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Abstract Using the first law of thermodynamics, we pro-
pose a relation between the system entropy (S) and its IR (L)
and UV (�) cutoffs. In addition, applying this relation to the
apparent horizon of flat FRW universe, whose entropy meets
the Rényi entropy, a new holographic dark energy model is
addressed. Thereinafter, the evolution of the flat FRW uni-
verse, filled by a pressureless source and the obtained dark
energy candidate, is studied. In our model, there is no mutual
interaction between the cosmos sectors. We find out that the
obtained model is theoretically powerful to explain the cur-
rent accelerated phase of the universe. This result emphasizes
that the generalized entropy formalism is suitable for describ-
ing systems including the long-range interactions such as
gravity.

1 Introduction

The nature of current accelerated universe [1–12], related
to an unknown source called dark energy (DE), is one of
the unsolved physical mysteries [13–16]. In order to solve
it, modified theories of gravity have been proposed which
describe it in terms of various geometrical effects [17]. On
the other hand, introducing the new types of matter or diverse
state equations constitutes some other theoretical attempts to
solve the DE problem [18–28]. It has been also argued that
there are deep connections between DE, the horizon entropy
and the thermodynamics laws [29–33].
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It seems that systems including the long-range interac-
tions, such as gravity, are more in agreement with the gen-
eralized entropy formalisms based on the power-law distri-
bution of probabilities [34–44]. Recently, two generalized
entropies including the Rényi and Tsallis entropies [34–41],
have been used in order to study various gravitational and cos-
mological phenomena [42–54]. It has been shown in various
ways that the generalized entropy formulation can provide
suitable descriptions for DE, also motivating us to consider
generalized entropies as the horizon entropy instead of the
Bekenstein entropy [42,44,47–54]. In fact, the Bekenstein
entropy is also obtainable by applying the Tsallis statistics to
the systems including gravity [42,43,46–49].

To reconcile the breakdown of quantum field theory in
large scale with the success of effective field theory, Cohen et
al, [55] proposed a new relation between the system entropy
(S) together with the IR (L) and UV (�) cutoffs which finally
lead to [56,57]

ρ� ∝ S

L4 , (1)

where ρ� ∼ �4 is the vacuum energy density. Applying this
hypothesis to cosmological setup, authors got a model for DE
called Holographic Dark Energy (HDE), in which ρ� plays
the role of the energy density of DE (ρd ), [58–60]. One prob-
lem with the original model (OHDE) is that if one uses the
Hubble radius as the IR cutoff, and considers the Bekenstein
entropy, then both dark matter (DM) and OHDE are scaled
with the same function of scale factor [60,61]. Although this
problem may be solved by introducing new cutoffs [60,61],
such cutoffs cannot always lead to stable models for DE
whenever it is dominant in cosmos [62]. More studies on
HDE and its various features can be found in Refs. [63–65].

Recently, using Eq. (1) and a generalized entropy, called
the Sharma-Mittal measure [34], a new model of HDE has
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been proposed and studied [44]. In this new model (SMHDE),
Hubble horizon is the IR cutoff, and there is no interaction
between the cosmos components [44]. SMHDE is compatible
with the universe expansion history, and it is stable whenever
it is dominant in cosmos [44]. Hence, this model suffers from
lessweakness compared to the OHDE corrected by consider-
ing other cutoffs [44,62]. The obtained behavior of SMHDE
also motivates us to farther study the HDE hypothesis in other
generalized entropy formalisms. Such analysis may help us
to become more familiar with thermodynamics and the sta-
tistical aspects of spacetime and gravity [42,44,48].

It is also useful to remind here that the apparent horizon
is a proper causal boundary for cosmos in agreement with
the thermodynamics laws and thus the energy-momentum
conservation law [66–71]. Moreover, in flat FRW universe,
Friedmann equations indicate that whenever DE is dominant
in cosmos, its energy density will scale with H2 [16]. There-
fore, from a thermodynamic point of view, a HDE model
in flat FRW universe, for which the Hubble radius and the
radius of apparent horizon (1/H ) are the same, will be more
compatible with the thermodynamics laws, if it can provide
a proper description for the universe by using the Hubble
radius as its IR cutoff. It is worthwhile mentioning that the
first law of thermodynamics (FLT) helps us in relating the
equation of state of HDE to that of black holes leading to a
model for the current accelerated universe [72]. FLT is also
employed in building HDE models based on energy density
of vacuum entanglement [65,73]. As a result, one can argue
that we should use the thermodynamics laws in order to build
a relation between �4, the IR cutoff and the horizon entropy
to get a model for HDE.

