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1 Introduction

Concerning the thermodynamic analysis of a black hole, the Schwarzschild black hole in

Einstein gravity is in an unstable equilibrium with the heat reservoir of the temperature

T [1]. Its fate under small fluctuations will be either to decay to hot flat space by emitting

Hawking radiation or to grow without limit by absorbing thermal radiations in the infinite

heat reservoir [2]. This means that an isolated black hole is never in thermal equilibrium

in asymptotically flat spacetimes because of its negative heat capacity. Thus, one has to

find a way of getting a stable black hole which might be in an equilibrium with a finite

heat reservoir. A black hole could be rendered thermodynamically stable by placing it in

four-dimensional anti-de Sitter (AdS4) spacetimes because AdS4 spacetimes play the role of

a confining box. An important point to understand is to know how a stable black hole with

positive heat capacity could emerge from thermal radiation through a phase transition. The

Hawking-Page (HP) phase transition occurs between thermal AdS spacetimes (TAdS) and

Schwarzschild-AdS (SAdS) black hole [3, 4], which is known to be one typical example of the

first-order phase transition in the gravitational system. Its higher dimensional extension

and the AdS/CFT correspondence of confinement-deconfinement phase transition were

studied in [5].

To study the HP phase transition in Einstein gravity explicitly, we are necessary to

know the Arnowitt-Deser-Misner (ADM) mass [6], the Hawking temperature, and the

Bekenstein-Hawking (BH) entropy. These are combined to give the on-shell Helmholtz
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free energy in canonical ensemble which determines the global thermodynamic stability.

The other important quantity is the heat capacity which determines the local thermody-

namic stability. If one uses the Euclidean action approach, one also finds these quantities

consistently [7].

However, the black hole thermodynamics was not completely known in fourth-order

gravity because one has encountered some difficulty to compute their conserved quantities

in asymptotically AdS spacetimes exactly. Recently, there was some progress on computa-

tion scheme of mass and related thermodynamic quantities by using the Abbot-Deser-Tekin

(ADT) method [8, 9]. The ADM method is suitable for computing conserved quantities of

a black hole in asymptotically flat spacetimes, while the ADT method is useful to compute

conserved quantities of a black hole in asymptotically AdS spacetimes found from fourth-

order gravity [10]. After computing all ADT thermodynamic quantities depending on a

mass parameter m2
d(= 1/β), one is ready to study thermodynamics and phase transition

between TAdS and AdS black hole in fourth-order gravity. For m2
d > m2

c with critical

mass parameter mc giving M2
d(m

2
c) = 0, all thermodynamic properties are dominantly

determined by Einstein gravity, while for m2
d < m2

c , all thermodynamic properties are

dominantly by Wely-squared term. The former is completely understood, but the latter

becomes a new area of black hole thermodynamics appeared when one studies the black

hole by using the ADT thermodynamic quantities.

On the other hand, there was a connection between thermodynamic instability and

classical [Gregory-Laflamme (GL) [11]] instability for the black strings/branes. This

Gubser-Mitra proposal [12] was referred to as the the correlated stability conjecture

(CSC) [13] which states that the classical instability of a black string/brane with trans-

lational symmetry and infinite extent sets in precisely when the corresponding thermo-

dynamic system becomes (locally) thermodynamically unstable (Hessian matrix1 < 0 or

heat capacity < 0). Here the additional assumption of translational symmetry and infinite

extent has been added to ensure that finite size effects do not spoil the thermodynamic

nature of the argument and to exclude a well-known case of the Schwarzschild black hole

which is classically stable, but thermodynamically unstable because of its negative heat

capacity.

Interestingly, it is very important to mention that the stability of the Schwarzschild

black hole in four-dimensional massive gravity is determined by using the GL instability

of a five-dimensional black string. Although the Schwarzschild black hole stability has

been performed in Einstein gravity forty years ago [14–16], the stability analysis of the

Schwarzschild black hole in massive gravity theory were very recently announced. The

massless spin-2 graviton has 2 degrees of freedom (DOF) in Einstein gravity, while the

massive graviton has 5 DOF in massive gravity theory. Even a massive spin-2 graviton

has 5 DOF, one has a single physical DOF when one considers the s(l = 0)-mode of

massive graviton. Also, it was proved that the s-wave perturbation gives unstable modes

1There are two representations when defining the Hessian matrix: HS
M and HM

S . The matrix HS
M (HM

S )

can be expressed in terms of the second-order derivatives of the entropy (mass) with respect to the mass

(entropy) and the conserved charges. Here, Hessian matrix < 0 denotes a negative eigenvalue of the matrix

HM
S .
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only in the higher dimensional black string perturbation [17]. It turned out that the

small Schwarzschild black holes in the dRGT massive gravity [18, 19] and fourth-order

gravity [20, 21] are unstable against the metric and Ricci tensor perturbations, respectively.

This implies that the massiveness of m2 6= 0 gives rise to unstable modes propagating

around the Schwarzschild black hole. If one may find thermodynamic instability from the

ADT thermodynamic quantities of AdS black hole in fourth-order gravity, then it could be

compared with the GL-instability found from the linearized Einstein equation [22]. If one

finds a connection between them, it might imply that the Gubser-Mitra conjecture holds

even for a compact object of the SAdS black hole found in fourth-order gravity. This is

our main motivation of why we study fourth-order gravity here.

