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Thermodynamic behaviour of supercritical matter
Dima Bolmatov1, V.V. Brazhkin2 & K. Trachenko1,3

Since their discovery in 1822, supercritical fluids have been of enduring interest and have

started to be deployed in many important applications. Theoretical understanding of the

supercritical state is lacking and is seen to limit further industrial deployment. Here we study

thermodynamic properties of the supercritical state and discover that specific heat shows a

crossover between two different regimes, an unexpected result in view of currently perceived

homogeneity of supercritical state in terms of physical properties. We subsequently for-

mulate a theory of system thermodynamics above the crossover, and find good agreement

between calculated and experimental specific heat with no free-fitting parameters. In this

theory, energy and heat capacity are governed by the minimal length of the longitudinal mode

in the system only, and do not explicitly depend on system-specific structure and interactions.

We derive a power law and analyse supercritical scaling exponents in the system above the

Frenkel line.
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S
tatistical mechanics is the art of predicting the behaviour of
a system with a large number of degrees of freedom, given
the laws governing its microscopic behaviour. The statistical

description of liquids, in comparison with the solid and gas
phases, is incomplete. The problem of formulating a rigorous
mathematical description of liquids has always been regarded as
much more difficult than that of the kinetic theory of gases or
solid-state theory, stimulating the ongoing research1–9. Owing to
the simultaneous presence of strong interactions and large atomic
displacements, common models and approximations used for
gases and solids do not apply to liquids. For this reason, liquids
do not generally fall into any simple classification and have been
mostly treated as general many-body systems as a result.

In recent years, a significant effort has been devoted to
investigation of various properties of supercritical fluids10–14.
This has been an exciting field with a long history since 1822
when Baron Charles Cagniard de la Tour discovered supercritical
fluids while conducting experiments involving the discontinuities
of the sound in a sealed cannon barrel filled with various fluids
at high temperature15. More recently, supercritical fluids have
started to be deployed in several important applications, ranging
from the extraction of floral fragrance from flowers to
applications in food science, such as creating decaffeinated
coffee, functional food ingredients, pharmaceuticals, cosmetics,
polymers, powders, bio- and functional materials, nano-systems,
natural products, biotechnology, fossil and bio-fuels,
microelectronics, energy and environment13,14,16. Much of the
excitement and interest of the past decade is because of the
enormous progress made in increasing the power of relevant
experimental tools17–20. The development of new experimental
methods and improvement of existing ones continues to have an
important role in this field22–26, with recent research focusing on
dynamic properties of fluids27–32.

High density and high thermal motion are two main properties
responsible for efficient cleaning, dissolving and extracting
abilities of supercritical fluids in the above industrial applications.
From the point of view of practical applications, supercritical
fluids have got the best of both worlds: high density comparable
to ordinary liquids and solids, and high thermal motion and
diffusivity approaching that of gases. Notably, it is this very
combination that presents a formidable problem to the theory:
high density and strong interactions mean that theories and
approximations used for dilute gases do not apply33. Enskog’s33

and related early kinetic approaches to gases were followed by
more extensive developments, yet they do not adequately describe
dense systems with strong interactions and many-body
correlations, such as supercritical fluids. One general issue with
extending gas-like approaches to fluids was noted earlier: in a
system with strong interactions, the system energy strongly
depends on the type of interactions, and is therefore system-
specific, ruling out the possibility to develop a theory that is
universally applicable to many fluids, in contrast to gases and
solids34.

In addition to theoretical challenges, the lack of fundamental
understanding is seen as an obstacle towards wider deployment of
supercritical fluids in industrial applications, primarily because of
the absence of guidance regarding pressure and temperature at
which the desired properties are optimized, as well as the
possibility to use new systems13.

In this paper, we focus on the thermodynamic properties of the
supercritical state. On the basis of molecular dynamics simula-
tions, we find that specific heat shows a crossover between two
different dynamic regimes of the low-temperature rigid liquid
and high-temperature non-rigid gas-like fluid. The crossover
challenges the currently held belief that no difference can be
made between a gas and a liquid above the critical point, and that

the supercritical state is homogeneous in terms of physical
properties35. We subsequently formulate a theory of system
thermodynamics and heat capacity above the crossover. In this
theory, energy and heat capacity are governed by the minimal
length of the longitudinal mode in the system only, and do not
depend on system-specific structure and interactions. We further
study the predicted relationship between supercritical exponents
of heat capacity and viscosity. A good agreement is demonstrated
between calculated and experimental data for noble and
molecular supercritical fluids with no free-fitting parameters.

