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ABSTRACT: Although various investigations of Atkinson cycle have been carried out, distinct
output power and thermal efficiencies of the engine have been achieved. In this regard,
thermal efficiency, Ecological Coefficient of Performance (ECOP), and Ecological function (ECF)
are optimized with the help of NSGA-1l method and thermodynamic study. The Pareto optimal
frontier which provides an ultimate optimum solution is chosen utilizing various decision-
making approaches, containing fuzzy Bellman-Zadeh, LINMAP, and TOPSIS. With the help
of the results, interpreting the performances of Atkinson cycles and their optimization
is enhanced. Error analysis has also been performed for verification of optimization

and determining the deviation in the study.
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INTRODUCTION

The main purpose of designing the cycle is to present
the performance of the system by the mean of input
power. In the Atkinson cycle, the intake, compression,
power, and exhaust strokes of the four-step take place
by one piston sweep. In the Atkinson cycle, the compression
ratio is less than the expansion ratio, due to the linkage,
which results in higher efficiency related to the engines
utilizing the alternative Otto cycle. Also, four-stroke
engines are referred to as the Atkinson cycle. In these
arrangements, the intake step takes longer time to fill
the intake manifold with fresh air. Its result is the reduction
of efficient compression ratio, and on the condition

of combining with an increment stroke and/or decreased
volume of the combustion chamber, causes the ratio of
expansion to outstrip the ratio of compression, throughout
the time of maintaining a regular compression pressure.
So, it is favorable for enhanced cost efficiency, since
in a spark-ignition engine, the octane rating ratio limits
the compression. So, a longer power stroke is the result
of a high expansion ratio, provides higher expansion ratios,
followed by the reduction of heat associated with
the waste in the exhaust [1].

A growing number of thermodynamic investigations
has focused on determining the limits of performance
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in thermal systems as well as optimizing thermodynamic
cycles and processes containing finite-rate, finite-time,
and finite-size constraints [2-7]. Also, The performance
analysis for internal combustion engine cycles by using
finite time thermodynamics were also performed by other
papers [8-12]. Recently, abundant performance
evaluations of the Atkinson heat engine have been carried
out founded on irreversible, endo-reversible, and
reversible cycle arrangements with utilizing various
objective functions including power output, the generated
power and performance, etc [13-25]. The engine sizes’
effect associated with the investment cost is not taken
into account in the analyses of performance contributed
to the mentioned optimization criteria. In this way,
Sahin et al. [26,27] presented a novel optimization
criteria named the maximum power density examination
for the sake of including the engine size’s effects.
Optimum operational states of reversible [26] and
irreversible [27] non-regenerative Joule-Brayton cycle
have been studied by utilizing the maximum power
density (MPD) criterion. In the study, the power density
has been maximized and model elements at MPD states
have been found. These conditions lead to more efficient
and smaller setups. Many investigations have been performed
the MPD method to various models of heat engines
[28-38].

Added to this, Chen et al. [39] and Wang and Hou [40]
performed the technique of MPD to the Atkinson
cycle. They presented that the MPD efficiency is higher
than the MP efficiency. Also, Wang and Hou [40]
investigated an Atkinson cycle linked to a variable
temperature heat source at MP and MPD. The analysis
revealed that an engine which is designed for MPD
conditions, has smaller size than a MP design based
engine.

For the sake of unraveling enigma of this general
category, during the whole of the mid-eighties,
Evolutionary Algorithms (EA) were basically utilized
[41]. Determining a cluster of answers, each of which
implements the objectives on the condition of a gratifying
degree without being overshadowed by any other answers
is a pragmatic answer to a multi-objective puzzle [42].
Issues contributed to multi-objective optimization
regularly perform as an achievably innumerable group
of answers which is called Pareto frontier, where
investigated  vectors indicate  primary  feasible
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interchanges in the objective function area. With respect
to this, multi-objective optimization of various processes
has been examined in plenty of researches [43-83].

In the present research, an irreversible Atkinson cycle
is optimized in line with performance improvement
of the system. In this scenario, for maximizing the thermal
efficiency, ECOP and ECF parameters, a multi-objective
optimization solution is applied. For the sake of
evaluating eventual answers’ precision in different
decision-making approaches, error analysis is carried out.

Cycle model and analysis

Fig. 1 shows an air standard Atkinson cycle diagram.