In this work, we investigate thermodynamic and classical instability of AdS black

holes in fourth-order gravity. These include the BTZ black hole in new massive grav-

ity, Schwarzschild-AdS black hole and higher-dimensional AdS black holes in fourth-order

gravity. All thermodynamic quantities are computed using the ADT method. Here we use

the ADT conserved quantities, since they respect the first-law of thermodynamics and the

ADT mass and entropy are reliable to use a thermodynamic study of the AdS black holes

in fourth-order gravity. Finally, we establish a connection between the thermodynamic

instability of AdS black holes and the GL instability of AdS black holes in the linearized

fourth-order gravity.

2 BTZ black hole in new massive gravity

As a prototype, we consider the BTZ black hole in new massive gravity (NMG) which is

known to be a three-dimensional version of fourth-order gravity. The NMG action [23]

composed of the Einstein-Hilbert action with a cosmological constant λ and fourth-order

curvature terms is given by

SNMG = SEH + SFOT, (2.1)

SEH =
1

16πG3

∫
d3x
√
−g (R− 2λ), (2.2)

SFOT = − 1

16πG3m2

∫
d3x
√
−g

(
RµνR

µν − 3

8
R2

)
, (2.3)

where G3 is a three-dimensional Newton constant and m2 a positive mass parameter with

mass dimension 2 [m2 ∈ (0,∞)]. In the limit of m2 → ∞, SNMG recovers the Einstein

gravity SEH, while it reduces to purely fourth-order term SFOT in the limit of m2 → 0.

The field equation is given by

Rµν −
1

2
gµνR+ λgµν −

1

2m2
Kµν = 0, (2.4)

where

Kµν = 2�Rµν −
1

2
∇µ∇νR−

1

2
�Rgµν

+4RµρνσR
ρσ − 3

2
RRµν −RρσRρσgµν +

3

8
R2gµν . (2.5)
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The non-rotating BTZ black hole solution to eq. (2.4) is given by [24, 25]

ds2
BTZ = ḡµνdx

µdxν = −f(r)dt2 +
dr2

f(r)
+ r2dφ2, f(r) = −M +

r2

`2
(2.6)

under the condition of 1/`2 +λ+1/(4m2`4) = 0. Here M is an integration constant related

to the the ADM mass of black hole. The horizon radius r+ is determined by the condition

of f(r) = 0 and ` denotes the curvature radius of AdS3 spacetimes.

Its Hawking temperature is found to be

TH =
f ′(r+)

4π
=

r+

2π`2
. (2.7)

Using the ADT method, one can derive all thermodynamic quantities of its mass [26], heat

capacity (C = dMADT
dTH

), entropy [27], and on-shell (Helmholtz) free energy

MADT(m2, r+) =
(

1− 1

2m2`2

)
M(r+), CADT(m2, r+) =

(
1− 1

2m2`2

)
C(r+),

SADT(m2, r+) =
(

1− 1

2m2`2

)
SBH(r+), F on

ADT(m2, r+) =
(

1− 1

2m2`2

)
F on(r+), (2.8)

whose thermodynamic quantities in Einstein gravity have already given by [28–30]

M(r+) =
r2

+

8G3`2
, C(r+) =

πr+

2G3
, SBH(r+) =

πr+

2G3
, F on(r+) = M − THSBH = −

r2
+

8G3`2
.

(2.9)

These all are positive regardless of the horizon size r+ except that the free energy is always

negative. This means that the BTZ black hole is thermodynamically stable in Einstein

gravity. Here we check that the first-law of thermodynamics is satisfied as

dMADT = THdSADT (2.10)

as the first-law is satisfied in Einstein gravity

dM = THdSBH (2.11)

where ‘d’ denotes the differentiation with respect to the horizon size r+ only. In this

work, we treat m2 differently from the black hole charge Q and angular momentum J to

achieve the first-law (2.10). Here we observe that in the limit of m2 → ∞ one recovers

thermodynamics of the BTZ black hole in Einstein gravity, while in the limit of m2 → 0

we recover the black hole thermodynamics in purely fourth-order gravity which is similar

to recovering the conformal Chern-Simons gravity from the topologically massive gravity

(TMG) [31].

On the other hand, the linearized equation to (2.4) upon choosing the transverse-

traceless (TT) gauge of ∇̄µhµν = 0 and hµ µ = 0 leads to the fourth-order equation for the

metric perturbation hµν [32, 33](
∇̄2 − 2Λ

)[
∇̄2 − 2Λ−M2(m2)

]
hµν = 0, Λ = − 1

`2
(2.12)
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which might imply the two second-order linearized equations(
∇̄2 − 2Λ

)
hµν = 0, (2.13)[

∇̄2 − 2Λ−M2(m2)
]
hµν = 0. (2.14)

Here the mass squared of a massive spin-2 graviton is given by

M2(m2) = m2 − 1

2`2
. (2.15)

eq. (2.14) describes a massive graviton with 2 DOF propagating around the BTZ black

hole under the TT gauge.

Expressing all thermodynamic quantities in (2.8) in terms of the mass squared leads to

MADT =
M2

m2
M, CADT =

M2

m2
C, SADT =

M2

m2
SBH, F on

ADT =
M2

m2
F on (2.16)

which shows clearly that all thermodynamical quantities depend on the sign of M2. The

local thermodynamic stability is determined by the positive heat capacity (CADT > 0) and

the global stability is determined by the negative free energy (FADT < 0). Hence, it implies

that the thermodynamic stability is determined by the sign of the heat capacity, while the

phase transition is mainly determined by the sign of the free energy.