Here, considering FLT, a relation between the system
entropy (S) together with the IR (L) and UV (�) cutoffs
will be proposed. In addition, using the Hubble radius as the
IR cutoff, and employing a Q-generalized entropy, proposed
by Rényi [38], we are going to introduce a new HDE model
in flat FRW universe. In order to achieve our goal, the paper is
organized as follows. Our thermodynamic version of Eq. (1)
has been introduced in the next section. In section (III), a brief
review on the Rényi and Tsallis entropy is given, and then,
we introduce our new model of HDE. The behavior of the
model whenever there is no interaction between the cosmos
sectors is studied in Sec. (IV). The last section is devoted to a
summary and concluding remarks. We also work in the unit
of c = h̄ = G = kB = 1, where kB denotes the Boltzmann
constant.

2 A thermodynamic version for HDE

Bearing the Cai–Kim temperature (T = 1
2πL ) in mind [71],

for a system with IR cutoff L , one can reach Eq. (1) by con-
sidering the Ed ∼ ρdV � ET ∝ T S assumption, in which

ρd ≡ ρ� ∼ �4, [56,57]. In fact, since DE is dominant in
the current cosmos, the Ed ∼ ρdV � ET ∝ T S assump-
tion is acceptable. Here, V = 4πL3

3 is the aerial volume of
FRW spacetime, S is the horizon entropy (represents the total
entropy of system), ET also denotes the total energy content
of cosmos [56,57]. Moreover, Ed represents the energy con-
tent of the DE candidate (vacuum energy) [56,57]. Recently,
the above assumption has also been used in order to provide
a thermodynamic description for HDE, and also a relation
between holographic minimal information density and the
de Broglie’s wavelength [74]. Although Eq. (1) is compati-
ble with the dimensional analysis [60], but since only in flat
FRW universe the aerial volume is the same as the actual vol-
ume (L = 1

H ), the above argument, and thus Eq. (1) are more
reliable in the flat FRW universe [55,75,76]. Hence, since the
non-flat FRW universe has not completely been rejected [16],
it is better to modify the Ed ∼ ρdV � ET ∝ T S assumption
in a more consistent way with the non-flat cases.

For the first time, using the dET ≡ dQ assumption in
order to find the energy flux (dQ) seen by an accelerated
observer inside horizon, and applying the Calusius relation to
the horizon, Jacobson wrote the Einstein field equations in the
static spacetimes as a thermodynamic equation of state [77].
The generalizations of his idea to the cosmological setups
suggest that the dET = TdS relation can be considered as
the first law of thermodynamics for the cosmological horizon
[69,78].

The above arguments motivate us to introduce dEd =
ρddV ∝ dET = TdS for building a thermodynamic consis-
tent relation between the UV cutoff (�4 ∼ ρ� ≡ ρd) and the
IR cutoff. In order to check this assumption, consider a flat
FRW universe for which S = π

H2 , T = H
2π

and V = 4π
3H3 ,

where H is the Hubble parameter. By using ρddV ∝ TdS,
we easily reach ρd ∝ H2

4π
which is nothing but OHDE for

which Hubble horizon is considered as the IR cutoff [58–60].
In fact, our thermodynamic reformulation of Eq. (1) claims
that the changes in the energy (entropy) of system can not be
more than that of the black hole of the same size. In other
words, we have dEd ≤ dET in every infinitesimal interval
leading to Ed = ∫

dEd ≤ ET = ∫
dET , a result in agree-

ment with the HDE hypothesis [55–63]. Therefore, in our
setup, the final amount of the system energy (entropy) can
not also be more than that of its same size black hole.