Results
Dynamic crossover of the specific heat. We start with molecular
dynamics simulations of a model liquid. Our primary aim here is
to show that specific heat, cV, shows a crossover in the super-
critical region of the phase diagram. This result is unexpected in
view of currently perceived homogeneity of supercritical state in
terms of physical properties.

Using molecular dynamics simulations (see Methods), we have
simulated the binary Lennard-Jones (LJ) fluid. We have simulated
the system with 64,000 atoms using constant-volume (nve)
ensemble in the wide temperature range (see Fig. 1) well
extending into the supercritical region. Indeed, the temperature
range in Fig. 1 is between about 2Tc and 70Tc, where Tc is the
critical temperature of Ar, TcE150K; the simulated density,
2,072 kgm� 3, corresponds to approximately four times the
critical density of Ar. From the energy of the system E at each
temperature, we calculate constant-volume specific heat, cV, as
cV ¼ ð1=NÞðdE=dTÞ (kB¼ 1).

We observe that cV decreases steeply from the solid-state value
of about 3kB at low temperature to B2kB around 2,000K. The
steep decrease is followed by crossing over to a considerably
weaker temperature dependence. This crossover is a new effect
not reported in previous molecular dynamics (MD) simulations.
We further observe that the crossover takes place around
cVE2kB. This value of cV¼ 2kB is non-coincidental and
corresponds to the crossover taking place across the Frenkel
line36,37 as discussed below.

Crossing the Frenkel line corresponds to the qualitative change
of atomic dynamics in a liquid. In liquids, atomic motion has two
components: a solid-like, quasi-harmonic vibrational motion
about equilibrium locations and diffusive gas-like jumps bet-
ween neighbouring equilibrium positions. As the temperature
increases, a particle spends less time vibrating and more time
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Figure 1 | Heat capacity of binary LJ fluid. Calculated cV showing the

crossover and continuous dynamical transition around cVE2, (kB¼ 1). The

crossover takes place between different dynamical regimes of the rigid

liquid and non-rigid supercritical fluid.
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diffusing. Eventually, the solid-like oscillating component of
motion disappears; all that remains is the gas-like ballistic
motion. That disappearance, a qualitative change in particle
dynamics, corresponds to crossing the Frenkel line, the transition
of the substance from the liquid dynamics to the gas dynamics.
This transition takes place when liquid relaxation time t (t is
liquid relaxation time, the average time between consecutive
atomic jumps at one point in space38) approaches its minimal
value, tD, the Debye vibration period. As recently discussed36,37,
crossing the Frenkel line is accompanied by qualitative changes of
most important properties of the system, including diffusion,
viscosity, thermal conductivity and dispersion curves36,37. One of
these properties is the crossover of the speed of sound and
appearance of the high-frequency ‘fast’ sound20,39–41. At the
microscopic level, the Frenkel line can be identified by the loss of
oscillations in the velocity autocorrelation function37, a point
studied in detail elsewhere.

Figure 1 implies that in addition to the dynamic properties
discussed above, the thermodynamics of the system changes at
the Frenkel line too. This is an important general insight
regarding the behaviour of the supercritical state.

The initial steep decrease of cV from about 3kB to 2kB can be
quantitatively explained by the progressive loss of two transverse
waves with frequency o41/t (refs 42–44). Physically, this picture
is based on Frenkel’s prediction that on timescale shorter than t,
liquid is a solid, and therefore supports rigidity and solid-like
transverse waves at short times or at frequency larger than
o41/t (ref. 45). When t approaches its maximal value, tD, the
liquid can not sustain transverse waves at any frequency46.
Consequently, the potential energy of the system is due to the
longitudinal mode only, giving the total energy of 2NT and
specific heat of 2kB42,44. Hence, the decrease of cV from about 3kB
to 2kB corresponds to the region of a ‘rigid’ liquid, where short-
time solid-like rigidity and high-frequency transverse waves exist.
On the other hand, the liquid is unable to sustain transverse
waves at any available frequency above the Frenkel line. Instead,
the liquid enters a new dynamic ‘non-rigid’ gas-like regime,
where oscillatory component of particles is lost and the motion
becomes purely collisional as in a gas.