The working fluid of the most cycle models
is considered to be as an ideal gas with the characteristic
of fixed specific heats. However, this presumption could
be authentic only on the condition of small temperature
difference. So, in practical cycle, in which there is large
temperature difference, the mentioned presumption
cannot be implemented. As ref. [84] indicated, under
the condition of temperature range between 200-1000 K,
the specific heat capacity with fixed pressure is as follows:

Cp = (3.56839—6.788729x 10 T + 1)

1.5537x107°T% —=3.29937x1072 T3 —
466.395x10"°TH)R

For temperatures between 1000 and 6000 K, the C,
is calculated as:

Cp = (3.08793+12.4597x107* T — %)

0.42372x107°T? +67.4775x1072 T3 -
3.97077x10"° TR,

For temperatures between 200 and 600k, Eqgs. (1)
and (2) can be used which the rage is too wide
for the temperature range (300-3500 K) of pragmatic engine.
Thus, for describing the specific heat model a single
equation has been utilized. The presumption associated
with this is air must be an ideal gas.

Cp =(2.506x107"1T? +1.454x107'T" — ©)

0.4246x107 T+3.162x107°T% +1.3303 -
1.512x10* T +3.063x10° T2 -2.212x10"T7)

Cy =Cp—R, *)
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Fig. 1: Schematic of an Atkinson cycle diagram.

According to Eq (4) the C, at fixed volume is
determined as follows:
Cy =(2.506x107"T? +1.454x1077T" — (5)
0.4246x107 " T +3.162x107°T% +
1.0433-1.512x10* T +
3.063x10° T2 -2.212x10"T7)

The received heat by the working fluid in through
2 —3is:

T3
Qi =M j CydT =M(8.353x1072T? +5 (©)
T2

B816x107°T>% —2.123x107' T +2.108x10°T" +
1.0433T +3.024x 10T —
3.063x10° T +1.106x T )

The rejected heat is calculated as follows:

T4
Qout =M J CpdT = M(8.353% 107273 + @)
Tl

5.816x1078T%° —2.123x107'T? +
2.108x107°T" +1.3303T +3.024x 104 T3 —
3.063x10° T +1.106x T )

The adiabatic compression and  expansion
performance of the cycle in 1 — 2 and 3—4 procedure
are determined as follows [85-91]:

Tzs _Tl

s 8
=TT (®)
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_ T4 _T3
T4s _T3

Me 9)

nc And me can present the internal irreversibility
of the procedures. Due to the dependency of Cp and Cv
on temperature, adiabatic element k=C,/C,, varies

by the changes of temperature. Thus, Eq. (10) is not valid
for adiabatic stages. Nonetheless, regarding to refs. [90-101],
a proper estimation for reversible adiabatic procedure
with k can be carried out, i.e. this procedure can be split
to many infinitesimally small stages that each k is
considered fixed. For instance, between states i and j,
every reversible adiabatic process could be considered
as containing plentiful infinitesimally small processes with
fixed k. On the condition of volume dV of the working
fluid takes place, and an infinitesimally small change
in temperature dT, for any of these processes, the equation
for reversible adiabatic process with variable Kk
can be presented as follows.

TV = (T+dT)(V +dVv)<! (10)

The heat added in
is calculated as follows:

Qin =Cy (Tj _Ti) = TASi

constant-volume  process

=TCyIn(T;/T;).  So

|
— T; . .
one has T=(T;-T) In(?) , Where T is the equivalent
i

temperature of the procedure. When Cy is the subordinate
of temperature, the C,,(T) could be considered as mean

specific heat of fixed volume.
From eq. (10), one gets

T. .
Cy |n(?f) =R, |n(§) (11)
i i

The temperature in Cy calculation is logarithmic
T

T=(Tj—Ti)/In(_|_‘). Also, the compression ratio
i

is determined as:
— Vl
A

Thus, equations contributed to reversible adiabatic
processes 1 — 2S and 3 — 48 are:

Y (12)

T
Cy |n($) =Ry Iny (13)
1
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Cy In(%)— Ryq In(%‘s) =-RyIny (14)
Heat transfer losses are not considered for an ideal
Atkinson design. Nonetheless, heat transfer irreversibility
between cylinder wall and working fluid cannot be
neglected in a real Atkinson cycle. It is presumed
that mean temperature of the working fluid and the cylinder
wall mutually and the heat transfer via the cylinder wall
(i. e. the heat leakage loss) are relative and the wall
temperature is equal to To (K). If the generated heat
by combustion procedure per second be A; (kW) and
the heat leakage factor of the cylinder wall be B: [ki/kg.K],
the applied heat flow rate is calculated as follows [102-105]:

