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Abstract

The early Universe was characterized by the presence of heavy particles that decoupled at dif-

ferent temperatures leading to different phases of the Universe. This had a consequences on the

time evolution of the thermodynamic and the cosmological parameters characterizing each phase

of the early Universe. In this study, we derive the analytic expressions of the equations governing

the time evolution of these parameters in the early eras of the Universe namely, the radiation era,

the quark-gluon plasma era, the hadron era and the mixed era. The parameters under concern

include the energy density, the entropy density, the temperature, the pressure in addition to Hubble

parameter and the scale factor. Having these expressions allows us to give estimations of the times

corresponding to the beginning and ending of each era of the Universe as will be presented in this

work.
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I. INTRODUCTION

It is widely accepted that the Universe is homogeneous and isotropic [1]. As a conse-

quence, the space-time can be parametrized by the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric. Upon inserting the metric into the Einstein equations one obtains the

Friedmann equations [1]. These equations can be used to get the following equation [2–4]:

ȧ

a
= − dε

3 (ε+ p)
=

√

8π G ε

3
dt (1)

where a(t) is the scale factor. The above differential equation enables us to find the temporal

variation of the energy density ε once the pressure p as a function of ε is known. It should

be noted that the above equation can be rewritten in terms of temperature T with the

help of equations of state and hence one gets solution expressing the temporal evolution of

the temperature. This can be the case also for other thermodynamic parameters such as

pressure density and entropy density s.

The scale factor as a cosmological parameter can be calculated with the help of the

energy density and pressure upon performing the integration in Eq.(1). On the other hand,

knowing the the energy density, the Hubble parameter H(t) can be estimated using the

following equation

H(t) =

√

8πG

3
ε(t) (2)

Based on the above discussion, the time evolution of the thermodynamic and cosmological

parameters depends on the knowledge of the equations of state of the Universe which in

turn depend on the phase of the Universe. This can be understood as in each phase of the

Universe, the nature of the matter spreading in the Universe and the distribution of the

energy in the Universe are different.

It is widely believed that our Universe underwent different cosmological phases started

right after the big bang and their time evolution leaded to our current Universe. The

early phase of the Universe was dominated by radiation. During this phase the Universe

endured several phase transitions due to the cooling process to a temperature T ∼ mc

where mc is the charm quark mass. At the end of radiation dominated (RD) era, the

Universe experienced another phase transition namely, quark-gluon plasma (QGP) phase.

This phase was followed by another phase the so called hadron phase when the temperature
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of the Universe was smaller than the critical temperature TC which represents the QCD

phase transition temperature. In the mixed phase the Universe experienced the co-existence

of QGP and hadron phases for a certain time interval. This mixed phase happens when

the temperature of the Universe cools down and get close to TC . During this phase, the

temperature of the Universe was fixed at TC .

QGP can be created through colliding ultra-relativistic heavy ions in Colliders as in

AGS, SPS, RHIC, LHC. On the theoretical hand side, there are two basic approaches for

studying the properties of QCD. The first approach is based on lattice Gauge Theories in

which a field theory is formulated and solved on a discrete lattice of space-time points with

the help of so powerful computers. As a prediction of the lattice QCD, the nuclear matter

experiences a phase transition at a temperature TC in the range 150− 170MeV and energy

density, 1GeV/fm3. The second approach adopts phenomenological models to avoid the

requirement of the intense numerical calculations needed for lattice QCD. Examples of such

models include the bag models with the MIT bag model is the widely used one. With

the recent experimental results from heavy ion collisions and the advances in lattice QCD

calculations our knowledge of the equation of state of the QGP has been improved.

In the literature, previous studies, related to studying early phases of the Universe, have

been carried out where the main interest was directed to the QGP phase [3–14].

In this study we aim to derive the analytic solutions of the Eq.(1). The equation can

be casted into energy density or temperature or pressure differential equation and thus can

be solved to give the time evolution of the corresponding thermodynamic parameter in the

early eras of the Universe as we will show in details in the following. Moreover, we give more

attention to show details of estimating the times at which different phase transitions occur

and give analytic expressions for estimating these times. We will also derive the expressions

governing the time variation of some cosmological parameters in all of the aforementioned

phases of the Universe.

