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ABSTRACT: Although various investigations of Atkinson cycle have been carried out, distinct 

output power and thermal efficiencies of the engine have been achieved. In this regard, 

thermal efficiency, Ecological Coefficient of Performance (ECOP), and Ecological function (ECF)  

are optimized with the help of NSGA-II method and thermodynamic study.  The Pareto optimal 

frontier which provides an ultimate optimum solution is chosen utilizing various decision -

making approaches, containing fuzzy Bellman-Zadeh, LINMAP, and TOPSIS. With the help  

of the results, interpreting the performances of Atkinson cycles and their optimization  

is enhanced. Error analysis has also been performed for verification of optimization  

and determining the deviation in the study. 
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INTRODUCTION 

The main purpose of designing the cycle is to present 

the performance of the system by the mean of input 

power. In the Atkinson cycle, the intake, compression, 

power, and exhaust strokes of the four-step take place  

by one piston sweep. In the Atkinson cycle, the compression 

ratio is less than the expansion ratio, due to the linkage, 

which results in higher efficiency related to the engines 

utilizing the alternative Otto cycle. Also, four-stroke 

engines are referred to as the Atkinson cycle. In these 

arrangements, the intake step takes longer time to fill  

the intake manifold with fresh air. Its result is the reduction 

of efficient compression ratio, and on the condition  

 

 

 

of combining with an increment stroke and/or decreased 

volume of the combustion chamber, causes the ratio of 

expansion to outstrip the ratio of compression, throughout 

the time of maintaining a regular compression pressure. 

So, it is favorable for enhanced cost efficiency, since  

in a spark-ignition engine, the octane rating ratio limits 

the compression. So, a longer power stroke is the result  

of a high expansion ratio, provides higher expansion ratios, 

followed by the reduction of heat associated with  

the waste in the exhaust [1].  

A growing number of thermodynamic investigations 

has focused on determining the limits of performance  
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in thermal systems as well as optimizing thermodynamic 

cycles and processes containing finite-rate, finite-time, 

and finite-size constraints [2-7]. Also, The performance 

analysis for internal combustion engine cycles by using 

finite time thermodynamics were also performed by other 

papers [8-12]. Recently, abundant performance 

evaluations of the Atkinson heat engine have been carried 

out founded on irreversible, endo-reversible, and 

reversible cycle arrangements with utilizing various 

objective functions including power output, the generated 

power and performance, etc [13-25]. The engine sizes’ 

effect associated with the investment cost is not taken 

into account in the analyses of performance contributed 

to the mentioned optimization criteria. In this way,  

Sahin et al. [26,27] presented a novel optimization 

criteria named the maximum power density examination 

for the sake of including the engine size’s effects. 

Optimum operational states of reversible [26] and 

irreversible [27] non-regenerative Joule-Brayton cycle 

have been studied by utilizing the maximum power 

density (MPD) criterion. In the study, the power density 

has been maximized and model elements at MPD states 

have been found. These conditions lead to more efficient 

and smaller setups. Many investigations have been performed 

the MPD method to various models of heat engines  

[28-38].  

Added to this, Chen et al. [39] and Wang and Hou [40] 

performed the technique of MPD to the Atkinson  

cycle. They presented that the MPD efficiency is higher 

than the MP efficiency. Also, Wang and Hou [40] 

investigated an Atkinson cycle linked to a variable 

temperature heat source at MP and MPD. The analysis 

revealed that an engine which is designed for MPD 

conditions, has smaller size than a MP design based 

engine. 

For the sake of unraveling enigma of this general 

category, during the whole of the mid-eighties, 

Evolutionary Algorithms (EA) were basically utilized 

[41]. Determining a cluster of answers, each of which 

implements the objectives on the condition of a gratifying 

degree without being overshadowed by any other answers 

is a pragmatic answer to a multi-objective puzzle [42]. 

Issues contributed to multi-objective optimization 

regularly perform as an achievably innumerable group  

of answers which is called Pareto frontier, where 

investigated vectors indicate primary feasible 

interchanges in the objective function area. With respect 

to this, multi-objective optimization of various processes 

has been examined in plenty of researches [43-83].   

In the present research, an irreversible Atkinson cycle 

is optimized in line with performance improvement  

of the system. In this scenario, for maximizing the thermal 

efficiency, ECOP and ECF parameters, a multi-objective 

optimization solution is applied. For the sake of 

evaluating eventual answers’ precision in different 

decision-making approaches, error analysis is carried out. 

 

Cycle model and analysis 

Fig. 1 shows an air standard Atkinson cycle diagram.  