We therefore need to develop a new theory capable of
describing thermodynamics of supercritical matter above the
Frenkel line, where the system enters the new dynamic regime
and where cV falls below 2kB and approaches the ideal-gas value
of 3/2kB at high temperature (see Fig. 1).

Thermodynamic theory of supercritical state. We now focus on
the theory of the non-rigid gas-like liquid above the Frenkel line,
and add a new proposal regarding how the system energy can be
evaluated. As temperature rises in the ballistic gas-like regime
and kinetic energy increases, the mean free path l, the average
distance between particle collisions, increases. At the Frenkel line
where the ballistic regime starts, l is comparable to interatomic
separation. In the limit of high temperature where the particle’s
kinetic energy is much larger than potential energy, l tends to
infinity as in the non-interacting ideal gas. Our proposal is that l
determines the shortest wavelength of the longitudinal mode that
exists in the system, l, because below this length the motion is
purely ballistic and therefore can not be oscillatory, l¼ l. On the
other hand, the longitudinal modes with larger wavelength are
supported and they represent the excitations existing in the
supercritical system.

We note that the existence of long-wavelength longitudinal
waves in a gas (sound) is well known. What is new here is that we
propose that the contribution of the longitudinal waves to the
energy of the gas-like supercritical system starts from very short

wavelengths comparable to interatomic separation a. In this
sense, we are extending the solid-state concepts (for example,
short-wavelength solid-like phonons with Debye density of states,
see below) to the new area of gas-like supercritical state, where
these ideas have not been hitherto contemplated. Indeed, it is well
established experimentally that dynamics in subcritical liquids
shows solid-like character, in that liquids can sustain high-
frequency propagating modes down to wavelengths on the atomic
scale, with solid-like dispersion relations46. Importantly, recent
experimental evidence shows that the same applies to
supercritical fluids20,47.

Here and elsewhere, our discussion of liquid vibrational states
includes an important point. Namely, a disordered system, such as
glass or liquid, supports non-decaying collective excitations
obtainable from the secular equation involving the force matrix
constructed from the amorphous glass or liquid structure.
Harmonic plane waves naturally decay in liquids as in any non-
crystalline systems, yet importantly they are clearly seen in fluids
experimentally as quasi-linear solid-like dispersion relations even
in low-viscous liquids26,46,48, leading to the quadratic density of
states g(o)po2. A detailed discussion of this point is forthcoming.

In the proposed theory, the energy of the non-rigid super-
critical fluid per particle includes the contribution from
the kinetic energy, K ¼ 3

2kBT , and the potential energy of the
longitudinal phonons with wavelengths larger than l. Using
the equipartition theorem hPli ¼ hEli=2, where /ElS is the
energy of the longitudinal phonons, we write

E ¼ 3
2
kBT þ 1

2

Zo0

0

eðo;TÞgðoÞdoþ Eanh ð1Þ

where the upper integration limit o0 is given by the shortest
wavelength in the system, l: o0 ¼ ð2p=lÞc, c is the speed of
sound, e(o, T) is the mean energy of harmonic oscillator,
eðo;TÞ ¼ �ho=2þ �ho

�
ðe�ho=T � 1Þ, or e(T)¼ kBT is the classical

case and Eanh is the anharmonic contribution to the phonon
energy.

The second term in equation (1) can be calculated using the
Debye density of states, gðoÞ � 3=o3

D o2ð Þ, giving kBT o3=o3
D

� �
,

or kBTða3=l3Þ, where a is the interatomic separation. The use of
the quadratic density of states is supported by the experimental
evidence showing solid-like quasi-linear dispersion relationships
in supercritical fluids20,47 similar to the subcritical liquids. Eanh
can be evaluated in the Grüneisen approximation from the
softening of phonon frequencies with temperature, with the result
that the energy is modified as E ! E 1þ aT=2ð Þ, where a is the
coefficient of thermal expansion43,44. Then, the energy of non-
rigid gas-like supercritical fluid becomes:

E ¼ 3
2
kBT þ 1þ 1

2
aT

� �
1
2
kBT

a3

l3
ð2Þ

We observe that when lEa at the Frenkel line, equation (2)
gives E¼ 2kBT and the specific heat of 2 (here we neglect the
small term aT). This corresponds to the crossover of cV in Fig. 1
to the gas-like regime as discussed above. When l increases on
temperature increase in the gas-like regime, equation (2) predicts
that cV tends to 3/2, the ideal-gas value as expected.