II. THE TIME EVOLUTION OF THE THERMODYNAMIC PARAMETERS IN

THE EARLY UNIVERSE

In this section we investigate the thermodynamics and cosmological parameters in early

eras of the Universe. Our aim is to derive analytic expressions for these parameters in
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each era. These expressions can be used to study the time evolution of the aforementioned

parameters which will be presented in section III.

The early Universe is thought to be characterized by very high temperatures. Conse-

quently, massive particles were pair produced, and contributed to the thermal bath. More-

over, particle masses can be neglected providing that m << T where m and T denote the

mass of the particle and temperature of the Universe respectively. In the Standard Model

(SM) the heaviest particle is the top quark with mass mt ≃ 170GeV . Searches at the large

Hadron Collider (LHC) for particles with heavier masses than the top quark mass exclude

particles with masses close to TeV predicted in many theories beyond the SM. Thus, our

knowledge about phase transitions occurred in the temperature interval T > mt remains

model dependent and is uncertain in the same time. Consequently, we adopt the SM as

the framework in which the evaluation of the degrees of freedom of particles and bosons,

required in this study, are carried out. In the SM, a chemical potential is often associated

with baryon number. Due to the fact that the ratio of the net baryon density to the photon

density is so tiny, one can neglect that chemical potential when estimating thermodynamic

quantities such as the energy density ε, the pressure density p and the entropy density s.

In the following, we will present the equations of state that relate these parameters with

temperature and derive the equations governing their time evolution in the early eras of the

Universe.

A. Radiation era

The early epoch of the Universe was characterized by temperatures satisfying the relation

T > mc. In this epoch, the Universe was dominated by radiation and endured several phase

transitions as a consequence of the cooling process to a temperature T ∼ mc where mc is

the charm quark mass. The equations of state in this era can be approximated as

εRD = NRD
π2

30
T 4, pRD = NRD

π2

90
T 4, sRD =

(εRD + pRD)

T
if mc < T,

(3)
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here NRD stands for the effective number of degrees of freedom at temperature T and can

be determined from the relation

NRD =
∑

B

gB +
7

8

∑

F

gF (4)

where gB (gF ) denotes number of degrees of freedom for a boson B (a fermion F ) and the

sum runs over all boson and fermion states with masses satisfying m << T . Clearly, NRD

is model dependent. The factor of 7/8 in the expression of NRD accounts for the difference

between the Bose and Fermi integrals.

At high temperatures much bigger than the top quark mass mt, all the the SM particles

were present. Thus, we have 28 bosonic degrees of freedom and 90 fermionic degrees of

freedom. The number 28 is the sum of degrees of freedom of the photons γ, the charged

gauge bosons W± , the neutral gauge boson Z, the gluons g and the Higgs boson H where

gγ = 2, gW− = gW+ = gZ = 3, gg = 16 and gH = 1. On the other hand, the number 90 is

the sum of degrees of freedom of all fermions in the SM. After substituting in Eq.(4) we find

that NRD = 28 + 7
8
× 90 = 427/4 = 106.75

We study the energy density in the time interval starting from t0 = 0 that corresponds to

T ∼ ∞ till time t8 corresponding to T8 = mc ∼ 1GeV . First in the mentioned time interval

we have p = c2s εRD(t). Using this in Eq.(1) and setting c2s = 1/3 we get the following

differential equation

dεRD

εRD
√
εRD

= −
√

4× 32πG

3
dt (5)

after integration we get

εRD(t) =
4εRD(ti)

[

2 + 2
√

32πG
3

εRD(ti) (t− ti)
]2

(6)

where ti represents the initial time. The result agrees with the the corresponding one given

in Eq.(9) in Ref. [9]. For i → 0 we find that 1√
εRD(t0)

→ 0, as T (t0) → ∞, and hence we get

εRD(t) =
3

32πG t2
(7)

The preceding equation gives the expression of the energy density in the time interval starting

from t = 0 to t and for the intervals starting from ti 6= 0 to ti+1, the energy density can
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be evaluated using Eq.(6). In the temperature range starting at T ∼ ∞ which corresponds

to the beginning of the Universe and ending at T = mc ∼ 1GeV several phase transitions

occur due to the decoupling of heavy particles and massive bosons. In particular, due to

the decoupling of top quark, Higgs boson, massive Z and W± bosons, b quark and τ lepton.