For M2 > 0(m2 > 1/2`2), all thermodynamic quantities have the same property as

those for Einstein gravity (2.2), whereas for M2 < 0(m2 < 1/2`2), all thermodynamic

quantities have the same property as those for fourth-order term (2.3). We observe from

figure 1 that for M2 > 0, the BTZ black hole is thermodynamically stable regardless of

the horizon size r+ because of CADT > 0.

On the other hand, the classical (in) stability condition of the BTZ black hole was

recently determined by the condition ofM2 > 0(< 0) regardless of the horizon size r+ [34]

(see also [35] for stability issue in NMG). The case of M2 = 0 corresponds to the critical

gravity where all thermodynamical quantities are zero and logarithmic modes appear. For

M2 < 0, the BTZ black hole is thermodynamically unstable because of CADT < 0 as well

as it is classically unstable against the metric perturbations. Hence, it shows a clear con-

nection between thermodynamic and classical instability for the BTZ black hole regardless

of the horizon size in new massive gravity.

Finally, let us turn to the issue related to a phase transition from the thermal AdS3

(TAdS) to BTZ black hole. For this purpose, we first consider thermodynamic quantities

for the TAdS [29]

MTAdS = − 1

8G3
, FTAdS = − 1

8G3
. (2.17)

It turns out that forM2 < 0(m2 < 1/2`2) [fourth-order term (2.3) contributes dominantly

to black hole thermodynamics], the TAdS is always favored than the BTZ black hole

because of FTAdS < F on
ADT, where F on

ADT is given by (2.16). In this case, we might not define

a possible phase transition because the ground state is the TAdS. Alternatively, this implies
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Figure 1. Heat capacity (solid curve) CADT(m2, r+ = 1), mass squared (line) M2(m2), and

free energy (dotted curve) F on
ADT(m2, r+ = 1) with G3 = 1/8 and ` = 1. For m2 < 0.5, one has

CADT < 0(F on
ADT > 0) andM2 < 0, while for m2 > 0.5, one has CADT > 0(F on

ADT < 0) andM2 > 0.

At the critical point of m2 = 0.5, we have F on
ADT = 0 and M2 = 0. In the limit of m2 → 0/∞,

fourth-order term/Einstein gravity are recovered for free energy and heat capacity.

that a gab between F on
ADT and FTAdS might not allow a continuous phase transition.2 It is

noted that a phase transition from the TAdS to the BTZ black hole is possible to occur in

new massive gravity for M2 > 0(m2 = 1 > 1/2`2) (see arXiv:1311.6985v1 for details), in

which the Einstein gravity (2.2) contributes dominantly to black hole thermodynamics. The

corresponding phase transition in this case is similar to that obtained in the literature [36]

for z = 1.

3 Thermodynamics of AdS black holes in fourth-order gravity

Let us start with the d(≥ 4)-dimensional fourth-order gravity action [37]

SdFO =
1

16πGd

∫
ddx
√
−g
[
R− (d− 2)Λ0 + αRµνR

µν + βR2
]

(3.1)

with two parameters α and β. Here we do not include the Gauss-Bonnet term [38] be-

cause (3.1) admits solutions of the higher-dimensional Einstein gravity including the higher

dimensional AdS black holes. From (3.1), the Einstein equation is derived to be

Gµν + Eµν = 0, (3.2)

where the Einstein tensor is given by

Gµν = Rµν −
1

2
Rgµν +

d− 2

2
Λ0gµν (3.3)

2Concerning this issue, a phase transition between hot flat space and flat space cosmological spacetimes

was recently studied in TMG by using on-shell free energies [31].
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and Eµν takes the form

Eµν = 2α

(
RµρνσR

ρσ − 1

4
RρσRρσgµν

)
+ 2βR

(
Rµν −

1

4
Rgµν

)
+α

(
∇2Rµν +

1

2
∇2Rgµν −∇µ∇νR

)
+ 2β

(
gµν∇2R−∇µ∇νR

)
. (3.4)

For the Einstein space of Rµν = Λgµν and R = dΛ together with Λ0 = Λ + (d − 4)(α +

dβ)Λ2/(d− 2), eq. (3.2) allows a d-dimensional AdS black hole solution

ds2
ST = ḡµνdx

µdxν = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

d−2 (3.5)

with the metric function

V (r) = 1−
(r0

r

)d−3
− Λ

d− 1
r2, Λ = −d− 1

`2
. (3.6)

The horizon is located at r = r+ (V (r+) = 0) which means that r0 differs from r+.

Hereafter we denote the background quantities with the “overbar”. In this case, the black

hole background spacetimes is given by

R̄µν = Λḡµν , R̄ = 4Λ. (3.7)

The Hawking temperature is derived as

T dH =
V ′(r+)

4π
=

1

4πr+

[
(d− 3) +

d− 1

`2
r2

+

]
. (3.8)

Using the ADT method [8, 9], all thermodynamic quantities of its mass [37], heat capacity,

entropy [37], and on-shell free energy are given by

MdADT =
4(d− 1)

dm2
d

M2
dMd(r+), CdADT(m2, r+) =

4(d− 1)

dm2
d

M2
dCd(r+),

SdADT =
4(d− 1)

dm2
d

M2
dSBH(r+), F on

dADT =
4(d− 1)

dm2
d

M2
dF

on
d (r+), (3.9)

where

m2
d =

1

β
, α = −4(d− 1)

d
β, M2

d(m
2
d) =

d

4

[ m2
d

d− 1
− 2(d− 2)2

d`2

]
. (3.10)