3 Rényi entropy and HDE: general remarks

For a system consisting of W discrete states, Tsallis entropy
is defined as [39]

ST = 1

1 − Q

W∑

i=1

(PQ
i − Pi ), (2)
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in which Pi denotes the ordinary probability of accessing
state i , and Q is a real parameter which may be originated
from the non-extensive features of system such as the long
range nature of gravity [37,39,42,44]. In this formalism, two
probabilistically independent systems obey the non-additive
composition rule [39,40]

S12 = S1 + S2 + δS1S2, (3)

where δ ≡ 1 − Q. Thus, even for probabilistically indepen-
dent systems, although it is a non-additive entropy, unless we
have δ = 0 [39], it is also not always non-extensive [37]. In
fact, differences between non-additivity and non-extensivity
are very delicate [35–37], and the concept of non-extensivity
is much more complex than that of the non-additivity [37].
For example, the famous Bekenstein entropy is non-extensive
and non-additive simultaneously [43,46].

In addition, there is another Q-generalized entropy defi-
nition as

S = 1

1 − Q
ln

W∑

i=1

PQ
i , (4)

which returns to Rényi [38]. One can combine Eqs. (4) and (2)
with each other to reach [47–49]

S = 1

δ
ln(1 + δST ), (5)

as the Rényi entropy content of system. Thus, based on
Eq. (5), S will remain additive as long as Eq. (3) is obtained
by ST [34,36,46]. The above Q-generalized entropies can
be used whenever systems are described better by using
the power law distributions PQ

i , also called Q-distribution,
instead of the ordinary probability distribution Pi [36,46].
Systems including long-range interactions, such as gravity,
are primary candidates for using Q-distribution [34–44].

It is also useful to remind here that a Q-distribution-based
description of the universe can theoretically describe the cur-
rent accelerated universe [44,47–54] which more motivates
us to assign various Q-generalized entropies to the cosmolog-
ical horizons. Recently, it has been argued that the Bekenstein
entropy (S = A

4 ) is in fact a Tsallis entropy [40,42,43,46–49]
leading to

S = 1

δ
ln

(

1 + δ

4
A

)

, (6)

for the Rényi entropy content of system [43,46–49].

Rényi holographic dark energy (RHDE)

Here, we only focus on the flat FRW universe indicated by the
WMAP data [16]. In our model, the vacuum energy density
plays the role of DE meaning that we have �4 ∼ ρ� ≡ ρd .
Now, using the ρddV ∝ TdS assumption and Eq. (6), one
can get RHDE as

ρd = 3C2H2

8π
(

1 + δπ
H2

) , (7)

where C2 is a numerical constant as usual. In order to obtain
this equation, we also used the T = H

2π
and A = 4π

H2 =
4π( 3V

4π
)

2
3 relations, valid in a flat FRW universe [71]. It is

apparent that in the absence of δ, we have ρd = 3C2H2

8π
in

full agreement with OHDE [58–60].
In order to obtain the corresponding pressure, we assume

that RHDE obeys ordinary energy-momentum conservation
law in the FRW universe with scale factor a, and thus

ρ̇d + 3H(ρd + pd) = 0, (8)

in which dot denotes derivative with respect to time. It finally
leads to

pd = −ρ′
d Ḣ

3H
− ρd , (9)

where prime denotes derivative with respect to H , for the
pressure of RHDE.

4 Universe evolution

For a flat FRW universe filled by a pressureless source with
energy density ρm and RHDE, the Friedmann equations are
written as

H2 = 8π

3
(ρm + ρd),

H2 + 2

3
Ḣ = −8π

3
(pd). (10)

Let us define the density parameters corresponding to the
ρm and ρd sources as �m ≡ ρm

ρc
and �D ≡ ρd

ρc
, respectively,

where ρc(≡ 3H2

8π
) is called critical density. Now, inserting

these definitions in the first line of Eq. (10), one easily finds

1 = �m + �D. (11)

Here, since DE candidateobeysEq. (8), there is no interaction
between matter source and RHDE meaning that we have

ρ̇m + 3Hρm = 0 ⇒ ρm = ρ0a
−3, (12)

in which ρ0 is the integration constant equal to the current
value of the energy density of pressureless component (ρm).
Now, defining H(z) = E(z)H0, bearing the 1+z = a−1 rela-
tion in mind, where z and H0 denote redshift and the current
value of the Hubble parameter, respectively, and combining
Eqs. (7) and (12) with either the first equation of (10) or
Eq. (11), one easily finds that

E2(z) = �m(1 + z)3 +

(

1 + δπ

H2
0

)

(1 − �m)

1 + δπ

E2(z)H2
0

E2(z), (13)
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where �m ≡ �m(z = 0) = ρ0
3H2