This in turns will affect the value of NRD. In order to estimate the time at which these

phase transitions occur at temperature Ti, we can use the result of the integration of Eq.(5)

and solve for t. Thus, we find that

ti+1 = ti −
√

3

32πG

(

1
√

εRD(ti)
− 1

√

εRD(ti+1)

)

(8)

It should be noted that in the time interval starting from t0 = 0 till t Eq.(8) reduces to

t =

√

45

16π3GNRD

1

T 2
(9)

in agreement with Refs.[10, 15] after setting ~ = c = kB = 1. This relation can be used

to estimate the time at which all non standard particles, heavy particles predicted in some

classes of new physics beyond standard model, decoupled. Since ongoing search at colliders

has not observed such particles up to TeV energy scale, we can start our estimation of times

in the radiation era at T = 1 TeV where only standard model particles exist. In TableI, we

present the numerical estimation of the times at which standard model particles decoupled

and the corresponding energy densities.

The time dependence of the temperature in the RD phase of the Universe can be obtained

by substituting the definitions of εRD and pRD given in Eq.(3) into Eq.(1) and hence, we

obtain below simple differential equation:

T−3 dT = −
√

4π3GNRD

45
dt (10)

we find that the solution of the above differential equation can be expressed as

TRD(t) =
TRD(ti)

[

1 +

√

16π3GNRDT
4
RD(ti)

45
(t− ti)

]1/2
(11)

where TRD(ti) represents the initial temperature at the start time t = ti of the time interval.

At i = 0 we have TRD(t0 = 0) = ∞ and thus we can write

TRD(t) =

[
√

16π3GNRD

45
t

]−1/2

(12)
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i Ti+1(GeV ) 4NRD ti+1(s) εRD(GeV/fm3)

0 1000 427 2.32 × 10−13 3.5× 1013

1 mt 385 8.22 × 10−12 3.7× 1012

2 mH 381 1.57 × 10−11 1.0× 1012

3 mZ0 369 2.96 × 10−11 2.7× 1011

4 m±
W 345 3.97 × 10−11 1.5× 1011

5 mb 303 1.56 × 10−8 1.0× 106

6 mτ 289 9.00 × 10−8 3.0× 104

7 mc 247 1.85 × 10−7 7.3× 103

TABLE I. Time in seconds corresponding to decoupling of heavy particles and massive weak gauge

bosons.

this gives the evolution of temperature with time in the first interval that ends at T = 1 TeV .

For other intervals corresponding to the times listed in TableI, we can use the relation given

in Eq.(11) to estimate the evolution of temperature with time.

The derivation of an analytic formula for the time variation of the pressure in the radiation

era is straightforward following same steps as we did for the case of the energy density. The

only difference here is to replace εRD = 3 pRD in Eq.(1) and after performing the integration

and setting 1√
pRD(t0=∞)

→ 0 we get

pRD(t) =
1

32πG t2
(13)

For any time interval starting at t = ti we find that the pressure is given as

pRD(t) =
4pRD(ti)

3
[

2 + 2
√

32πG
3

εRD(ti) (t− ti)
]2

(14)

We turn now to derive the expression of the scale factor in the RD era. Using the

equations of state given in Eq.(3) and Eq.(1) allows us to write

ȧ(t)

a(t)
= − ε̇(t)

3
[

ε(t) + 1
3
ε(t)

] = −1

4

ε̇(t)

ε(t)
(15)

where we have used p(t) = 1
3
ε(t). The previous equation can be expressed as

d

dt
ln [a(t)] = −1

4

d

dt
ln [ε(t)] (16)
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Solution of such an equation yields

a(t)

a(ti)
=

[ε(ti)

ε(t)

]
1

4

=
[

1 +

√

32πG

3
εRD(ti) (t− ti)

]
1

2 (17)

where, as before, ti stands for the value of the time at the beginning of the time interval in

the RD era. It should be noted that Eq.(17) can be expressed in terms of the temperatures

or in terms of the times as

a(t)

a(ti)
=

[ε(ti)

ε(t)

]
1

4

=
T (ti)

T (t)
=

( t

ti

)
1

2 (18)

The result obtained in the previous equation agrees with the result obtained in Refs.[3, 8].