Comparison with experimental data. As discussed above, l is
given by the particle mean free path in the non-rigid gas-like
regime, and can therefore be calculated from Z ¼ 1

3r�ul, where Z
is viscosity, r is density and ū is average velocity. Therefore,
equation (2) provides an important relationship between the
energy of the non-rigid supercritical liquid and its gas-like
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viscosity. We now check this relationship experimentally
by comparing the specific heat cV ¼ dE=dT predicted by
equation (2) and the experimental cV.

We have used the National Institute of Standards and
Technology (NIST Chemistry WebBook, http://webbook.nist.
gov/chemistry/fluid) database. We aimed to check our theoretical
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Figure 2 | Heat capacity of noble gas liquids. Experimental and calculated cV (kB¼ 1) for noble non-rigid supercritical fluids. Experimental cv and Z are taken

from the NISTdatabase at different densities as shown in the Figure (a–h). Values of a used in the calculation are 3.5� 10� 3K� 1 (Ne), 3.3� 10� 3K� 1 (Ar),

1.8� 10� 3 K� 1 (Kr) and 8.2� 10�4K� 1 (Xe). The uncertainty of both experimental heat capacities and viscosities is about 2–5%. Insets show viscosity fits.
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predictions and selected the isochoric data of several supercritical
noble and molecular liquids in a wide range of temperature and
density. We note that l in equation (1) changes in response to
both temperature and density: l increases with temperature and
decreases with density. Practically, the range of isochoric data in
the NIST database is fairly narrow in terms of density compared
with the range of temperature. We therefore analyse the
temperature behaviour of cv and Z along several isochores. Our
choice of liquids is dictated by the availability of isochoric data in
the supercritical region. For each density, we fit experimental
viscosity to Z¼A0þA1TA2, calculate l from Z ¼ 1

3r�ul and
subsequently use l in equation (2) to calculate cV.

We note that Debye model is not a good approximation in
molecular liquids, where the frequency of intra-molecular
vibrations considerably exceeds the rest of frequencies in the
system (3340K in N2 and 3572K in CO). However, the intra-
molecular modes are not excited in the temperature range of
experimental cV (see Figs 2 and 3). Therefore, the contribution of
intra-molecular motion to cV is purely rotational, crot. On the
other hand, the rotational motion is excited in the considered
temperature range, and is therefore classical, giving crot¼R for
linear molecules in N2 and CO. Consequently, cV for molecular
liquids shown in Fig. 3 correspond to heat capacities per
molecule, with crot subtracted from the experimental data.

We also note that experimental isochoric cV is affected by
l-like critical anomalies (see Figs 2–4) because the isochoric NIST
data do not extend far above the critical point. Here we do not
consider critical effects related to phase transitions, and therefore
fit the data at temperatures that are high enough to be affected by
the l-anomaly at the phase transition. In Figs 2–4 we observe
good agreement between experimental and predicted cV, in view
of (a) 2–5% uncertainty of experimental cV and Z (see NIST
Chemistry WebBook), (b) approximations introduced by the
Debye model and (c) increased curvature of cV at low temperature
because of proximity of l-anomalies that are not taken into
account by the theory. Notably, the agreement is achieved
without using free-fitting parameters because r, a, ū and a are
fixed by system properties. Values of these parameters used in
equation (1) are in good agreement with their experimental
values.

Another way to compare our theory and experimental data is
to study supercritical exponents of specific heat and viscosity.
Indeed, if Z in the non-rigid gas-like supercritical region can be
approximated as a power law, ZpTg, then equation (2) makes
two predictions. First, E and cV should also follow power laws.
Second, equation (2) provides a specific relationship between the
scaling exponents of Z on one hand and E and cV on the other
hand, the relationship that we check below.

Apart from comparing theory and experiments, studying the
supercritical scaling exponents is interesting in the wider context
of scaling behaviour of physical properties. In the area of phase
transitions, the scaling behaviour idea has been a crucial element
in the subject of liquids and other systems from the nineteenth
century onwards49. Critical points occur in a great variety of
systems50–53, yet there is a considerable degree of similarity in the
way in which systems approach the critical point54. Here the
calculation of critical exponents serves as one of the main test of
the theories.