0
8π

denotes the current value

(z = 0) of the density parameter of ρm . In obtaining this
equation, we assumed that for z = 0 we have E(z) = 1
leading to C2 = (1 + δπ

H2
0
)(1 − �m), which can finally be

combined with Eq. (7) to get

ρd =
3

(

1 + δπ

H2
0

)

(1 − �m)H2

8π
(

1 + δπ
H2

) , (14)

for energy density. Deceleration parameter is also evaluated
as

q ≡ −1 − Ḣ

H2 = −1 + 1 + z

E(z)

dE(z)

dz
. (15)

Moreover, if we characterize the total state equation of cos-
mos as w ≡ pd

ρd+ρm
, then using Eqs. (10) and (15), we can

find

w = 2

3

(

q − 1

2

)

. (16)

Bearing the definitions of �D and �m in mind, one can use
Eq. (13) to reach at

�D =

(

1 + δπ

H2
0

)

(1 − �m)

1 + δπ

E2(z)H2
0

, (17)

for the density parameter of RHDE. In order to investigate the
stability of RHDE, we need to study the evolution of square
of the sound speed evaluated as

v2
s = dpd

dρd
=

dpd
dH
dρd
dH

. (18)

One can use the second Friedmann equation (10) to find

Ḣ = −4πpd − 3H2

2 . Now, employing this result along with
Eqs. (9) and (14), we reach at

pd =
δπρ2

d
αH4

8πρd
3H2

(
δπρd
αH4 − 1

)
− 1

,

α = 3

8π

(

1 + δπ

H2
0

)

(1 − �m). (19)

This result together with Eq. (14) can be used to evaluate v2
s

as

v2
s =

1 −
(

1 + δπ

H2
0

)

(1 − �m) + δπ
H2

⎡

⎣1 −
(

1+ δπ

H2
0

)

(1−�m )
(

1+2 δπ

H2

)

(
1+ δπ

H2

)2

⎤

⎦

2
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Fig. 1 q, �D(z), w and v2
s (z) versus z for some values of δ. Here,

�m = 0 · 26 and H0 = 67 (Km/s)/Mpc
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�m = 0 · 23 and H0 = 67 (Km/s)/Mpc
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×
⎡

⎢
⎣−H2 + 1 + 3 δπ

H2
(

1 + δπ
H2

)2 −
δπ
H2

(
3 + δπ

H2

)

(
1 + 2 δπ

H2

) (
1 + δπ

H2

)2

⎤

⎥
⎦ .

(20)

In Figs. 1 and 2, the system parameters, including q, w,
�D and v2

s , have been plotted versus z for some values of
δ, whenever �m = 0 · 26 and �m = 0 · 23, respectively. In
general, even for z > zt , v2

s can remain positive meaning that,
unlike the OHDE and SMHDE [44,62], RHDE can be stable
in matter dominated era. Moreover, at the high redshift limit,
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we have q → 1/2 and w → 0, while at the z → −1 limit,
q → −1 and w → −1. It is also worthwhile mentioning
that, depending on the value of δ, the cosmos may cross the
phantom line (q < −1) for z < −1.
The transition redshift (zt ), at which q(zt ) = 0, versus δ has
also been plotted in Fig. 3 for some values of �m which lies
within the 0 ·2≤�m≤0 ·3 range [1–3,13–15]. We see that the
model can give proper values for zt , and as an example, the
model predicts that, depending on the value of δ, zt ∼ 0 · 5
for �m = 0 · 3 [1–3,13–15].

5 Conclusion

Recently, the notion of generalized entropy has been used
to study various properties of spacetime, gravitational and
cosmological phenomena. Here, by using FLT, we built a
thermodynamic constraint on the relation between the system
entropy (S) and the IR (L) and UV (�) cutoffs. Following
this relation, using the Rényi entropy, and considering the
Bekenstein entropy as the Tsallis entropy [40,42,43,46–49],
we finally proposed a new holographic model for dark energy
(RHDE).

The model can generate acceptable values for the tran-
sition redshift. We also studied the evolution of the system
parameters including q, w, v2

s and �D which showed sat-
isfactory behavior by themselves. It has also been obtained
that RHDE shows more stability during the cosmic evolution
compared to SMHDE [44] and OHDE [62].
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