B. Quark Gluon Plasma era

The QGP phase of the Universe existed when the temperature of the Universe was in

the range TC < T < mc, where TC is the critical temperature. In that phase, the Universe

was in a state filled with quark-gluon plasma contains lighter quarks in addition to the

photons, lighter charged leptons, neutrinos and antineutrinos in thermal equilibrium. It

should be noted that the relativistic heavy ion collision experiments at both RHIC and LHC

may access to the temperature range TC < T < mc and hence they can shed light on the

properties and nature of the plasma formed in this range.

As it is known, quarks as colored particles are confined to each others in bound hadronic

states. One of the most successful phenomenological models for quark confinement is the

so called MIT bag model [16]. While in the MIT bag model the contributions that arise

from the particles in the electroweak sector were not taken into account, here in this work

we follow Refs.[3, 9] and include their effects on the effective number of degrees of freedom.

The densities corresponding to this epoch of the early universe can be approximated in a

bag model Mi as

εQGP = NQGP
π2

30
T 4 + B, pQGP =

1

3
NQGP

π2

30
T 4 − B, sQGP = 4NQGP

π2

90
T 3, (19)

here B is a bag constant parameter. It represents the exerted external pressure on the bag

surface. This pressure balances the internal pressure in the absence of QGP and hence
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ensures the stability of the bag. In Eq.(19), NQGP stands for the effective number of degrees

of freedom and can be determined from a relation similar to the one given in Eq.(4) where

the summation in this case is carried out for all the bosons and fermions present in the QGP.

The exact analytic solution of the energy density εQGP , temperature and pressure den-

sities can be obtained directly from solving Eq.(1). In the appendix, we show the steps we

follow to derive the desired solutions for the three quantities. We find that, the analytic

expressions can be expressed as

εQGP (t) = χ(t) + ζ(t) +

√

(

χ(t) + ζ(t)

)2

− ζ2(t) (20)

The functions ζ(t) and χ(t) are given in terms of η(t) defined as

η(t) = exp

(

4

√

8πBG

3
t+ ξ

)

(21)

with

ξ = ln

(

√

εRD(t8) +
√
B

√

εRD(t8)−
√
B

)

− 4

√

8πBG

3
t8 (22)

where εRD(t8) is the value of the energy density at the time t8. The explicit expressions of

ζ(t) and χ(t) are given in Eq.(49) in the appendix. It should be remarked that, up to our

knowledge, our analytic solution of the energy density εQGP given in Eq.(20) was not pointed

out in the literature before. Previous studies reexpressed Eq.(1) in terms of temperature

and solved it analytically as in Ref.[5] or numerically as in Ref.[8] to obtain the temperature

and consequently used the equations of state to evaluate the energy density.

The analytic solution of the temperature for the bag models of QGP discussed above can

be written as

TQGP (t) =

√

2Bκ(t)
(

π2

30
NQGP − B κ2(t)

) (23)

where the function κ(t) is given as

κ(t) = b exp
[

−4

3

√
6πBG (t− t8)

]

(24)

with

b = T 2
8

(

B
π2

30
NQGP

+

√

B
π2

30
NQGP

T 4
8 +

B2

π4

900
N2

QGP

)−1

(25)
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here T8 = TRD(t8).

In Ref.[5], Eq.(1) was written in terms of the critical temperature and solved analytically

to obtain the time evolution of the temperature. Here, our result in Eq.(23) has no depen-

dency on the critical temperature but instead depends on the temperature at the beginning

of the QGP era which is the same one at the end of the radiation era.

Turning now to the pressure, Eq.(1) can be expressed in terms of the pressure using

equations of state and then can be solved analytically to obtain the explicit dependency of

the pressure on the time as

p(t) =

−3̺28B exp

[

− 8
√

8πBG
3

(

t− t8
)

]

− 10̺8B exp

[

− 4
√

8πBG
3

(

t− t8
)

]

− 3B

3

(

̺8 exp
[

− 4
√

8πBG
3

(

t− t8
)]

+ 1

)2 (26)

where ̺8 =
√
B−

√
3p8+4B√

B+
√
3p8+4B .

The scale factor in the QGP era can be obtained with the help of the equations of state

listed in Eq.(19) and Eq.(1) and performing the integration. We find that

a(t)

a(t8)
=

[εQGP (t8)− B
εQGP (t)− B

]
1

4

=
TQGP (t8)

TQGP (t)
=

T8

TQGP (t)
(27)

Thus, one can estimate the scale factor using either the expression of the energy density or

the expression of the temperature in the QGP era.