At this stage, we note that even though all thermodynamic quantities are obtained for

arbitrary α and β, we require a condition of α = −4(d − 1)β/d because the classical

stability could be achieved only under this condition. This means that we have a single

mass parameter m2
d = 1/β by eliminating a massive spin-0 graviton in fourth-order gravity,

reducing to the Einstein-Weyl gravity. All thermodynamic quantities in d(≥ 4)-dimensional

– 7 –
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Einstein gravity were known to be [39]

Md(r+) =
Ωd−2(d− 2)

16πGd
rd−3

+

[
1 +

r2
+

`2

]
, (3.11)

Cd(r+) =
dMd

dT dH
=

Ωd−2(d− 2)rd−2
+

4Gd

[
(d− 1)r2

+ + (d− 3)`2

(d− 1)r2
+ − (d− 3)`2

]
, (3.12)

SBH(r+) =
Ωd−2

4Gd
rd−2

+ , (3.13)

F on
d (r+) = Md − THSBH =

Ωd−2

16πGd
rd−3

+

[
1−

r2
+

`2

]
(3.14)

with the area of Sd−2

Ωd−2 =
2π

d−1
2

Γ
(
d−1

2

) . (3.15)

We observe from (3.9) that for M2
d > 0, thermodynamic stability of AdS black hole is

determined by the higher-dimensional Einstein gravity. On the other hand, for M2
d < 0,

thermodynamic stability of black hole is determined by Weyl-squared term (conformal

gravity).

We check that the first-law of thermodynamics is satisfied as

dMdADT = T dHdSdADT (3.16)

as the first-law is satisfied in d-dimensional Einstein gravity

dMd = T dHdSBH, (3.17)

where ‘d’ denotes the differentiation with respect to the horizon size r+ only. In this

work, we treat m2
d differently from the black hole charge Q and angular momentum J to

obtain the first-law (3.16). Here we observe that in the limit of m2
d → ∞ we recovers

thermodynamics of the AdS black hole in d-dimensional Einstein gravity, while in the limit

of m2
d → 0 we recover that in Weyl-squared term (conformal gravity).

4 SAdS black hole in Einstein-Weyl gravity

4.1 Thermodynamic instability for small black holes

For a definite description of black hole thermodynamics, we choose d = 4 which provides

a SAdS black hole. Its thermodynamic quantities of mass [40], heat capacity, entropy [40],

and on-shell free energy are given by

MdADT(m2
d, r+) =

(
1− 6

m2
d`

2

)
MSAdS, (4.1)

CdADT(m2
d, r+) =

(
1− 6

m2
d`

2

)
CSAdS, (4.2)

SdADT(m2
d, r+) =

(
1− 6

m2
d`

2

)
SBH, (4.3)

F on
dADT(m2

d, r+) =

(
1− 6

m2
d`

2

)
F on

SAdS, (4.4)

– 8 –
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Figure 2. Left: free energy (solid) F on
dADT(m2

d, r+ = 15) for large black hole and free energy

(dotted) F on
dADT(m2

d, r+ = 5) for small black hole with G4 = 1/2 and ` = 10. Right: mass squared

M2
d(m2

d). At the critical point of m2
d = 0.06, we have F on

dADT = 0 and M2
d = 0. In the limit of

m2
d → 0/∞, Weyl-squared term (conformal gravity)/Einstein gravity are recovered for free energy.

where all thermodynamic quantities of SAdS black hole are shown in the eqs. (3.11)–(3.14)

for d = 4. The mass squared takes the form [40]

M2
d =

m2
d

3
− 2

`2
(4.5)

which is negative/postive for m2
d ≶ 6/`2.

First of all, we depict the free energy as a function of m2
d in figure 2. Since the sign

of free energy depends on the horizon size r+ critically, we plot the two free energies as

function of m2
d for large (r+ = 15 > ` = 10) and small black hole (r+ = 5 < `), respectively.

For m2
d < 0.06, one has F on

dADT(m2
d, r+ = 15) > 0(F on

dADT(m2
d, r+ = 5) < 0) and M2

d < 0,

while for m2
d > 0.06, one has F on

dADT(m2
d, r+ = 15) < 0(F on

dADT(m2
d, r+ = 5) > 0) and

M2
d > 0.

We consider first the case ofM2
d > 0(m2

d > 0.06) which is dominantly described by the

Einstein gravity. Since the heat capacity of CSAdS blows up at r+ = r∗ = `/
√

3 = 0.577`,

we divide the black hole into the small black hole with r+ < r∗ and the large black hole

with r+ > r∗. As is shown in the solid (familiar) curves in figure 3, we have the small black

hole with r+ < r∗ which is thermodynamically unstable because CdADT < 0, while the

large black hole with r+ > r∗ is thermodynamically stable because CdADT > 0. Especially

forM2
d = 1.98 > 0(m2

d = 6), one has MdADT = 0.99MSAdS, CdADT = 0.99CSAdS, SdADT =

0.99SBH, and FdADT = 0.99FSAdS. Hence we could describe the Hawking-Page phase

transition well as for the SAdS black hole in Einstein gravity [3]. We wish to comment

that the free energy has the maximum value at r+ = r∗. Since the free energy becomes

negative (positive) for r+ < `(r+ > `), we did not choose r+ = ` as a boundary point to

divide the black hole into small and large black holes.