_B, (T, + T, -2T,)

5 (15)

Qin =A

Eqg. (15), shows that Qi contains two terms, the first
part is A1, and the other one is the heat loss per second,
which can be defined as:

Qieak = B(T, +T; —2T,) (16)

where B = B1/2.
In order to consider the friction loss [92] we have:

dx

o 17)

fH = HU = M
Where u [Ns/m] is a friction parameter and X is
the piston displacement. P,, which represents the lost
power is defined as:
dw,

2
P, = dtH = o (18)

The total displacement of the piston in each cycle
of four-step engines is calculated as:

AL =4(x; —X,) (19)

The mean velocity of the piston is as follows
(N cycles):

O=4LN (20)

Then, the power output and the cycle performance
efficiency are determined as follows:

P =Qjn —Qout — Pu (21)
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P

o Qin + Qeak 22

Tas can be achieved by Eq. (13) while Rq, Ty, T3, 1,
and 7. are provided. Next, substituting Tos into Eq. (8)
leads to measure T, Tss with the help of Eg. (14).
The last step is to determine T, by substituting Tss into Eq. (9).
The power and efficiency can be obtained by Substituting
T, and T4 into Egs. (21) and (22).

Entropy generation, ECOP and ECF (kW) of
the Atkinson cycle can be determined as following as:

Sgen = (Qom - ﬁ] (23)

ECOP = P (24)
To gen

ECF = P—TySgen (25)

Multicriteria optimization

For optimization purposes, Genetic Algorithms (GA)
were proposed by Holland (1960) [44]. The evolution
generally begins a population which each individuals
generated accidentally. The fitness rate associated with
each individual of the population is investigated.
Many random individuals are developed to make a new
population. At the next step, the new population
is applied to the following iteration of the GA. Regularly,
on the condition of achieving an favorable fitness level of
the population or creating the highest value of generations,
the GA stops. Privious works have been presented more
details of GA [42,46].

Furthermore, during the past years with persistent
investigations on multipart mathematical puzzles and
on pragmatic engineering problems, MOEASs were extracted.
Also, throughout the examinations, it was concluded that
the complexity of conventional approaches can be
excluded [42,46]. Fig. 2 depicts the construction
contributed to the MOEA applied in this paper [44,46].
It is worth stating that the actual amounts of decision
elements were employed instead of their binary coded.

Three objective functions are utilized in this
optimization: thermal efficiency, ECOP and ECF,
described by Egs. (22), (24) and (25), respectively.

Also, five decision variables are considered:
temperatures of state points 1 and 3, the Expansion
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. Parents’ Reproduction
Initial random _ K-
: ——| selection (cross-over+
population )
mutation)
)
No
Evaluation Survival of the
(Pareto < fittest
ranking)
Yes
N STOP )

Fig. 2: Algorithm steps applied in the study [44,46].

efficiency (ne), the compression efficiency (n¢) and
the compression ratio J .

Although the decision variables might be different
in the optimizing plan, but they typically need to be fited
in a sensible range. Thus, the objective functions
are determined by reletive succeeding limits:

325 <T, <400K (26)
1300 <T, < 1900K 27)
0.85 <n, < 097 (28)
0.85 <n, < 0.97 (29)
6 <y< 12 (30)

RESULTS AND DISCUSSION

In this section, the sensitivity of the objective
functions for decision parameters is investigated.
Following Ref. [106], the following parameters are used
here: x; = 8x102 m, x; = 1x102 m, p= 12.9 (Ns/m),
Th=2200 K, TL=300K, To=300 K, N=30,y=85,
M = 4553 x 107 kg/s, B=0.2 (kj/kgK), n = 0.97,
and nc=0.97.

According to Fig. 3a, the ECF reduced with
augmenting the T at different values of Ts. As illustrated
in Fig. 3b, the ECOP decreased considerably with T,
at different values of the Ts. According to Fig. 3c,
the thermal efficiency (nm) reduced by augmenting the T,
at different values of the Ts). According to Fig. 3d,

Research Article

the Power output (P) reduced by increasing the T
at different amounts of the Ts.