C. Hadron era

The critical temperature TC represents the QCD phase transition temperature. The tran-

sition characterizes the confinement-deconfinement transition between quarks and hadrons

where three quarks (anti-quarks) are confined together to form baryon(anti-baryon) and

quark anti-quark are confined together to form meson. The formed heavy hadrons are not

stable and thus quickly decay to the lightest hadrons i.e. the pions. In the hadron phase, the

particle content includes e±, µ±, νe,µ,τ , ν̄e,µ,τ together with photons and pions. The densities

corresponding to the massless pion gas are given as

εH = NH
π2

30
T 4, pH = NH

π2

90
T 4 sH = 4NH

π2

90
T 3 mπ < T < TC (28)
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where mπ represents the pion mass and NH is the effective number of degrees of freedom

that can be calculated using the relation

NH = N2
f − 1 +NEW (29)

whereNf is the number of flavors andNEW account for the contributions of e±, µ±, νe,µ,τ , ν̄e,µ,τ

together with photons.

Phase equilibrium is achieved when pQGP = pH at T = TC and thus we find, from Eq.(19)

and Eq.(28), that

B =

(

NQGP −NH

)

π2

90
T 4
C (30)

Time dependence of energy density in this era can be calculated using Eq.(1) and Eq.(28).

It is clear from Eq.(28) that pH =
1

3
εH , hence we have the form

− dεH√
εH

(

εH + 1
3
εH

) =
√
24πGdt (31)

Solving this equation we find the evolution of energy density as follows

εH(t) =

[

1
√
εH0

+

√

32πG

3
(t− t10)

]−2

(32)

Here t10 is the time at which the hadron era started and εH0
is the initial energy density

at the beginning of hadronic era i.e. at t10. On the other hand, we can obtain the time

dependence of temperature in hadron era by substituting the definitions of εH and pH given

in Eq.(28) into Eq.(1). We obtain differential equation similar to that one given in Eq.(10)

with the only change RD → H and its solution yields

TH(t) =

[

1

T 2
H0

+

√

16π3GNH

45
(t− t10)

]−1/2

=

[

1

T 2
C

+

√

16π3GNH

45
(t− t10)

]−1/2

(33)

here TH0
is the initial temperature corresponding to t10 which is the same temperature TC

at the end of the mixed era. Following Ref.[5], we define the two quantities r and λ as

r =
NQGP

NH

λ =

√

3

8πGB

11



As stated in Ref.[5], the quantity r expresses a number obtained in the pressure equilibrium

condition, at T = TC , for the QGP and hadron phases while λ is the time scale for the QCD

phase transition. In terms of r and λ, we can obtain a simple expression of the temperature

as

TH(t) = TC

(

1 +

√

12

r − 1

t− t10
λ

)− 1

2

(34)

It should be noted that, in obtaining the above result, we used B = NH(r − 1)π
2

90
T 4
C . Using

the expression of TH(t) given in Eq.(34) we can obtain the following expressions of the energy

density and pressure in the hadron era

εH(t) =
π2

30
NHT

4
C

(

1 +

√

12

r − 1

t− t10
λ

)−2

pH(t) =
π2

90
NHT

4
C

(

1 +

√

12

r − 1

t− t10
λ

)−2

(35)

We proceed now to find the equation governing the time evolution of the scale factor in

the hadron era. The scale factor, then, can be obtained with the help of the equations of

state given in Eq.(28) and Eq.(1). Following the same steps done in the RD era, substituting

pH = 1
3
εH and performing the integration we obtain

a(t)

a(t10)
=

TC

TH(t)
(36)

using Eq.(34), we finally obtain

a(t)

a(t10)
=

(

1 +

√

12

r − 1

t− t10
λ

)
1

2

(37)

The above result agrees with the corresponding one shown in Ref.[5].