On the other hand, for M2
d = −0.013 < 0(m2

d = 0.02 < 6/`2) which is dominantly

described by conformal gravity [41], the small black hole (r+ < r∗) is thermodynamically

stable because CdADT > 0, while the large black hole (r+ > r∗) is thermodynamically

unstable because CdADT < 0. See the dotted (unfamiliar) curves in figure 3 for observation.

It seems that there is no known phase transition from thermal AdS to the SAdS black hole

in conformal gravity.

– 9 –
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Figure 3. Left: familiar heat capacity (solid) CdADT(m2
d = 6, r+) for M2

d = 1.98 > 0 and

unfamiliar heat capacity (dotted) CdADT(m2
d = 0.02, r+) for M2

d = −0.013 < 0 with G4 = 1/2 and

` = 10. Right: familiar free energy (solid) F on
dADT(m2

d = 6, r+) for M2
d = 1.98 and unfamiliar free

energy (dotted) F on
dADT(m2

d = 0.02, r+) for M2
d = −0.013.

4.2 GL instability for small black holes

We briefly review the Gregory-Laflamme s-mode instability for a massive spin-2 graviton

with massMd ≥ 0 propagating on the SAdS black hole spacetimes in Einstein-Weyl gravity.

Choosing the TT gauge, its linearized equation to (3.2) takes the form

∇̄2hµν + 2R̄αµβνh
αβ −M2

dhµν = 0. (4.6)

which describes 5 DOF of a massive spin-2 graviton propagating on the SAdS black hole

spacetimes. We note that choosing the condition of α = −3β eliminates a massive spin-0

graviton with 1 DOF.

Before we proceed, we wish to mention that the stability of the Schwarzschild black

hole in four-dimensional massive gravity is determined by using the Gregory-Laflamme

instability of a five-dimensional black string. It turned out that the small Schwarzschild

black holes in the dRGT massive gravity [18, 19] and fourth-order gravity [20] are unstable

against the metric and Ricci tensor perturbations because the inequality is satisfied as

Md ≤
O(1)

r0
, r0 = 2MS . (4.7)

For the massless case of Md = 0, eq. (4.6) leads to the linearized equation around the

Schwarzschild black hole with the TT gauge which is known to be stable in the Einstein

gravity.

Choosing the s-mode ansatz whose form is given by Htt, Htr, Hrr, and K as

hsµν = eΩt


Htt(r) Htr(r) 0 0

Htr(r) Hrr(r) 0 0

0 0 K(r) 0

0 0 0 sin2 θK(r)

 , (4.8)

a relevant equation for Htr takes the same form (see appendix for explicit forms of A, B, C)

A(r; r0, `,Ω
2,M2

d)
d2

dr2
Htr +B

d

dr
Htr + CHtr = 0, (4.9)
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W

Figure 4. Plots of unstable modes on three curves with r+ = 1, 2, 4 and ` = 10. These belong to

small black holes because of r+ < r∗ = 5.77. The y(x)-axis denote Ω(Md). Also we check that

for r+ = 6 > r∗ = 5.77, the maximum value of Ω is less than 10−4, which implies that there is no

instability for large black hole. In this figure, the smallest curve represents r+ = 4, the medium

denotes r+ = 2, and the largest one shows r+ = 1.

which shows the same unstable modes for

0 <Md <
O(1)

r0
(4.10)

with the mass

Md =

√
m2
d

3
− 2

l2
. (4.11)

The condition of (4.10) could be read off from figure 4 when one notes the difference

between r+ and r0: r+ = 1, 2, 4 and r0 = 1.01, 2.08, 4.64. On the other hand, the stable

condition of the SAdS black hole in Einstein-Weyl gravity is given by

Md >
O(1)

r0
. (4.12)

At this stage, we would like to mention the classical stability of Md = 0 case. In this

case, its linearized equation reduces to

∇̄2hµν + 2R̄αµβνh
αβ = 0, (4.13)

which is exactly the linearized equation around the SAdS black hole in Einstein gravity.

From the observation3 of figure 4, the GL instability disappears at Md = 0, which may

imply that the SAdS black hole is stable against the s-mode metric perturbation. The

SAdS black hole was known to be stable against the metric perturbation even though

a negative potential appeared near the event horizon in odd-parity sector [42]. Later

3In the next section 5.2, we introduce the corresponding numerical analysis to observe this GL instability.

– 11 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
8

on, one could achieve the positivity of gravitational potentials by using the S-deformed

technique [43], proving the stability of SAdS black hole exactly [44]. This implies that there

is no connection between classical stability and thermodynamic instability (CSAdS < 0)

for small SAdS black hole. This situation is similar to the Schwarzschild black hole which

shows a violation of the CSC between thermodynamic instability (CS < 0) and the classical

stability [14–16]. Therefore, we could not apply the Gubser-Mitra conjecture to the SAdS

black hole in Einstein gravity.

Let us see how things are improved in Einstein-Weyl gravity. We note that at the

critical point of M2
d = 0, all thermodynamic quantities vanish exactly. For M2

d > 0 and

small black hole with r+ < r∗, the heat capacity takes the form

CdADT =
3M2

d

m2
d

CSAdS < 0, (4.14)

which shows thermodynamic instability like that of a small SAdS black hole in Einstein

gravity. From the condition of (4.10), however, we find that a small black hole is unstable

against the s-mode massive graviton perturbation. This implies that the CSC holds for

the SAdS black hole in Einstein-Weyl gravity.