According to Fig. 4a, the ECF of the system reduced
significantly with augmenting the T at different rates of
the Expansion efficiency (ne). According to Fig. 4b,
ECOP decreased considerably with T, at different rates
of the Expansion efficiency (ne). As depicted in Fig. 4c,
the thermal efficiency (nm) reduced considerably with rising
of T, at different rates of the Expansion efficiency (ne).
As it is seen in Fig. 4d, the Power output (P) decreased
significantly with rising of T; at distinct rates of
the Expansion efficiency (ne).

As depicted in Fig. 5a, the ECF reduced by increasing
the Ty at different rates of the compression efficiency
(ne). As it is illustrated in Fig. 5b, the ECOP reduced
by enhancing T, at different rates of the compression
efficiency (n¢). As shown in Fig. 5c, the thermal
efficiency (nm) reduced with increasing the T at different
rates of the compression efficiency (nc).

As shown in Fig. 5d, the Power output (P) reduced
with increasing the T; at different rates of the
compression efficiency (1c).

In this study, the thermal efficiency, ECOP and ECF
of the Atkinson cycle are maximized concurrently
utilizing multi-objective optimization based on the
NSGA-Il approach. The objective functions are
illustrated by Egs. (22), (24) and (25) and the limitations
by Eqgs. (26) -(30).

The decision parameters of optimization are
as follow: Ti, Ts, the Expansion efficiency (ne),
the compression efficiency (1) and the compression ratio y.
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Fig. 3: Effects of T1Ts on the (a) ECF (b) ECOP, (c) thermal
efficiency , (d) Power output in 7 = 0.97, 7. = 0.97.
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Fig. 6: Pareto optimum frontier in objective space.

The Pareto optimal frontier of objective functions
(the thermal efficiency, ECOP and ECF) is depicted in Fig. 6.
Selected points  with  different  decision-making
approaches are depicted, as well.

Table 1 outlines and compares the optimal results
associated with decision elements and objective functions
utilizing LINMAP, TOPSIS, and Bellman-Zadeh
decision-making approaches. Analyses results are presented
in Table 2, as well. The achieved results
are favorable and it is predicted that the present investigation
improves interpreting the optimum model of the Atkinson
cycle. Based on the Mean Absolute Percent Error (MAPE)
approach, an error analysis was performed to define
the average error for thermal efficiency of solutions gathered
by decision making approaches. Along with results, these
errors are 0.071%, 0.079% and 0.138% for TOPSIS,
LINMAP and FUZZY, respectively. This study
demonstrated that the average error for the ECOP
are 0.163%, 0.122% and 0.237% for TOPSIS, LINMAP
and FUZZY, respectively. This study demonstrated that
the average error for the ECF of solutions are 0.237%,
0.234% and 0.169% for TOPSIS, LINMAP and FUZZY,
respectively.

CONCLUSIONS

A thermodynamic optimization procedure
has been employed for determining the thermal efficiency,
ECOP and ECF of the Atkinson cycle. The Expansion
efficiency (ne), the compression efficiency (nc), T1,Ts, and the
compression ratio y are studied utilizing the NSGA-II
method. For the sake of designing and evaluating
the performance and robustness of Atkinson cycle, the results
can be implemented. By utilizing decision making
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Table 1: Decision making results of this study.

Vol. 39, No. 1, 2020

/Decision Making Decision variables Objectives \
Method T, (K) T2 (K) ne e y Nin ECOP ECF (kW)
TOPSIS 325/003 1900 0/970 0/970 11/888 0/314 2/696 1/217
LINMAP 325/003 1900 0/970 0/970 11/813 0/315 2/688 1/217

K Fuzzy 325/004 1900 0/970 0/970 10/348 0/320 2/520 1/213 j

Table 2: Error analysis based on MAPE for this study.
Decision Making Method TOPSIS LINMAP Fuzzy \
Objectives Mh ECOP ECF Mh ECOP ECF Mh ECOP ECF
Max Error % 0.141 0.310 0.464 | 0.156 0.251 0.466 | 0.234 0.240 0.380
Average Error % 0.071 0.163 0.237 | 0.079 0.122 0.234 | 0.138 0.237 0.169 )
approaches (LINMAP, TOPSIS and fuzzy), a final [6] Chen L., Wu Ch, Sun F. Finite Time
optimum solution was chosen from Pareto frontier. Thermodynamic Optimization or Entropy

Generally, the results achieved form distinct decision-
making methods are very close. This investigation
illustrated that all results are acceptable and propitious
for this system.
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