D. Mixed era

In the transition from the QGP phase to the hadron phase, the Universe experiences the

co-existence of the both phases for a certain time interval. This mixed phase happens when

the temperature of the Universe cools down and get close to TC . During this time interval,

the temperature of the system is fixed at TC . This can be understood as the cooling of the
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Universe due to its expansion is balanced by the release of the latent heat. In the mixed

phase, the energy density can be parameterized as [5]

ε(t) = εH(TC)f(t) + εQGP (TC)
(

1− f(t)
)

(38)

where f(t) takes the values 0(1) at the start (end) of the co-existence. Regarding the pressure

in the mixed era, we find that it can be parameterized in a similar way to the energy density

and thus can be written as

p(t) = pH(TC)f(t) + pQGP (TC)
(

1− f(t)
)

(39)

Using Eqs.(1, 38, 39), see the appendix for detailed derivation, one obtains the following

differential equation

df

dt
=

3

λ

(

r

r − 1
− f

)

√

4(1− f) +
3

r − 1
(40)

The preceding equation has two analytic solutions that can be expressed as

f±(t) = 1− 1

4(r − 1)

[

tan2

(

3(t− t9)

2λ
√
r − 1

± tan−1
√
4r − 1

)

− 3

]

(41)

where t9 stands for the beginning time of the mixed era. As we will show in the following

only f−(t) is the acceptable solution and thus we take f(t) = f−(t). Having the expressions

of the energy density and pressure in the mixed era, we can now use Eq.(1) to obtain an

analytic expression of the scale factor in the mixed era. We find that

ȧ(t)

a(t)
=

ḟ

3
(

r
r−1

− f
) = λ−1

√

4(1− f) +
3

r − 1
(42)

in agreement with Ref.[5]. Details about the derivation of the above equation can be found in

the appendix. The equation has an analytic solution that can be obtained upon performing

the integration and can be expressed as [5]

a(t)

a(t9)
= (4r)

1

3

[

sin

(

3(t− t9)

2λ
√
r − 1

+ sin−1 1√
4r

)]
2

3

(43)

III. NUMERICAL RESULTS AND ANALYSIS

We start our analysis by estimating the approximate times corresponding to the ending of

QGP , the mixed and the Hadron phases of the early Universe i.e t9, t10 and t11 respectively.
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The value of t9 can be determined from setting T = TC in Eq.(23) and solve for t9. This

leads to

κ2(t9) +
2

T 2
C

κ(t9)−
NQGPπ

2

30B = 0 (44)

The above equation has two solutions κ(t9) = κ1 and κ(t9) = κ2 where κ1,2 = − 1
T 2
C

±
√

NQGP π2

30B + 1
T 4
C

. After solving for t we get the two solutions

t9 = t8 −
3

4
√
6πBG

ln
(κ1,2

b

)

(45)

After setting TC = 170MeV , we find that κ2 is negative. This leads to complex time and so

this solution is not accepted. Thus we are left with the other solution κ1 ≃ 46.7GeV −2 that

yields the time corresponds to the end of QGP phase or the beginning of the mixed era as

t9 ≃ 11.3µs.

The time corresponding to the end of the mixed phase, t10, can be estimated from solving

the equation f±(t10) = 1. Using the expressions of f±(t) given in Eq.(41) and upon setting

f−(t10) = 1 we get

t10 − t9 =
2λ

√
r − 1

3

[

tan−1
√

(4r − 1)− tan−1
√
3
]

≃ 10.7µs (46)

Using the value t9 ≃ 11.3µs estimated before we obtain t10 ≃ 22.0µs. It should be noted

that setting f+(t10) = 1 one leads to a value of t10 smaller than t9 which is not acceptable

and thus the function f(t) = f−(t) gives the correct behavior in the mixed era in agreement

with the choice of Ref.[5].

The Hadron phase of the universe ends at a time t11 which can be calculated by set-

ting TH(t) = mπ. The reason is attributed to the remark that, for temperatures smaller

than this value most of the hadrons undergo either decays or annihilations to final states

containing lighter leptons or massless gauge bosons. Moreover, at these temperatures,

only small amount of protons and neutrons remain which can be deduced from the ra-

tio nB

nγ
= 6 × 10−10 where nB is the net baryon number density and nγ is photon number

density. For mπ = 140GeV , we find that the solution of the equation TH(t) = mπ results in

t11 ≃ 31.5µs. Having determined all times corresponding to the beginning and the ending of

the radiation eras, given in Table I, QGP era, mixed and hadron eras, we are ready now to

show our results for the time variation of the thermodynamic and cosmological parameters

in all these eras.
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FIG. 1. Time evolution of the energy density, pressure density, entropy density and temperature

in the four eras of the Universe.