Also the stability condition of (4.12) is consistent with thermodynamic stability con-

dition for large black hole with r+ > r∗ in Einstein gravity

CdADT =
3M2

d

m2
d

CSAdS > 0. (4.15)

As was previously emphasized, there is no connection between thermodynamic instability

and classical stability for small SAdS black hole in Einstein gravity. However, the GL insta-

bility condition picks up the small SAdS black hole which is thermodynamically unstable in

Einstein-Weyl gravity. Hence, we conclude that there is a connection between the GL insta-

bility and thermodynamic instability for small black hole in fourth-order (Einstein-Weyl)

gravity.

5 Higher-dimensional AdS black holes in fourth-order gravity

5.1 Thermodynamic instability for small black holes

In this section, we comment briefly on the thermodynamic (in)stability for higher-

dimensional AdS black hole. To this end, we first recall the thermodynamic quantities (3.9),

obtained in the d-dimensional fourth order gravity. Among them, taking into account the

heat capacity together with (3.12), the small and large black holes can be divided by

choosing the blow-up heat capacity at

r+ = r
(d)
∗ =

√
d− 3

d− 1
`. (5.1)

For M2
d > 0 [m2

d > 2(d − 1)(d − 2)2/d`2], we have the small black hole for r+ < r
(d)
∗

which is thermodynamically unstable because CdADT < 0 in (3.9), while we have the large
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black hole for r+ > r
(d)
∗ which is thermodynamically stable because CdADT > 0. This

is dominantly described by the higher-dimensional Einstein gravity. We would like to

mention that for M2
d > 0 we will establish the connection between the GL instability and

thermodynamic instability of the small black hole.

On the other hand, for M2
d < 0 [m2

d < 2(d − 1)(d − 2)2/d`2] which is dominantly

described by Weyl-squared term, the small black hole is thermodynamically stable be-

cause CdADT > 0, whereas the large black hole is thermodynamically unstable because of

CdADT < 0. This case requires a newly black hole thermodynamics.

5.2 GL instability

In order to investigate the classical instability for higher-dimensional AdS black hole, we

first consider two coupled first order differential equations4

H ′ =

[
3− d− (d− 1)r2/`2

rV
− 1

r

]
H +

Ω

2V
(H+ +H−)

(5.2)

H ′− =
M2

d

Ω
H +

d− 2

2r
H+ +

[
d− 3 + (d− 1)r2/`2

2rV
− 2d− 3

2r

]
H− (5.3)

with the constraint equation

r2Ω
[
4rΩ2 − rV ′2 + (d− 2)V V

′
+ 2rVM2

d + 2rV V
′′
]
H−

−Ωr2V
[
2M2

dr + (d− 2)V
′
]
H+ − 2r2V

[
2(d− 2)Ω2 − 2M2

dV + rM2
dV
′
]
H = 0, (5.4)

where

H ≡ Htr, H± ≡
Htt

V (r)
± V (r)Hrr with V (r) = 1−

(r0

r

)d−3
+
r2

`2
. (5.5)

At infinity of r →∞, asymptotic solutions to eqs. (5.2) and (5.3) are

H(∞) = C
(∞)
1 r−(d+1)/2+

√
M2

d`
2+(d−1)2/4 + C

(∞)
2 r−(d+1)/2−

√
M2

d`
2+(d−1)2/4,

H
(∞)
− = C̃

(∞)
1 r−(d−1)/2+

√
M2

d`
2+(d−1)2/4 + C̃

(∞)
2 r−(d−1)/2−

√
M2

d`
2+(d−1)2/4, (5.6)

where C̃
(∞)
1,2 are

C̃
(∞)
1 =

M2
d

(1− d)/2 +
√
M2

d`
2 + (d− 1)2/4

C
(∞)
1 ,

C̃
(∞)
2 =

M2
d

(1− d)/2−
√
M2

d`
2 + (d− 1)2/4

C
(∞)
2 . (5.7)

4We note that these first order differential and constraint equations can be obtained from using the

perturbation equation (4.6) and TT gauge condition. Finally we have checked, after some manipulations,

that these equations are consistent with the second order equation (4.9) and for V = 1− (r0/r)d−3 [in the

`2 →∞-limit], they reduce to those found in the original literature [11].
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Figure 5. Ω graphs as function of Md for a small black hole with r+ = 1, ` = 10 and d =

4, 5, · · · , 10 from left to right curve. The most left curve in this figure corresponds to the largest

one in the figure 5.

At the horizon r+, their asymptotic solutions are given by

H(r+) = C
(r+)
1 (rd−3 − rd−3

+ )−1+Ω/V
′
(r+) + C

(r+)
2 (rd−3 − rd−3

+ )−1−Ω/V
′
(r+),

H
(r+)
− = C̃

(r+)
1 (rd−3 − rd−3

+ )Ω/V
′
(r+) + C̃

(r+)
2 (rd−3 − rd−3

+ )−Ω/V
′
(r+), (5.8)

where C̃
(r+)
1,2 are

C̃
(r+)
1 =

(d− 3)rd−3
+ Ω

(
2Ω− V ′(r+)

)
2V ′(r+)

(
M2

dr+ + (d− 2)Ω
) C

(r+)
1 ,

C̃
(r+)
2 = −

(d− 3)rd−3
+ Ω

(
2Ω + V ′(r+)

)
2V ′(r+)

(
M2

dr+ − (d− 2)Ω
) C

(r+)
2 .

We note that two boundary conditions of the regular solutions correspond to C
(∞)
1 = 0

and C
(r+)
2 = 0 at infinity and horizon, respectively.

