnHId 22.45 kJ·mol−1

∆SolnSId 59.16 J·mol−1·K−1

T∆SolnSId 17.60 kJ·mol−1

a IS: Ideal solubility. b Id: Ideal.

Table 5. Thermodynamic functions relative to the mixing processes of propylparaben (3) in {acetoni-
trile (1) + 1-propanol (2)} co-solvent mixtures at Thm = 297.6 K a.

w1
b ∆mixG◦ ∆mixH◦ ∆mixS◦ T∆mixS◦

(kJ·mol−1) (kJ·mol−1) (J·mol−1 · K−1) (kJ·mol−1)

0.00 20.53 10.17 −34.81 −10.36
0.05 20.33 10.25 −33.86 −10.08
0.10 20.12 11.92 −27.58 −8.21
0.15 19.94 12.31 −25.64 −7.63
0.20 19.28 14.02 −17.68 −5.26
0.80 0.92 10.05 30.68 9.13
0.85 0.19 17.79 59.13 17.60
0.90 −0.02 19.21 64.60 19.22
0.95 0.16 17.85 59.45 17.69
1.00 0.67 13.22 42.16 12.55

a The average relative standard uncertainty in w1 is ur(w1) = 0.0008. The standard uncertainty in T is u(T) = 0.10 K.
The average relative standard uncertainties in apparent thermodynamic quantities of real dissolution processes
are ur (∆mixG◦) = 0.238, ur(∆mix H◦) = 0.028, ur (∆mixS◦) = 0.034, and ur(T∆mixS◦) = 0.034. b w1 is the mass fraction
of acetonitrile (1) in the {acetonitrile (1) + water (2)} mixtures free of propylparaben (3).

In MeCN-rich mixtures (0.8 ≥ w1 ≤ 1.0), the mixing Gibbs energy is close to zero
and even reaches negative values (w1 = 0.9), thus, cavity formation requires less energy
than in water-rich mixtures. This is possibly due to the fact that W–W interactions are more
energy-rich than MeCN–MeCN, and although enthalpic disfavor is observed, the process
is enhanced by the entropy of mixing.

In order to evaluate the energy and organizational contribution to the mixing pro-
cess, the data in Table 5 are evaluated using Perlovich’s method [48,49]. Thus, in pure
water, the mixing process is driven by the entropy of mixing (Thm∆mixS◦ < 0; ∆mixH◦ > 0;
|Thm∆mixS◦| > |∆mixH◦|). From w1 = 0.1 up to w1 = 0.2, the process is driven by the
enthalpy of mixing (Thm∆mixS◦ < 0; ∆mixH◦ > 0). From w1 = 0.8 up to w1 = 0.85
and from w1 = 0.95 up to pure MeCN, the mixing process is also driven by the enthalpy
(∆mixH◦ > Thm∆mixS◦). Finally, in the w1 = 0.9 mixture, where the maximum PP solu-
bility is reached, the process is driven by the entropy of mixing (∆mixH◦ < Thm∆mixS◦;
|Thm∆mixS◦| > |∆mixH◦|).

3.4. Enthalpy–Entropy Compensation Analysis

Ryde stated that the increase in entropy is one of the consequences of non-covalent
interactions between molecules, which thermodynamically disfavors the process perfor-
mance. However, in order to compensate for the entropy effect, there is a simultaneous
decrease in the energy factor (enthalpy) [50]. This compensation phenomenon between en-
thalpy and entropy produces a linear relation that allows for the evaluation of the influence
of the energy (enthalpy) and organizational (entropy) factors in the process [51,52].

This relation can be evaluated by plotting ∆solnG◦ Vs ∆solnH◦, where positive slopes
indicate enthalpy-driven processes and negative slopes indicate entropy-driven processes.
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In this context, according to Figure 6, the process is entropy driven, since the three
trends (from water up to w1 = 0.2, from w1 = 0.8 up to w1 = 0.9 and from w1 = 0.9 up to
pure MeCN) have negative slopes in the case ∆solnG◦ Vs ∆solnH◦ (Figure 6).
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Figure 6. Enthalpy–entropy compensation plot for the solubility of propylparaben (3) in MeCN (1) +
W (2) mixtures at Thm = 297.6 K.

3.5. Mathematical Assessment of Solubility

One of the most versatile tools for process optimization is mathematical model-
ing, which allows making approximations under different conditions than experimental
ones [53].

In general, the mathematical models used to correlate the drug solubility in cosolvent
systems can be classified into two groups. In the first group, there are models that allow
correlating the solubility as a function of the cosolvent composition, and the most commonly
used models are Yalkowsky–Roseman [7,54], Wilson [55], Modifyed Wilson [56], NRTL [57]
and Extended Hildebrand [29,58]. In the second group are the models that correlate
solubility as a function of temperature; these models, in addition to allowing correlation of
solubility data, have an important predictive potential as long as the data to be predicted are
interpolated. In the last, the most commonly used models are va not Hoff [19], Apelblat [59]
and Buchowski–Ksiazaczak λh [60].

Since PP exhibits liquid phase separation in intermediate mixtures, models that cor-
relate solubility as a function of cosolvent composition cannot be used; therefore, models
whose independent variable is temperature were used.

Accordingly, the experimental solubility data (Table 1) were correlated with the mod-
els proposed by va not Hoff (Equation (10)), Apelblat (Equation (11)) and Buchowski–
Ksiazaczak λh (Equation (12)),

ln x3 = A +
B
T

(10)

ln x3 = A +
B
T
+ C ln T (11)

ln
[

1 +
λ(1− x3)

x3

]
= λh

[
1
T
− 1

Tm

]
(12)

where x3 is the calculated solubility; A, B, C, λ and h are model-specific parameters; T is
the study temperature; and Tm is the PP melting temperature.
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The model equation parameters assessed and the average relative deviation (ARD)
(Equation (13)) are presented in Tables 6–8.