In Fig(1) we show the evolution of the energy density ε, temperature T , pressure density

p and entropy density s with time where different colors correspond to the different time

intervals in the early eras of the universe. Clearly, in all eras of the early Universe, these

thermodynamic parameters decrease with increasing time except at the mixed era where

temperature and pressure are constant. The temperature at mixed era is constant and

equals to TC . This can be explained as stated in Ref.[5] that the release of the latent heat

recoups the cooling of the Universe due to the expansion. Regarding the energy density and

the pressure in the mixed era, we show in Fig.(2) their time evolution together with the
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FIG. 2. Time evolution of f(t), the energy density and the pressure density the mixed era of the

Universe.

the function f(t). Clearly, from the figure, the energy density decreases also with time in

this era while the pressure is nearly constant with varying the time. In the corresponding

plots, the contributions proportional to εH(TC) and pH(TC) increase as time runs while those

proportional to εQGP (TC) and pQGP (TC) decrease as time runs. This can be attributed to

the behavior of f(t) seen in the left plot in Fig.(2).

In Fig.(3), we show the plots of the time evolution of a(t)
a(ti)

in the different eras of the early

Universe. Here. a(ti) stands for the scale factor at the beginning of the concern era of the

Universe. Clearly, from Fig.(3), the ratio a(t)
a(ti)

increase in each era indicating expansion of

the Universe. At the end of RD, QGP , mixed and hadron eras we find that a(t8)
a(t0)

≃ 1.38×104,

a(t9)
a(t8)

≃ 7.85, a(t10)
a(t9)

≃ 1.44 and a(t11)
a(t10)

≃ 1.21. In Fig(4), we show the time evolution of the

Hubble parameter for the studied eras of the universe where the different colors represent

the different eras. Clearly, the Hubble parameter decreases with the increase of the time.

Recall that, from Eq.(2), the Hubble parameter is directly proportional to the square root

of the energy density. Due to the expansion of the Universe, the volume of the Universe

increases. Since the amount of the total energy is constant, it turns that the energy density

decreases.

IV. CONCLUSION

In this study we derived the analytic expressions governing the time evolution of the

thermodynamic and the cosmological parameters in early eras of the Universe namely, the
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FIG. 3. Time evolution of a(t)
a(ti)

in the four eras of the Universe where i stands for the beginning

time of the given era.

radiation era, the quark-gluon plasma era and the hadron era. In particular, these pa-

rameters include the energy density, the entropy density, the temperature, the pressure in

addition to Hubble parameter and the scale factor. The values of the time corresponding to

the beginning and ending of these eras were also derived in this work.

Using the aforementioned expressions, we investigated the time variation of the energy

density, entropy density, pressure and temperature in all these eras. Moreover, we showed

the behaviors of the Hubble parameter and scale factor with the variation of time in the

considered eras. In studying the QGP era, we adopted simple bag models for the equations
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FIG. 4. The time evolution of the Hubble constant in early eras of the Universe.

of state of the thermodynamic parameters based on the MIT bag model. However, adopting

other models with complicated equations of state of the thermodynamic parameters can be

included in our formalism even for the cases of obtaining numerical solutions rather than

analytic solutions for the Friedmann differential equations.
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APPENDIX

A. Analytic solutions for the time evolution of the thermodynamic parameters in

the QGP era

In this subsection we derive analytic solutions for the time evolution differential equations

of the energy density, temperature and pressure.

In order to study the evolution of the energy density with time, in the early Universe, we

need to solve the differential equation given in Eq.(1). To do this, firstly, we eliminate the

18



temperature from Eq.(19) to get:

p =
1

3

(

ε− 4B
)

(47)

After doing the integration and making some simplifications, the exact analytic solution of

the differential equations given in Eq.(1) can be expressed as

εQGP (t) = χ(t) + ζ(t) +

√

(

χ(t) + ζ(t)

)2

− ζ2(t) (48)

The functions ζ(t) and χ(t) are defined as

ζ(t) = −
(

1 + η(t)
)(

1− η(t)
)−1B

χ(t) = 2

(

1− η(t)

)−2

B (49)

where

η(t) = exp

(

4

√

8πBG

3
t+ ξ

)

(50)

the quantity ξ is defined through

ξ = ln

(

√

εRD(t8) +
√
B

√

εRD(t8)−
√
B

)

− 4

√

8πBG

3
t8 (51)

where εRD(t8) will be equivalent to the initial value of the energy density at the time t8 of

the beginning of the QGP era.