Once analysed within our theory below, experimental tem-
perature dependence of Z, ū, E and cV (see NIST Chemistry
WebBook) can be fairly well approximated by the power law
above the Frenkel line. Therefore, we use the following power-law
relationships:

Z ¼ const�Tg ð3Þ

�u ¼ const�T
1
2 ð4Þ

E ¼ 1:5�T þ const�Td ð5Þ

cV ¼ 1:5þ const
Tx ð6Þ
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From Z ¼ 1
3r�ul (kB¼ 1), l¼ const�Tg� 0.5. Using l in

equation (2) gives for the energy (neglecting the small term aT):

E / T2:5� 3g ð7Þ
and specific heat:

cV / ð2:5� 3gÞT1:5� 3g ð8Þ
Then, from equations (3), (7) and (8), we find the following

relationships between the power-law scaling exponents:

2:5� 3g ¼ d ð9Þ

3g� 1:5 ¼ x ð10Þ
We note that equations (7) and (8), together with the general

requirement for cV to be positive and the experimental
requirement for cV to decrease with temperature, imply that g
should be in the range 1

2ogo5
6. This is the case for the

experimental data we examined, as will be shown below. We
also note that g ¼ 1

2 corresponds to the non-interacting ideal gas
and ZpT0.5.

We now check equation (10) experimentally. Using the NIST
database and equation (6), we calculate x from the slope of
log(cV¼ � 1.5) vs. log 1=ðT �TFÞð Þ, where TF corresponds to the
temperature on the Frenkel line and 1.5 is the asymptotic gas
value of specific heat. Using equation (10), we calculate the
predicted theoretical value gth and compare it with the
experimental gexp obtained from fitting the experimental viscosity
to ZpTgexp.

In Table 1, we show x, gexp and gth, averaged over several data
sets taken along the isochores at several different densities. We
observe the overall good agreement between gexp and gth. We
further observe that the power exponent of specific heat, x, is
close to 0.2 for different systems. In our theory, the similarity of
temperature behaviour of cV is due to temperature dependence of
l. This point is discussed in the next section in more detail.

Discussion
Our first important observation in this work is that contrary to
the current belief, the thermodynamic properties of the super-
critical state are not homogeneous. Instead, the specific heat
shows a crossover related to the change of particle dynamics,
which we attributed to the recently introduced Frenkel line.

We have subsequently focused on thermodynamic properties
of supercritical fluids above the Frenkel line. Here, we faced the
problem of strong interactions, the long-persisting challenge in
condensed matter physics. Indeed, strong interactions imply that
approximations used for dilute gases do not apply to real dense
liquids33. If we consider realistic strong interactions (assuming
that interactions are known and can be represented in analytical
form, the assumption that is valid for a relatively small number of

simple systems only) and structural correlations that often
include those beyond two-body correlations, we quickly find
that the problem becomes intractable. Further, strong
interactions, coupled with their specificity in different systems,
have been suggested to preclude the calculation of energy and
heat capacity in general form from the outset34.

In this paper, we addressed the problem in a different way, by
substituting all potentially complicated effects of interactions and
structural correlations by one physical quantity, the minimal
wavelength of the longitudinal mode in the system l. This has
enabled us to rationalize the experimental behaviour of cV as well
as to provide the relationship between different physical proper-
ties and experimental outcomes (for example, relationship
between cV and Z). Notably, our approach unveils similarity of
thermodynamics of supercritical state in the following sense.
First, cV does not explicitly depend on system details such as
structure and interactions, but on l only. Fluids may have very
different structure and interactions, yet our theory predicts the
similarity of their thermodynamic behaviour as long as l behaves
similarly in those systems. Second, and more specifically, our
approach predicts that supercritical scaling of thermodynamic
properties, such as heat capacity, is governed by viscosity scaling.
Consequently, similar temperature scaling of viscosity gives
similar temperature scaling of thermodynamic properties. We
note here that we have mostly dealt with systems with fairly
simple interatomic interactions, whereas the found similarity of
thermodynamic behaviour may not hold in systems with the
hierarchy of interactions and non-trivial structural transforma-
tions such as water55.

Methods
Molecular dynamics. We have used DL-POLY molecular dynamics simulation
code56 to run the system with 64,000 atoms in the constant-volume (nve) ensemble
at different temperatures. We have used 3,000 processors of the high-throughput
cluster to simulate 500 temperature points in the temperature range of about
0–12,000K shown in Fig. 1. We have used the model LJ potential57 to simulate
model liquids. Each structure was equilibrated for 25 ps, and the system energy and
other properties were averaged for the following 25 ps of the production run. The
timestep of 0.001 ps was used.
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