The working fluid of the most cycle models  

is considered to be as an ideal gas with the characteristic 

of fixed specific heats. However, this presumption could 

be authentic only on the condition of small temperature 

difference. So, in practical cycle, in which there is large 

temperature difference, the mentioned presumption 

cannot be implemented. As ref. [84] indicated, under  

the condition of temperature range between 200-1000 K, 

the specific heat capacity with fixed pressure is as follows: 

PC ( . . T   43 56839 6 788729 10                              (1) 

. T . T    6 2 12 31 5537 10 3 29937 10   

g. T )R 15 4466 395 10   

For temperatures between 1000 and 6000 K, the Cp  

is calculated as: 

PC ( . . T   43 08793 12 4597 10                                (2) 

. T . T    6 2 12 30 42372 10 67 4775 10   

g. T )R 15 43 97077 10   

For temperatures between 200 and 600k, Eqs. (1)  

and (2) can be used which the rage is too wide  

for the temperature range (300-3500 K) of pragmatic engine. 

Thus, for describing the specific heat model a single 

equation has been utilized. The presumption associated 

with this is air must be an ideal gas. 

.
PC ( . T . T     11 2 7 1 52 506 10 1 454 10                    (3) 

.. T . T .     7 5 0 50 4246 10 3 162 10 1 3303   

.. T . T . T )      4 1 5 5 2 7 31 512 10 3 063 10 2 212 10   

V P gC C R                                                                  (4) 
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Fig. 1: Schematic of an Atkinson cycle diagram. 

 
According to Eq (4) the Cv at fixed volume is 

determined as follows: 

.
VC ( . T . T     11 2 7 1 52 506 10 1 454 10                 (5) 

.. T . T    7 5 0 50 4246 10 3 162 10  

.. . T  4 1 51 0433 1 512 10   

. T . T )   5 2 7 33 063 10 2 212 10  

The received heat by the working fluid in through  

2 → 3 is: 

T

in V

T

Q M C dT M( . T   
3

2

12 38 353 10 5                      (6) 

. .. T . T . T       8 2 5 7 2 5 1 5816 10 2 123 10 2 108 10  

.. T . T  4 0 51 0433 3 024 10  

T

T
. T . T )    3

2

5 1 23 063 10 1 106  

The rejected heat is calculated as follows: 

T

out P

T

Q M C dT M( . T   
4

1

12 38 353 10                      (7) 

.. T . T    8 2 5 7 25 816 10 2 123 10  

. .. T . T . T     5 1 5 4 0 52 108 10 1 3303 3 024 10  

T

T
. T . T )    4

1

5 1 23 063 10 1 106  

The adiabatic compression and expansion 

performance of the cycle in 1 → 2 and 3→4 procedure 

are determined as follows [85-91]: 

s
c

T T

T T


 



2 1

2 1

                                                                 (8) 

e
s

T T

T T


 



4 3

4 3

                                                                 (9) 

c And e can present the internal irreversibility  

of the procedures. Due to the dependency of CP and CV 

on temperature, adiabatic element  P Vk C C  varies  

by the changes of temperature. Thus, Eq. (10) is not valid  

for adiabatic stages. Nonetheless, regarding to refs. [90-101], 

a proper estimation for reversible adiabatic procedure 

with k can be carried out, i.e. this procedure can be split 

to many infinitesimally small stages that each k is 

considered fixed. For instance, between states i and j, 

every reversible adiabatic process could be considered  

as containing plentiful infinitesimally small processes with 

fixed k. On the condition of volume dV of the working 

fluid takes place, and an infinitesimally small change  

in temperature dT, for any of these processes, the equation 

for reversible adiabatic process with variable k  

can be presented as follows. 

k kTV (T dT)(V dV)   1 1                                      (10) 

The heat added in constant-volume process  

is calculated as follows: 

 in V j i i j V j iQ C (T T ) T S TC ln T T     . So 

one has 
j

j i
i

T
T (T T ) ln( )

T
   , where T is the equivalent 

temperature of the procedure. When CV is the subordinate 

of temperature, the VC (T)  could be considered as mean 

specific heat of fixed volume. 

From eq. (10), one gets 

j i
V g

i j

T V
C ln( ) R ln( )

T V
                                                  (11) 

The temperature in CV calculation is logarithmic 

j
j i

i

T
T (T T ) ln( )

T
  . Also, the compression ratio  

is determined as: 

V

V
  1

2

                                                                         (12) 

Thus, equations contributed to reversible adiabatic 

processes 1 → 2S and 3 → 4S are: 

s
V g

T
C ln( ) R ln

T
 2

1

                                                    (13) 

 

1

2S 2

3

4
4S

Cv

Cp

T

SS 

T 
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s
V g g

s

T T
C ln( ) R ln( ) R ln

T T
   4 1

3 4

                             (14) 

Heat transfer losses are not considered for an ideal 

Atkinson design. Nonetheless, heat transfer irreversibility 

between cylinder wall and working fluid cannot be 

neglected in a real Atkinson cycle. It is presumed  

that mean temperature of the working fluid and the cylinder 

wall mutually and the heat transfer via the cylinder wall 

(i. e. the heat leakage loss) are relative and the wall 

temperature is equal to T0 (K). If the generated heat  

by combustion procedure per second be A1 (kW) and  

the heat leakage factor of the cylinder wall be B1 [kJ/kg.K], 

the applied heat flow rate is calculated as follows [102-105]: 

in

(T T T )
Q A B

 
  2 3 0

1 1

2

2
                                     (15) 

Eq. (15), shows that Qin contains two terms, the first 

part is A1, and the other one is the heat loss per second, 

which can be defined as:  

leakQ B(T T T )  2 3 02                                              (16) 

where B = B1/2. 