ARD =
100
N

N

∑
i=1

∣∣∣∣∣ x3 − xcal
3

x3

∣∣∣∣∣ (13)

where N is the number of solubility data points, and x3 and xcal
3 represent the experimentally

measured and calculated solubility, respectively.

Table 6. The va not Hoff model parameters.

w1
a A B ARD b

0.00 3.56 ± 0.36 −4116.30 ± 111.63 3.79
0.05 3.22 ± 0.32 −3987.13 ± 99.51 2.07
0.10 3.73 ± 0.11 −4112.51 ± 33.57 1.30
0.15 4.52 ± 0.33 −4330.91 ± 101.26 3.43
0.20 4.91 ± 0.10 −4362.04 ± 30.01 1.21
0.80 10.82 ± 0.27 −3913.52 ± 83.91 1.49
0.85 14.00 ± 0.33 −4770.38 ± 101.79 2.30
0.90 14.72 ± 0.24 −4958.96 ± 73.08 1.33
0.95 14.31 ± 0.13 −4858.76 ± 40.13 0.99
1.00 12.63 ± 0.51 −4424.53 ± 158.78 4.17

Overall ARD 2.08
a w1 is the mass fraction of MeCN (1) in the {MeCN (1) + W (2)} mixtures free of propylparaben (3). b The average
relative deviation (ARD).

Table 7. The Apelblat model parameters.

w1
a A B C ARD b

0.00 −0.052 ± 0.004 2.174 ± 0.177 0.008 ± 0.001 3.70
0.05 −0.049 ± 0.005 2.035 ± 0.232 0.007 ± 0.001 4.01
0.10 −0.054 ± 0.003 2.255 ± 0.121 0.008 ± 0.0 1.85
0.15 −0.07 ± 0.007 2.916 ± 0.329 0.01 ± 0.001 3.81
0.20 −0.087 ± 0.006 3.608 ± 0.246 0.013 ± 0.001 3.18
0.80 −116.6 ± 10.0 4835.8 ± 444.1 17.636 ± 1.494 3.21
0.85 −235.6 ± 16.1 9871.4 ± 713.2 35.57 ± 2.399 4.14
0.90 −280.3 ± 18.1 11771.6 ± 802.1 42.288 ± 2.698 4.73
0.95 −251.8 ± 17.1 10576.2 ± 757.7 37.992 ± 2.548 4.41
1.00 −174.6 ± 22.5 7322.6 ± 998.7 26.346 ± 3.359 5.01

Overall ARD 3.81
a w1 is the mass fraction of MeCN (1) in the {MeCN (1) + W (2)} mixtures free of propylparaben (3). b The average
relative deviation (ARD).

Table 8. The Buchowski–Ksiazaczak λh model parameters.

w1
a λ h ARD b

0.00 0.0003 ± 2·10−5 11,301,162 ± 525,076 2.97
0.05 0.0003 ± 2·10−5 10,420,554 ± 353,844 2.01
0.10 0.0004 ± 2·10−5 8,606,763 ± 278,840 1.88
0.15 0.0005 ± 3·10−5 7,765,353 ± 348,425 2.62
0.20 0.0008 ± 3·10−5 5,352,830 ± 161,122 1.72
0.80 1.42 ± 0.08 2846.3 ± 101.3 1.60
0.85 5.83 ± 0.46 954.6 ± 55.6 3.06
0.90 8.31 ± 0.76 714.0 ± 49.5 3.81
0.95 6.10 ± 0.51 919.4 ± 57.4 2.90
1.00 2.49 ± 0.27 1877.5 ± 150.7 4.55

Overall ARD 2.71
a w1 is the mass fraction of MeCN (1) in the {MeCN (1) + W (2)} mixtures free of propylparaben (3). b The average
relative deviation (ARD).
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The data calculated using the three mathematical models are well-correlated with the
experimental data. Thus, the va not Hoff model is the best correlated with an ARD of 2.2,
and the Apelblat model has the highest dispersion with an ARD of 3.8. Figure 7 shows
the correlation between the experimental and calculated data, obtaining r2 values greater
than 0.99, validating the results obtained through the ARD analysis and confirming that
the three models are well-correlated, considering that a model is useful if it reports ARD
values below 30.0 [61,62].
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Figure 7. The experimental solubility data versus predicted solubility of PP (3) in {MeCN (1) + W (2)}
cosolvent mixtures (◦ = va not Hoff (r2 = 997);4: Apelblat (r2 = 992) and �: Buchowski–Ksiazaczak
λh model (r2 = 995).

4. Conclusions

The PP solubility in cosolvent mixtures {MeCN (1) + W (2)} is an endothermic process
that is dependent on the cosolvent composition. In intermediate mixtures, liquid phase
separation occurs, possibly due to a higher affinity of PP for one of the solvents that form the
cosolvent mixture. In addition, the mixture {MeCN (1) + W (2)} presents microheterogeneity
in intermediate mixtures, which would also favor the separation of liquid phases.

The Gibbs energy of the solution is positive in all cases and lower in MeCN-rich
mixtures due to a higher solubility of PP with these mixtures. Regarding the enthalpy and
entropy of the solution, they are positive in all cases. This indicates an enthalpic depletion
compensated by an entropic enhancement that allows the development of the solution
process.

Finally, the PP experimental solubility is well-correlated with the va not Hoff, Apelblat
and Buchowski–Ksiazaczak λh models with ARD values below 4.0.
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id Ideal
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