Eliminating H+ in eqs. (5.2) and (5.3) with the help of the constraint (5.4), one can

find the coupled equations with H, H− only. For given dimensions d = 4, 5, · · · , 10, fixed

Md, and various values of Ω, we solve these coupled equations numerically, which yields

possible values of Ω as a function of Md given by

Md =

√
dm2

d

4(d− 1)
− (d− 2)2

2`2
. (5.9)

Figure 5 shows that the curve of possible values of Ω and Md intersects the Md-axis at

two places: Md = 0 and Md = Mc
d where Mc

d is a critical non-zero mass. The fact that
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the curve does not intersect the Md-axis at Md < 0 follows from the stability of the AdS

black hole in higher-dimensional Einstein gravity. Explicitly, forM <Mc
d(M >Mc

d), the

AdS black hole is unstable (stable) against the metric perturbations. From the observation

of figure 5, we read off the critical mass Mc
d depending on the dimension d as(

d 4 5 6 7 8 9 10

Mc
d 0.86 1.26 1.57 1.83 2.07 2.29 2.49

)
. (5.10)

For higher-dimensional black strings with Vbs(r) = 1− (r0/r)
d−3, the critical wave number

marks the lower bound of possible wavelengths for which there is an unstable mode. Espe-

cially for e
Ω
r0
t
e
i k
r0
z

setting, there exists a critical wave number kcd where for k < kcd(k > kcd),

the black string is unstable (stable) against the metric perturbations. There is an un-

stable (stable) mode for any wavelength larger (smaller) than the critical wavelength

λGL = 2πr0/k
c
d: λ > λGL(λ < λGL). The critical wave number kcd depends on the di-

mension d as [13] (
d 4 5 6 7 8 9 10

kcd 0.88 1.24 1.60 1.86 2.08 2.30 2.50

)
. (5.11)

From V (r) in (3.5), one has the relation between r+ and r0 as

r0 =

[
rd−1

+

`2
+ rd−3

+

] 1
d−3

. (5.12)

For r+ = 1 and ` = 10, it takes the form

r0 =

(
101

100

) 1
d−3

(5.13)

which implies r0 = {1.01, 1.005, 1.003, 1.002, 1.002, 1.002, 1.001}. Here, the corresponding

k̃cd = r0Mc
d is given by (

d 4 5 6 7 8 9 10

k̃cd 0.87 1.27 1.57 1.83 2.07 2.29 2.49

)
. (5.14)

W observe that k̃cd = kcd − 0.01 for d = 4, 8, 9, 10 whereas k̃cd = kcd ± 0.03 for d = 5, 6, 7.

Now let us derive the GL instability condition from (5.14). We propose the bound for

unstable modes approximately as

0 <Md <
k̃cd
r0
. (5.15)

We note that there is no connection between thermodynamic instability and classical

stability for small AdS black hole in higher-dimensional Einstein gravity. However, the GL

instability condition (massiveness) picks up the small AdS black hole with r+ < r
(d)
∗ which

is thermodynamically unstable in fourth-order gravity. Hence, we conclude that there is a

connection between the GL instability and thermodynamic instability for small AdS black

hole in fourth-order gravity.
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6 Discussions

First of all, we have studied the thermodynamics and phase transitions of AdS black

holes using the ADT thermodynamic quantities in fourth-order gravity. For m2
d > m2

c ,

all thermodynamic properties are dominantly determined by Einstein gravity, while for

m2
d < m2

c , all thermodynamic properties are dominated by Weyl-squared term (conformal

gravity). The former is completely understood, but the latter has a new feature when one

studies the black hole thermodynamics by using the ADT thermodynamic quantities. A

further study is necessary to understand the latter completely.

We have confirmed a close connection between thermodynamic and classical instability

for the BTZ black hole in new massive gravity. Also, there is a connection between the

classical (GL) and thermodynamic instability for small AdS black holes in fourth-order

gravity. This implies that the Gubser-Mitra conjecture (CSC) holds for the AdS black

holes found from fourth-order gravity theory, which corresponds to our main result.

Finally, we wish to comment on the linearized equation (4.6) for the metric pertur-

bation, which is obtained by splitting the linearized fourth-order equation. One confronts

with ghost states with negative kinetic term when one uses the second-order equation (4.6)

in fourth-order gravity. In order to avoid this problem, one may express the linearized

equation (the linearized fourth-order equation for hµν) in terms of the linearized Einstein

tensor as

∇̄2δGµν + 2R̄αµβνδG
αβ −M2

dδGµν = 0 (6.1)

which is surely a second-order differential equation. This equation describes 5 DOF of a

massive spin-2 graviton propagating on the AdS black hole spacetimes when one imposes

the tracelessness of δGµ µ = −δR = 0 and the transversality of ∇̄µδGµν = 0 from the

contracted Bianchi identity. Actually, eq. (6.1) is a boosted-up version of eq. (4.6) which

indicates the GL instability for small AdS black holes. However, the former is a ghost free

equation, while the latter has the ghost problem in fourth-order gravity.
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A Coefficients of the perturbation equation for Htr

As was shown in section 4.2, the master equation for Htr is given by

A(r; r0, `,Ω
2,M2

d)
d2

dr2
Htr +B

d

dr
Htr + CHtr = 0, (A.1)
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where A, B, and C are