In order to consider the friction loss [92] we have: 

dx
f

dt
                                                                  (17) 

Where  [Ns/m] is a friction parameter and x is  

the piston displacement. P, which represents the lost 

power is defined as: 

dW
P

dt



   2                                                           (18) 

The total displacement of the piston in each cycle  

of four-step engines is calculated as: 

L (x x ) 1 24 4                                                            (19) 

The mean velocity of the piston is as follows  

(N cycles): 

LN  4                                                                       (20) 

Then, the power output and the cycle performance 

efficiency are determined as follows: 

in outP Q Q P                                                         (21) 

th
in leak

P

Q Q
 


                                                         (22) 

T2S can be achieved by Eq. (13) while Rg, T1, T3, c, 

and e are provided. Next, substituting T2S into Eq. (8) 

leads to measure T2, T4S with the help of Eq. (14).  

The last step is to determine T4 by substituting T4S into Eq. (9). 

The power and efficiency can be obtained by Substituting 

T2 and T4 into Eqs. (21) and (22). 

Entropy generation, ECOP and ECF (kW) of  

the Atkinson cycle can be determined as following as: 

out in
gen

L H

Q Q
S

T T

 
  
 

                                                    (23) 

gen

P
ECOP

T S


0

                                                           (24) 

genECF P T S  0                                                          (25) 

 

Multicriteria optimization  

For optimization purposes, Genetic Algorithms (GA) 

were proposed by Holland (1960) [44]. The evolution 

generally begins a population which each individuals 

generated accidentally. The fitness rate associated with 

each individual of the population is investigated.  

Many random individuals are developed to make a new 

population. At the next step, the new population  

is applied to the following iteration of the GA. Regularly,  

on the condition of achieving an favorable fitness level of 

the population or creating the highest value of generations, 

the GA stops. Privious works have been presented more 

details of GA [42,46].  

Furthermore, during the past years with persistent 

investigations on multipart mathematical puzzles and  

on pragmatic engineering problems, MOEAs were extracted. 

Also, throughout the examinations, it was concluded that 

the complexity of conventional approaches can be 

excluded [42,46]. Fig. 2 depicts the construction 

contributed to the MOEA applied in this paper [44,46].  

It is worth stating that the actual amounts of decision 

elements were employed instead of their binary coded. 

Three objective functions are utilized in this 

optimization: thermal efficiency, ECOP and ECF, 

described by Eqs. (22), (24) and (25), respectively.  

Also, five decision variables are considered: 

temperatures of state points 1 and 3, the Expansion 
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Fig. 2: Algorithm steps applied in the study [44,46]. 

 

efficiency (e), the compression efficiency (c) and  

the compression ratio  . 

Although the decision variables might be different  

in the optimizing plan, but they typically need to be fited 

in a sensible range. Thus, the objective functions  

are determined by reletive succeeding limits: 

 T K 1325 400                                                         (26) 

  1 00KT 9 31300                                                    (27) 

e0.85  .     0 97                                                       (28) 

c.   .  0 85 0 97                                                        (29) 

     6 12                                                                  (30) 

 

RESULTS AND DISCUSSION 

In this section, the sensitivity of the objective 

functions for decision parameters is investigated. 

Following Ref. [106], the following parameters are used 

here: x1 = 8×10−2 m, x2 = 1×10−2 m, = 12.9 (Ns/m),  

TH = 2200 K, TL = 300 K , T0 = 300 K, N = 30 , γ = 8.5 ,  

M = 4.553 × 10−3 kg/s, B=0.2 (kj/kgK), e = 0.97,  

and c= 0.97. 

 According to Fig. 3a, the ECF reduced with 

augmenting the T1 at different values of T3. As illustrated 

in Fig. 3b, the ECOP decreased considerably with T1  

at different values of the T3. According to Fig. 3c,  

the thermal efficiency (th) reduced by augmenting the T1 

at different values of the T3). According to Fig. 3d,  

the Power output (P) reduced by increasing the T1  

at different amounts of the T3. 