We turn now to derive analytic solution of the temperature for the bag model of QGP

discussed above. Firstly, the differential equation governs the time evolution of the temper-

ature, after eliminating the pressure and energy density using the equations of the state in

Eq.(19) and upon substituting in Eq.(1), can be written as

dT

T
√

T 4 + B
NQGP

π2

30

= −2

3

√

NQGP
π3

5
G dt, (52)

We can integrate Eq.(52) to get

∫ T

T8

dT

T
√

T 4 + B
NQGP

π2

30

= −2

3

√

NQGP
π3

5
G (t− t8) , (53)
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with t8 ≃ 1.85× 10−7 s and T8 = TRD(t8) are the initial time and initial temperature at the

beginning of the QGP phase respectively. We find that the differential equation above has

a solution in the form

ln

(

T 2

B
π2

30
NQGP

+
√

B
π2

30
NQGP

T 4 + B2

π4

900
N2

QGP

)

−ln

(

T 2
8

B
π2

30
NQGP

+
√

B
π2

30
NQGP

T 4
8 + B2

π4

900
N2

QGP

)

= −4

3

√
6π BG (t− t8)

(54)

which can be expressed as

TQGP (t) =

√

2Bκ(t)
(

π2

30
NQGP − B κ2(t)

) (55)

where the function κ(t) is given as

κ(t) = b exp
[

−4

3

√
6πBG (t− ti)

]

(56)

with

b = T 2
8

(

B
π2

30
NQGP

+

√

B
π2

30
NQGP

T 4
8 +

B2

π4

900
N2

QGP

)−1

(57)

The time evolution of the pressure can be derived using Eqs.(47) as we show in the

following. Recall that from Eqs.(47) we have

p =
1

3

(

ε− 4B
)

(58)

so we get

ε = 3p+ 4B (59)

after substituting in the differential equation given in Eq.(1) we get

d p

(p+ B)
√

3
(

p+ B
)

+ B
= −4

√

8πG

3
dt (60)

defining y = p+ B we obtain

dy

y
√
3y + B

= −4

√

8πG

3
dt (61)

After performing the integration we find that

{

ln

[

√
B −

√
3p+ 4B√

B +
√
3p+ 4B

]}p

p8

= −4

√

8πBG

3

(

t− t8
)

(62)
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which can be written as
√
B −

√
3p+ 4B√

B +
√
3p+ 4B

=

√
B −

√
3p8 + 4B√

B +
√
3p8 + 4B

exp

[

− 4

√

8πBG

3

(

t− t8
)

]

(63)

defining ̺8 =
√
B−

√
3p8+4B√

B+
√
3p8+4B and k = exp

[

− 4
√

8πBG
3

(

t− t8
)

]

and solve for p we get

p =
−3̺28Bk2 − 10̺8Bk − 3B

3
(

̺8k + 1
)2 (64)

The explicit dependency of the pressure on the time is clear as, after substituting k, p have

finally the form

p =

−3̺28B exp

[

− 8
√

8πBG
3

(

t− t8
)

]

− 10̺8B exp

[

− 4
√

8πBG
3

(

t− t8
)

]

− 3B

3

(

̺8 exp
[

− 4
√

8πBG
3

(

t− t8
)]

+ 1

)2 (65)

B. Derivation of some relations in the Mixed era

As discussed in subsection IID, the energy density and the pressure in the mixed phase

can be parameterized as

εmix(t) = εH(TC)f(t) + εQGP (TC)
(

1− f(t)
)

pmix(t) = pH(TC)f(t) + pQGP (TC)
(

1− f(t)
)

(66)

In terms of B and r the the energy density and the pressure in the above equations are given

as:

εmix = B
(

1− 4f +
3r

r − 1

)

pmix = B
(

r

r − 1
− 1

)

dεmix

dt
= −4Bdf

dt
(67)

additionally, from Eq.(1), we can write

− dεmix/dt

3
√
εmix (εmix + pmix)

=
1

λ
√
B

(68)

Substituting the components of Eq.(67) into Eq.(68) we obtain the below differential equa-

tion for f(t)

df

dt
=

3

λ

(

r

r − 1
− f

)

√

4(1− f) +
3

r − 1
(69)
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