A = −M2
dV − Ω2 +

V
′2

4
− V V

′′

2
− (d− 2)V V

′

2r
,

B = −2M2
dV
′ − 3V

′
V
′′

2
− 3Ω2V

′

V
+

3V
′3

4V
+

(d− 2)M2
dV

r
+

(d− 2)Ω2

r
+

3(d− 2)V
′2

4r

+
(d− 2)V V

′′

2r
− (d− 2)2V V

′

2r2
,

C = M4
d +

Ω4

V 2
+

2M2
dΩ

2

V
− 5Ω2V

′2

4V 2
+
M2

dV
′2

4V
+
V
′4

4V 2
−
M2

dV
′′

2
− Ω2V

′′

2V
− V

′2V
′′

4V
−V

′′2

2

−
dM2

dV
′

2r
− (d− 2)Ω2V

′

2rV
+

(d− 2)V
′3

2rV
− 3(d− 2)V

′
V
′′

2r
+

(d− 2)Ω2

r2
+

(d− 2)M2
dV

r2

−(d− 2)(2d− 3)V
′2

4r2
+

(d− 2)V V
′′

2r2
+

(d− 2)2V V
′

2r3
.

One can easily check that for V = 1− (r0/r)
d−3 or V = 1− r0/r+ r2/`2, eq. (A.1) reduces

to the master equation for Htr given in the literature [11] or [45].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] D.J. Gross, M.J. Perry and L.G. Yaffe, Instability of Flat Space at Finite Temperature, Phys.

Rev. D 25 (1982) 330 [INSPIRE].

[2] J.W. York, Black hole thermodynamics and the Euclidean Einstein action, Phys. Rev. D 33

(1986) 2092 [INSPIRE].

[3] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space,

Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[4] J.D. Brown, J. Creighton and R.B. Mann, Temperature, energy and heat capacity of

asymptotically anti-de Sitter black holes, Phys. Rev. D 50 (1994) 6394 [gr-qc/9405007]

[INSPIRE].

[5] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[6] R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel.

Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

[7] C.V. Johnson, D-Branes, Cambbridge Univeristy Press, Cambridge (2003).

[8] L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B

195 (1982) 76 [INSPIRE].

[9] S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67

(2003) 084009 [hep-th/0212292] [INSPIRE].

[10] W. Kim, S. Kulkarni and S.-H. Yi, Quasilocal Conserved Charges in a Covariant Theory of

Gravity, Phys. Rev. Lett. 111 (2013) 081101 [arXiv:1306.2138] [INSPIRE].

– 17 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.25.330
http://dx.doi.org/10.1103/PhysRevD.25.330
http://inspirehep.net/search?p=find+J+Phys.Rev.,D25,330
http://dx.doi.org/10.1103/PhysRevD.33.2092
http://dx.doi.org/10.1103/PhysRevD.33.2092
http://inspirehep.net/search?p=find+J+Phys.Rev.,D33,2092
http://dx.doi.org/10.1007/BF01208266
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,87,577
http://dx.doi.org/10.1103/PhysRevD.50.6394
http://arxiv.org/abs/gr-qc/9405007
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9405007
http://arxiv.org/abs/hep-th/9803131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
http://dx.doi.org/10.1007/s10714-008-0661-1
http://dx.doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0405109
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://dx.doi.org/10.1016/0550-3213(82)90049-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B195,76
http://dx.doi.org/10.1103/PhysRevD.67.084009
http://dx.doi.org/10.1103/PhysRevD.67.084009
http://arxiv.org/abs/hep-th/0212292
http://inspirehep.net/search?p=find+EPRINT+hep-th/0212292
http://dx.doi.org/10.1103/PhysRevLett.111.081101
http://arxiv.org/abs/1306.2138
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2138


J
H
E
P
0
4
(
2
0
1
4
)
0
5
8

[11] R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70

(1993) 2837 [hep-th/9301052] [INSPIRE].

[12] S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space,

hep-th/0009126 [INSPIRE].

[13] T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class.

Quant. Grav. 24 (2007) R1 [hep-th/0701022] [INSPIRE].

[14] T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957)

1063 [INSPIRE].

[15] F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation

equations, Phys. Rev. Lett. 24 (1970) 737 [INSPIRE].

[16] C.V. Vishveshwara, Stability of the Schwarzschild metric, Phys. Rev. D 1 (1970) 2870

[INSPIRE].

[17] H. Kudoh, Origin of black string instability, Phys. Rev. D 73 (2006) 104034

[hep-th/0602001] [INSPIRE].

[18] E. Babichev and A. Fabbri, Instability of black holes in massive gravity, Class. Quant. Grav.

30 (2013) 152001 [arXiv:1304.5992] [INSPIRE].

[19] R. Brito, V. Cardoso and P. Pani, Massive spin-2 fields on black hole spacetimes: Instability

of the Schwarzschild and Kerr solutions and bounds on the graviton mass, Phys. Rev. D 88

(2013) 023514 [arXiv:1304.6725] [INSPIRE].

[20] Y.S. Myung, Stability of Schwarzschild black holes in fourth-order gravity revisited, Phys.

Rev. D 88 (2013) 024039 [arXiv:1306.3725] [INSPIRE].

[21] Y.S. Myung, Unstable Schwarzschild-Tangherlini black holes in fourth-order gravity, Phys.

Rev. D 88 (2013) 084006 [arXiv:1308.3907] [INSPIRE].

[22] Y.S. Myung, Instability of Schwarzschild-AdS black hole in Einstein-Weyl gravity, Phys. Lett.

B 728 (2014) 422 [arXiv:1308.1455] [INSPIRE].

[23] E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys.

Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].
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