According to Fig. 4a, the ECF of the system reduced 

significantly with augmenting the T1 at different rates of 

the Expansion efficiency (e). According to Fig. 4b, 

ECOP decreased considerably with T1 at different rates  

of the Expansion efficiency (e).  As depicted in Fig. 4c, 

the thermal efficiency (th) reduced considerably with rising 

of T1 at different rates of the Expansion efficiency (e). 

As it is seen in Fig. 4d, the Power output (P) decreased 

significantly with rising of T1 at distinct rates of  

the Expansion efficiency (e). 

As depicted in Fig. 5a, the ECF reduced by increasing 

the T1 at different rates of the compression efficiency 

(c). As it is illustrated in Fig. 5b, the ECOP reduced  

by enhancing T1 at different rates of the compression 

efficiency (c). As shown in Fig. 5c, the thermal 

efficiency (th) reduced with increasing the T1 at different 

rates of the compression efficiency (c). 

As shown in Fig. 5d, the Power output (P) reduced 

with increasing the T1 at different rates of the 

compression efficiency (c). 

In this study, the thermal efficiency, ECOP and ECF 

of the Atkinson cycle are maximized concurrently 

utilizing multi-objective optimization based on the 

NSGA-II approach. The objective functions are 

illustrated by Eqs. (22), (24) and (25) and the limitations 

by Eqs. (26) -(30).  

The decision parameters of optimization are  

as follow: T1, T3, the Expansion efficiency (e),  

the compression efficiency (c) and the compression ratio . 
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Fig. 3: Effects of T1T3 on the (a) ECF (b) ECOP, (c) thermal 

efficiency , (d) Power output in e = 0.97, c = 0.97. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Effects of the T1 and the expansion efficiency (e)  

on the (a) ECF (b) the ECOP, (c) thermal efficiency,  

(d) Power output in T3 = 1900 K, c = 0.97. 
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Fig. 5: Effects of the T1 and the compression efficiency (c) 

on the (a) ECF (b) ECOP, (c) thermal efficiency , (d) Power 

output in T3 = 1900 K, e = 0.97. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Pareto optimum frontier in objective space. 

 

The Pareto optimal frontier of objective functions  

(the thermal efficiency, ECOP and ECF) is depicted in Fig. 6. 

Selected points with different decision-making 

approaches are depicted, as well.  

Table 1 outlines and compares the optimal results 

associated with decision elements and objective functions 

utilizing LINMAP, TOPSIS, and Bellman-Zadeh 

decision-making approaches. Analyses results are presented 

in Table 2, as well. The achieved results  

are favorable and it is predicted that the present investigation 

improves interpreting the optimum model of the Atkinson 

cycle. Based on the Mean Absolute Percent Error (MAPE) 

approach, an error analysis was performed to define  

the average error for thermal efficiency of solutions gathered 

by decision making approaches. Along with results, these 

errors are 0.071%, 0.079% and 0.138% for TOPSIS, 

LINMAP and FUZZY, respectively. This study 

demonstrated that the average error for the ECOP  

are 0.163%, 0.122% and 0.237% for TOPSIS, LINMAP 

and FUZZY, respectively. This study demonstrated that 

the average error for the ECF of solutions are 0.237%, 

0.234% and 0.169% for TOPSIS, LINMAP and FUZZY, 

respectively. 

 

CONCLUSIONS 

A thermodynamic optimization procedure  

has been employed for determining the thermal efficiency, 

ECOP and ECF of the Atkinson cycle. The Expansion 

efficiency (e), the compression efficiency (c), T1,T3,  and the 

compression ratio  are studied utilizing the NSGA-II 

method. For the sake of designing and evaluating  

the performance and robustness of Atkinson cycle, the results 

can be implemented.  By utilizing decision making 
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Table 1: Decision making results of this study. 

Decision Making 

Method 

Decision variables Objectives 

T1 (K)  T3 (K) e c  th ECOP ECF (kW)  

TOPSIS 325/003 1900 0/970 0/970 11/888 0/314 2/696 1/217 

LINMAP 325/003 1900 0/970 0/970 11/813 0/315 2/688 1/217 

Fuzzy 325/004 1900 0/970 0/970 10/348 0/320 2/520 1/213 

 

Table 2: Error analysis based on MAPE for this study. 

Decision Making Method TOPSIS LINMAP Fuzzy 

Objectives th ECOP ECF  th ECOP ECF  th ECOP ECF  

Max Error % 0.141 0.310 0.464 0.156 0.251 0.466 0.234 0.240 0.380 

Average Error % 0.071 0.163 0.237 0.079 0.122 0.234 0.138 0.237 0.169 

 

approaches (LINMAP, TOPSIS and fuzzy), a final 

optimum solution was chosen from Pareto frontier. 

Generally, the results achieved form distinct decision-

making methods are very close. This investigation 

illustrated that all results are acceptable and propitious  

for this system. 
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